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Background: Owing to the heterogeneity displayed by hepatocellular

carcinoma (HCC) and the complexity of tumor microenvironment (TME), it is

noted that the long-term effectiveness of the cancer therapy poses a severe

clinical challenge. Hence, it is essential to categorize and alter the treatment

intervention decisions for these tumors.

Materials andmethods: “ConsensusClusterPlus” tool was used for developing a

secure molecular classification system that was based on the cuproptosis-

linked gene expression. Furthermore, all clinical properties, pathway

characteristics, genomic changes, and immune characteristics of different

cell types involved in the immune pathways were also assessed. Univariate

Cox regression and the least absolute shrinkage and selection operator (Lasso)

analyses were used for designing the prognostic risk model associated with

cuproptosis.

Results: Three cuproptosis-linked subtypes (clust1, clust2, and clust3) were

detected. Out of these, Clust3 showed the worst prognosis, followed by clust2,

while Clust1 showed the best prognosis. Three subtypes had significantly

different enrichment in pathways related to Tricarboxylic Acid (TCA) cycle,

cell cycle, and cell senescence (p < 0.01). The clust3 subtype with poor

prognosis had a low “ImmuneScore” and low immune cell infiltration, and

the three subtypes had significant differences in the antigen processing and

presentation pathway of themacrophages. Clust1 had a low TIDE score andwas

sensitive to immunotherapy. Then, according to the prognosis-related genes of

cuproptosis, a prognosis risk model related to cuproptosis was constructed,

containing seven genes (KIF2C, PTTG1, CENPM, CDC20, CYP2C9, SFN, and

CFHR3). “High” group had a higher TIDE score compared to the TIDE score

value shown by the “Low” group, which benefited less from immunotherapy,

whereas the “High” group patients were more sensitive to the conventional

drugs. Finally, the prognosis risk model related to cuproptosis was combined

with clinical pathological characteristics to further improve the prognostic

model and survival prediction.

Conclusion: Three new molecular subgroups based on cuproptosis-linked

genes were revealed, and a cuproptosis-related prognostic risk model

comprising seven genes was established in this study, which could assist in
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predicting the prognosis and identifying the patients benefit from

immunotherapy.
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Introduction

Liver cancer includes primary liver cancer and secondary

forms of liver cancer. Hepatocellular carcinoma (HCC) is a very

prevalent type of primary liver cancer, followed by intrahepatic

cholangiocarcinoma and other rare cancers (sarcoma,

hemangioendothelioma, etc.) (Li et al., 2022). Liver cancer

shows a poor prognosis. The frequency of liver cancer has

significantly increased in the past few years, while its 5-year

survival OS rate is <20% (Pham et al., 2022). Hepatitis B and C

viruses, non-alcoholic fatty liver disease (NAFLD), alcohol

consumption, and other factors (i.e., aflatoxin and

microcystin) are among the primary causes of liver cancer.

Out of these, HBV and HCV are seen to be the major risk

factors for liver cancer (Lin et al., 2020). Although numerous

high- or low-expression genes linked to the onset of liver cancer

and carcinogenesis have been identified, the probable molecular

mechanism of liver cancer is not entirely understood. Precision

medicine can introduce a fresh perspective for individualized

cancer diagnosis and focused therapy by considering the

heterogeneity of every patient. Therefore, clinicians should

propose more specific diagnosis and treatment methods for

the subtype of the disease for optimizing the efficacy of

treatment, thereby decreasing the resulting side effects (Liang

et al., 2018).

From bacteria and fungi to plants and animals, copper is the

basic element of life. In the human body, it combines with

enzymes to help blood clots, hormone maturation, and cell

energy processing and is also involved in many biological

behaviors. However, too much copper will kill cells and cause

pathological damage to multiple organs. Studies have shown that

copper ion is both a key cofactor of many enzymes, and excessive

copper ion will lead to cell death. The exact mechanism of

cuproptosis involves the induction of cell death after

combining the tricarboxylic acid cycle (TCA)-linked enzymes,

leading to a protein toxic stress response, which differs from the

cell death mechanisms discussed in the past (Tsvetkov et al.,

2022). Many studies have shown that copper metabolism is

involved in many pathophysiologies of chronic hepatitis. A

long-term exposure to a higher concentration of copper ions

or the long-term usage of unqualified copper water pipes and

tableware could lead to chronic copper poisoning, thereby

causing chronic liver disease (Guo et al., 2021; Nakaichi et al.,

2021). In addition, cuproptosis has aroused widespread concern

in a variety of liver diseases. Excessive copper exposure can lead

to oxidative stress, due to excessive reactive oxygen species (ROS)

production and reduced antioxidant function, and then promote

hepatocyte apoptosis through mitochondrial apoptosis. Earlier

reports also stated that the TNF-R1 signaling pathway played a

vital role in the Cu-induced apoptosis pathway (Liu et al., 2020).

Copper metabolism is closely related to human-related genetic

disease hepatolenticular degeneration (Xu et al., 2021), and such

patients have been associated with copper storage disorders for a

long time. Hence, it becomes important to determine novel

molecular markers and identify the cuproptosis-linked

downstream signaling pathways, for understanding the

regulatory role played by cuproptosis in the pathophysiology

of liver cancer.

In this report, the cuproptosis-linked genes were used to

identify stable molecular subtypes through consistent clustering.

Thereafter, the clinical characteristics, pathway characteristics,

and immune characteristics were compared between the different

subtypes. Finally, genes related to the cuproptosis phenotype

were detected using the expression difference analysis and least

absolute shrinkage and selection operator (Lasso). Furthermore,

the risk model and clinical prognostic model were constructed,

which can assist in the personalized treatment of liver cancer

patients.

Materials and methods

Data collection and processing

The Cancer Genome Atlas (TCGA) GDC API was used for

downloading TCGA-LIHC dataset containing RNA-seq data, copy

number variation (CNV) and mutation data used in this study.

Primary tumor samples were remained. Samples with no survival

information were removed. After the screening, 50 normal and

360 primary tumor samples were included in this study. The Gene

Expression Omnibus (GEO) database provided the gene expression

data for the GSE14520 dataset. Following identification, 242 liver

carcinoma samples were used in the study. Here, the TCGA-LIHC

was used as a training set, while theGSE14520 dataset was used as an

independent verification set. The cuproptosis-linked genes in this

study came from the study of Tsvetkov et al. (2022), a total of

13 cuproptosis-related genes, i.e. ATP7A, LIAS, LIPT1, DLD, DBT,

DLST, FDX1, PDHA1, DLAT, GCSH, PDHB, SLC31A1, and

ATP7B. The bioinformatics analysis of this study was supported

by the Sangerbox tool (http://vip.sangerbox.com/) (Shen et al.,

2022). The work flow of this study was shown in Supplementary

Figure S1.
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Data preprocessing

The RNA-seq data downloaded from the TCGA database

were preprocessed as mentioned below: 1) All samples without

any clinical follow-up data were discarded; 2) All samples

without information regarding their survival duration were

eliminated; 3) All samples without their OS were eliminated;

4) Ensembl was converted to the Gene symbol; and 5) Median

values of the expressions with multiple gene symbols were

considered. On the other hand, the GEO data were pre-

processed as follows: For the GEO data set, the annotation

information of the corresponding chip platform was

downloaded. According to the annotation information, the

probe was mapped to the gene, and the probe that matched

multiple genes was discarded. If a gene matched multiple probes,

the median value was regarded as its gene expression value.

Molecular subtypes of the cuproptosis-
linked genes

ConsensusClusterPlus was used for consistent clustering to

build a consistency matrix, and the samples were clustered and

typed (Wilkerson and Hayes, 2010). The molecular subtypes of

all the samples were derived using the expression data of the

cuproptosis-linked genes. “Pam” algorithm and “Euclidean”were

used as the distance measurement, and 500 bootstraps were

conducted, wherein every bootstrap process included 80% of

all patients in a training set. The cluster number was defined as

between 2 and 10, and the best classification was selected by

determining the consistency matrix and consistency cumulative

distribution function for determining the molecular subtype of

the sample.

Constructing a risk model

1) Through the molecular subtypes identified previously, the

cuproptosis-linked genes with differences between the

subtypes were identified. Here, the differences between the

clust1 vs. non-clust1 subtypes, clust2 vs. non-clust2, and

clust3 vs. non-clust3 subtypes, were identified through the

Limma package (Ritchie et al., 2015). The differentially

expressed genes (DEGs) were also identified based on their

FDR<0.05 and | log2FC |>1 values.

2) Univariate Cox analysis was conducted through the Cox

function in the survival package, and DEGs with

significant prognosis (| logFC |>1 & FDR<0.05) were selected.
3) Lasso regression (Tibshirani, 1997) was used to decrease the

number of genes. Stepwise regression was then utilized, using

the Akaike Information Criterion (AIC), which considered

the model’s statistical fit and the no. of parameters that could

be used for fitting. The most complex model was used to start

the stepAIC technique in the MASS package (Zhang, 2016),

and one variable was eliminated at a time to lower AIC. The

model performed better with a smaller value, indicating that it

had achieved an acceptable degree of fit with fewer

parameters.

The RS of each patient was estimated using the formula as

follows: RiskScore (RS) = Σβi × EXPi. EXPi refers to the gene

expression level of gene characteristics related to the prognosis of

cuproptosis-related phenotypes, while βi refers to a Cox

regression coefficient for the respective gene. To categorize

patients into high-risk and low-risk RS groups, survminer R

package (http://www.sthda.com/english/rpkgs/survminer/) was

used to calculate the optimal cut-off. KM curve was used for

drawing the survival curve for prognostic analysis, while the log-

rank test was employed for determining the significant difference

between the groups.

Gene set enrichment analysis technique

For investigating the pathways associated with various

biological processes in numerous molecular subtypes, the

“GSEA” technique was utilized for pathway analysis

(Subramanian et al., 2005). Here, GSEA was analyzed using

the c2. cp.kegg.v7.0. symbols.gmt as a background set through

GSEA software, and identified with NP < 0.05. In addition, the

TCA cycle-associated genes and pathways were downloaded

from the MSigDB database in GSEA (http://www.GSEa-

msigdb.org/GSEa/msigdb/search.jsp), and the ssGSEA was

used for calculating the score of the TCA related pathways.

Then, the pathways and genes related to cell growth and

death were downloaded from KEGG’s official website (https://

www.kegg.jp/kegg/pathway.html), and the score of the cell

growth and death-related pathways was calculated by ssGSEA.

In addition, the NK Cytotoxicity Score, Toll-Like Receptor Score,

and the Antigen Processing and Presentation Score for every

sample were determined using the ssGSEA process, with the help

of the relevant genes involved in these pathways, derived from

the GSEA-based MSigDB database.

Calculation of invasion abundance of
tumor microenvironment cells

The relative abundance of the 22 immune cells involved in

lung cancer was measured using the CIBERSORT algorithm

(https://cibersort.stanford.edu/) (Newman et al., 2015).

Simultaneously, the percentage of immune cells was

determined using the Estimation of Stromal and Immune

Cells in Malignant Tumors Using Expression Data

(ESTIMATE) software, and the Wilcoxon rank sum test

was employed for comparing the degree of immune cell
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infiltration between the high-risk and the low-risk groups

(Runa et al., 2017).

Prediction of responsiveness to
immunotherapy

The effect of the Immune Checkpoint Inhibitor Score (IMS) on

predicting the Immune Checkpoint inhibitors’ (ICI) clinical

reactivity was confirmed using the Tumor Immune Dysfunction

and Exclusion (TIDE) algorithm. Immune Checkpoint Blockade

(ICB) reactivity is predicted using the gene expression profile by the

TIDE algorithm (Jiang et al., 2018). The TIDE algorithm assessed

two distinct mechanisms of the tumor immune escape scores, such

as tumor-infiltrating Cytotoxic T Lymphocytes (CTLs) dysfunction

score (dysfunction) and the immunosuppressive factor rejection

score (exclusion), as well as 3 cell types that restricted T cell

infiltration into the tumors, such as M2 subtype of the cancer-

associated fibroblasts (CAF), myeloid-derived suppressor cells

(MDSCs), and the tumor-associated macrophages (TAMs). The

potential clinical consequences of immunotherapy in the new

molecular subgroups were assessed in this study using the TIDE

software (http://tide.dfci.harvard.edu). The likelihood of

immunological escape increases with increasing TIDE prediction

score, indicating that patients are less likely to benefit from

immunotherapy.

Results

Gene mutations and transcriptional
changes of cuproptosis-related genes

In this study, 13 cuproptosis-related genes were obtained. For

determining the genetic changes caused by “cuproptosis” in liver

cancer, the gene mutation rate of the somatic mutations in

13 cuproptosis genes was evaluated. Among 364 TCGA-LIHC

primary tumor samples, 12 (3.3%) had mutations in cuproptosis-

FIGURE 1
Mutation map and expression characteristics of cuproptosis-related genes in liver cancer. (A)Mutation map of cuproptosis-linked genes in the
primary tumor samples; (B) CNVs of cuproptosis-linked genes in the primary tumor samples. Vertical axis indicates the percentage of CNV types of
cuproptosis-related genes; (C) The differences of gene expression levels between different CNV types in primary tumor samples; (D) Differential
analysis of transcriptional expression levels of cuproptosis-linked genes in primary tumor and adjacent normal tissue samples. Log2 (expression)
was selected in C and D. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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linked genes (Figure 1A). Among them, only ATP7A, DLD, and

DBT had gene mutations. Then, we analyzed the somatic copy

number changes of these cuproptosis-related genes in primary liver

cancer and found that cuproptosis-related genes had a low CNV

amplification/deletion frequency (Figure 1B). To determine if the

genes related to cuproptosis are differentially expressed in primary

tumors and normal tissues, the mRNA changes of cuproptosis-

linked genes between the primary tumor samples and the adjoining

normal tissue samples were compared, showing that a majority of

the cuproptosis-linked genes were differentially expressed

(Figure 1C). Further, to explore the difference in CNV value in

mRNA expression in primary tumor tissues, patients with primary

liver cancer were categorized into 3 groups according to CNV value,

including increased CNV, CNV loss, and no significant change in

CNV. Then, the mRNA expressions of the cuproptosis-linked genes

between all groups were compared (Figure 1D). The results

indicated that most of these cuproptosis-linked genes showed

higher expression in patients with increased CNV and patients

with lost CNV, and there was no significant change compared

with CNV.

Molecular typing depending on the
cuproptosis-linked genes

For understanding the expression pattern of the cuproptosis-

linked genes, the liver cancer samples in the TCGA-LIHC dataset

containing clinical information were used to classify patients

through the consistent clustering of the expression profiles of

these 13 cuproptosis-related genes. Then, an optimal no. of

clusters was determined based on the cumulative distribution

function (CDF), and the CDF Delta area curve showed that if

the selected cluster was 3, it showed a very stable clustering outcome

(Figures 2A,B), Finally, the k-value of 3 was selected to determining

3molecular subtypes (Figure 2C). Analysis of the prognostic features

of the 3 molecular subtypes showed that they displayed significant

FIGURE 2
Consensus clustering analysis based on the prognosis of cuproptosis-linked genes in liver cancer. (A) CDF curve of TCGA-LIHC dataset
samples; (B) CDF-delta area curve for the TCGA-LIHC dataset, Delta area curve for consensus clustering, which indicates the relative difference in
the area under the CDF curve for every category number, k, in comparison to the k—1. The X-axis axis denotes the category number, k, whereas the
Y-axis indicates the relative change in the area under the CDF curve; (C) Sample clustering-related heat map when the consumption k = 3; (D)
KM curves denoting the correlation between the prognosis of 3 subtypes, identified using the TCGA-LIHC dataset; (E) KM curve of prognosis of three
subtypes in GSE14520 cohort.
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prognostic differences (Figure 2D). It was noted that clust3 showed

the worst prognosis, followed by clust2, and clust1 had the best

prognosis. This same technique was used for verifying the

GSE14520 dataset and the results showed that significant

differences existed in the prognosis of the 3 molecular subtypes

(Figure 2E), which was in agreement with the TCGA-LIHC dataset.

Clinical characteristics and mutation
characteristics between molecular
subtypes

The clinicopathological characteristics of the numerous

molecular subtypes in the TCGA-LIHC dataset were assessed.

Then, the distribution of various clinical characteristics in

3 molecular subtypes was compared, and all distribution

differences in the clinical characteristics of different subtypes

were determined. The results revealed significant differences

between the clust1 and clust2/clust3 in T-stage, Stage, and Grade

(Supplementary Figure S2A). T1/T2 accounted for a relatively high

proportion in clust1/clust2, and T3/T4 accounted for an increase in

clust3. In the stage distribution, T1/T2 accounted for a relatively

high proportion in clust1/clust2, and T3/T4 accounted for an

increase in clust3. In the grade distribution, the proportion of

clust1 in G1/G2 was relatively high, and the proportion of clust2/

clust3 in G3/G4 was increased.

Mutation characteristics between the
molecular subtypes

The different genomic changes noted in the 3 molecular

subtypes existing in the TCGA-LIHC dataset were analyzed.

Here, the molecular characteristics of TCGA-LIHC were

FIGURE 3
Genome changes of molecular subtypes in the TCGA-LIHC dataset. (A) The differences among the molecular subtypes of the TCGA-LIHC
dataset were compared in terms of Aneuploidy Score, Homologous Recombination Defects, Fraction Altered. (B) The top 10mutated genes in three
subtypes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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downloaded from an earlier Pan-cancer Study (Thorsson

et al., 2018). It can be seen that the clust1 subtype showed

a low Aneuploidy Score and Homologous Recombination

Defects (Figure 3A). In addition, a previous study divided

HCC into 5 molecular subtypes according to 160 immune

signatures, of which the immune molecular subtypes C1, C2,

and C4 had the worst prognosis and C3 showed the best

prognosis. In a comparison of the relationship between the

5 immune molecular subtypes and the proposed 3 molecular

subtypes, it was noted that the C1/C2/C4 subtype of immune

molecular subtype occupied more in clust3 and

clust2 subtypes with poor prognosis, while the C3 subtype

of immune molecular subtype occupied more in

clust1 subtype with good prognosis (Supplementary Figures

S2B,C). In addition, the differences in the gene mutations in

various molecular subtypes were compared. TP53 was the

FIGURE 4
GSEA analysis of the 3 molecular subtypes. (A) Clust1 vs. clust2 GSEA analysis results in TCGA-LIHC dataset; (B) Clust1 vs. clust3 GSEA analysis
results in TCGA-LIHC dataset; (C) Clust2 vs. clust3 GSEA analysis results in TCGA-LIHC dataset; (D) Comparison of TCA related pathway scores
amongst the 3 molecular subtypes identified using the TCGA-LIHC dataset; (E) A comparison of cell growth- and cell death-related pathway scores
amongst the 3 subtypes in the TCGA-LIHC dataset. (ANOVA, *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001).
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mostly mutated gene in all three subtypes, with a total

mutation rate of 29% (Figure 3B).

Pathway analysis of molecular subtypes

A comparative analysis of the pathways related to various

biological processes in differing molecular subtypes was carried

out. The results showed that when clust1 was compared to

clust2 of the TCGA-LIHC dataset, the metabolic pathways

like the ASCORBATE_AND_ALDARATE_METABOLISM

were activated in clust1, while pathways like the

SPLICEOSOME were activated in clust2. In clust1 vs. clust3,

pathways such as SPLICEOSOME were activated in clust3, while

in clust2 vs. clust3, pathways such as

FATTY_ACID_METABOLISM were activated in clust3

(Figures 4A–C). Through previous studies, it was found that

cuproptosis was related to TCA (Tsvetkov et al., 2022). ssGSEA

analysis of the TCA score showed that the three subtypes had

significant differences in TCA-linked pathways (Figure 4D).

Then, the score of cell growth and death-associated pathways

was calculated by the ssGSEA technique. The results showed no

significant differences between the 3 subtypes except necroptosis

and apoptosis, and there were significant differences among the

other four pathways related to cell growth and death (Figure 4E).

Immune properties displayed by the
various molecular subtypes

For determining the differences present in the immune

microenvironment of the patients belonging to various

molecular subtypes, the expression level of genes in the

immune cells was utilized for assessing the level of infiltration

of the immune cells in the TCGA-LIHC dataset. First, the relative

quantity of 22 immune cells was determined using the

CIBERSORT algorithm. Figure 5A revealed substantial

disparities across the different subtypes, associated with

8 immune cell types, including the memory B cells, naive

B cells, regulatory T cells, and macrophages (M0, M1, and

M2), etc. The immune cell infiltration was also assessed

simultaneously using ESTIMATE. The outcomes

demonstrated that the three “ImmuneScore” subtypes differed

significantly from one another. The “ImmuneScore” of the

clust3 subtype having a poor prognosis was lower than that of

other subtypes, with low immune cell infiltration (Figure 5B).

Further, the sensitivity differences of different molecular

subtypes in the TCGA-LIHC dataset to immunotherapy were

analyzed. Firstly, the variation in the expression of various

immune checkpoints in the different subtypes was compared.

The findings showed that these molecular subtypes differentially

expressed 34 immune checkpoint genes (Figure 5C). Figure 5A

showed that the molecular subtypes particularly showed a

differential expression of the macrophages, which are cells

that play a vital role in immune regulation, such as Toll-like

receptor signaling pathway, and macrophage antigen processing

and presentation. And there are FC receptors on the surface of

macrophages, which can kill tumor cells through specific

antibodies, like the Antibody-Dependent Cell-mediated

Cytotoxicity (ADCC) effect (NK-cell mediated cytotoxicity).

Therefore, the ssGSEA was used to calculate the immune

scores like NK Cytotoxicity Scores, Toll-like Receptor Score,

and Antigen Processing and Presentation Score, for every

sample. Simultaneously, the ANOVA test found that there

were significant differences in macrophages in antigen

processing and presentation (Figure 5D). Finally, the TIDE

software was employed for analyzing the differences between

the different subtypes with regard to immunotherapy. Figure 5E

showed that the TIDE score of clust2 and clust3 subtypes in the

TCGA queue was higher than the clust1, suggesting that the

clust1 subtype had a lower probability of immune escape and

showed a higher probability of benefitting from immunotherapy.

Establishment and validation of clinical
prognosis model

Then, the cuproptosis-linked genes, which differed between

various subtypes, were identified. Finally, a total of

499 differential genes were chosen for additional analysis, and

the results of the differential analysis were shown in the volcanic

map (Supplementary Figures S3A–C). Univariate Cox analysis

was carried out on 499 differential genes, and a total of 15 genes

showing a significant impact on prognosis were identified (p <
0.001), including 11 “Risk” and 4 “Protective” genes

(Supplementary Figure S3D). Supplementary Figure S3E

shows the forest map of univariate Cox analysis of

15 prognosis-related genes.

Then, 15 genes were further compressed using the

stepwise regression technique, and 7 genes were derived,

i.e., KIF2C, PTTG1, CENPM, CDC20, CYP2C9, SFN,

CFHR3. The RSs of each sample were calculated through

7 gene expression levels with TCGA-LIHC data as the

training data set. Then receiver operating characteristic

(ROC) analysis was used for determining the classification

efficiency of the prognosis prediction for 1–5 years. Area

under the curve (AUC) for 1-, 2-, 3-, 4- and 5-year OS

were seen to be 0.72, 0.66, 0.65, 0.67, and 0.75, respectively,

wherein the AUC values for 1- and 5-years were >0.7
(Figure 6A). Simultaneously, Z-score conversion was

performed on RS. Samples with RS > 0 were classified into

the “high-risk” group, while samples with RS < 0 were

categorized into the “Low-risk” group, and KM curves were

drawn. Results revealed significant differences between both

the groups (p < 0.0001), and “high” group showed a worse

prognosis compared to the “low” group (Figure 6B).
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To verify the robustness of the model, the

GSE14520 dataset was used to verify by the same method,

and ROC curves were used for analyzing the classification

efficiency of predicting the prognosis of 1–5 years of OS. The

results revealed that the risk model could be effectively

developed using the 7 genes. The AUC values for 1–5-year

OS were seen to be 0.68, 0.7, 0.69, 0.67, and 0.62, respectively,

wherein the AUC values for 2-years were >0.7 (Figure 6C).

The same method was used to draw the KM curve, and both

the groups showed significant differences (p < 0.05).

Furthermore, the prognosis of the “low” group was

significantly better compared to the “high” group (Figure 6D).

Performance of the RiskScore in different
clinicopathological features and different
molecular subtypes

For testing the correlation between the RS scores and the

clinical characteristics of liver cancer, the difference in RS scoring

FIGURE 5
Immune-related characteristics of each cuproptosis subtype. (A) The variations in the 22 immune cell scores displayed by the 3 molecular
subtypes identified using the TCGA-LIHC dataset; (B) The difference of ESTIMATE immune infiltration amongst the 3 molecular subtypes identified
using the TCGA-LIHC dataset; (C) Immune checkpoints that were expressed differentially by the different groups in the TCGA-LIHC dataset; (D)
Difference analysis of macrophage participation in related pathways between different groups in the TCGA-LIHC dataset; (ANOVA, *p < 0.05;
**p < 0.01; ***p < 0.001; and ****p < 0.0001) (E) The difference of TIDE analysis results between different groups in the TCGA-LIHC dataset (Wilcox
Test, *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001).
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between different TNM grades and Stage clinical grades in the

TCGA-LIHC dataset was evaluated. The results implied that

samples with higher clinical grades had higher RS (Figure 7A).

Simultaneously, the clinicopathological differences between the

RS groups in the TCGA-LIHC dataset were compared and

significant differences were noted in the distribution of

T-stage, Stage, Grade, Age, and Status between both the

groups. “High” showed a higher clinical grade, and a greater

number of patients died in the “high” group, which was in

agreement with poor prognosis (Figure 7B).

Differences in immune characteristics and
immunotherapy among RiskScore groups

The changes in the relative abundance of 22 different

immune cell types in the high-RS and low-RS groups were

examined in order to better understand the differences in the

immunological microenvironment of patients in the RS

group. The results showed that there were notable differences

between the RS-high and -low groups in 12 different immune cell

types, including plasma cells, macrophages (M0, M1, M2),

FIGURE 6
Construction and assessment of the RSmodel based on the seven cuproptosis-linked genes. (A) ROC curve of risk model constructed by seven
genes in the TCGA-LIHC dataset; (B) KM curve of risk model constructed by seven genes in the TCGA-LIHC dataset; (C) ROC curve of risk model
constructed by seven genes in the GSE14520 dataset; (D) KM curve of the risk model constructed by seven genes in the GSE14520 dataset.
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FIGURE 7
Correlation between RS and clinicopathological features. (A)Differences in RSs between different clinicopathological groups in the TCGA-LIHC
dataset (Wilcox Test, *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001); (B) Clinicopathological features between RS groups in the TCGA-LIHC
dataset.
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memory B cells, etc. (Figure 8A, Wilcox.test). Additionally, the

immune cell invasion was also evaluated using ESTIMATE

(Wilcox.test). The findings demonstrated a statistically

significant difference in the “ImmuneScore” values between

the 2 groups. With a higher immune cell infiltration, the

“ImmuneScore” in the “low” group was seen to be higher

compared to that in the “high” group (Figure 8B).

Then the sensitivity difference of immunotherapy between

the low and high-risk groups in the TCGA-LIHC dataset was

analyzed. Firstly, the differences in the expression of the immune

checkpoints between various checkpoints were compared. The

results indicated that 28 immune checkpoint genes were

expressed differentially between both the groups (Figure 8C,

Wilcox.test).

FIGURE 8
The role of the RS model in predicting the benefits of immunization/chemotherapy. (A) Variations in the 22 immune cell scores amongst the
different risk groups identified using the TCGA-LIHC dataset; (B) Differences in immune and matrix scores amongst the different risk groups in the
TCGA-LIHC dataset; (C) Immune checkpoints differentially expressed between various groups in the TCGA-LIHC dataset; (D) The results of TIDE
analysis among different groups in TCGA-LIHC dataset were different; (E) Box plots of the calculated IC50 for the drug in TCGA-LIHC dataset
(Wilcox test, *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001).
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Furthermore, the potential clinical effects of

immunotherapy in the high- and low-RS groups in the

TCGA-LIHC dataset, were analyzed, using the TIDE

software. The analysis revealed significant differences in the

MDSC, TIDE, Exclusion, and Dysfunction scores. It was

concluded that the High-RS group showed higher scores

than those shown by the Low-RS group (Figure 8,

Wilcox.Test). In addition, the response degree of the high-

risk and low-risk groups to traditional chemotherapy drugs

was analyzed. It was found that there were significant

differences among five traditional drugs, cisplatin,

rapamycin, cyclopamine, GNF-2, and pyrimethamine, and

the “high” group was more sensitive to these traditional

drugs (Figure 8E, Wilcox.test).

Abnormal performance of RiskScore in
tricarboxylic acid pathway

Further, the performance of RS in TCA-related pathways was

compared. As shown in Figure 9A, it was noted that the score of

the TCA-linked pathway in the “low” group was higher. Both the

groups showed significant differences with regards to different

pathways like the COBP_CITRATE_METABLIC_PROCESS,

COBP_2_OXOGLUTARATE_METABLIC_PROCESS, COBP_

OXOGLUTARATE_

METABLIC_PROCESS, COBP_SUCCINATE_METABLIC

_PROCESS, and COBP_TRICARBOXYLIC_ACID_CYCLE_

ENZYME_COMPLEX pathways. Then, the score of TCA-related

pathways for every patient included in the TCGA-LIHC dataset

FIGURE 9
Differences in pathway characteristics among different RS groups. (A) The box plot of TCA-related pathway scores in high-risk and low-risk
groups in the TCGA dataset (Wilcox.test, *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001); (B) The heat map of TCA related pathway scores in
the high-risk and low-risk groups in the TCGA-LIHC dataset; (C) The scatter diagram of correlation analysis between RS and TCA scores in TCGA-
LIHC dataset.
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was z-scored based on the samples in the heat map for

determining the difference in the scores of the related

pathways in the expression pathway of the high-risk and low-

risk groups, and the TCA score of “low” group was higher

(Figure 9B). The average value was calculated as the TCA

score through the score of TCA-related pathways. Through

analysis, it was found that the TCA score was significantly

and negatively related to RS (R = 0.49, p < 2.2e-16)

(Figure 9C, Spearman).

RiskScore combined with
clinicopathological features to further
improve the prognostic model and
survival prediction

Clinicopathological characteristics and RS were analyzed

using the Univariate and Multivariate Cox regression analysis,

and the results revealed that Stage and RS were the most

important predictive markers (Figures 10A,B). RS and Stage

were coupled to create a nomogram in order to evaluate the

risk assessment and the survival probability of the liver cancer

patients (Figure 10C). According to the model’s findings, RS had

the biggest influence on the survival rate prediction. Then, the

calibration curve was utilized to assess the model’s predictability,

as illustrated in Figure 10D. It can be seen that the three

calibration points for the prediction calibration curves for 1,

3, and 5 years were close to the reference curve, indicating that

the nomogram performed well in terms of prediction.

Additionally, decision curve analysis (DCA) was utilized to

investigate the model’s dependability. It is evident that the

advantages of RS and nomogram were much greater than

those of the extreme curve. The nomogram and RS

demonstrated the highest capacity to predict survival when

compared to other clinicopathological characteristics (Figures

10E,F).

Discussion

The long-term efficacy of HCC treatment is still a significant

problem in clinical practice because of the complexity of the TME

and heterogeneity of HCC. The selection of the best course of

treatment and action must be categorized and improved. In

HCC, many transcriptome-based classifications are extensively

used. Li et al. identified 2 novel molecular subgroups in liver

FIGURE 10
Nomogram of RS combined with clinical pathological characteristics. (A,B) Univariate and Multivariate Cox regression analysis of the RS and
clinicopathological features; (C) Nomograph model; (D) Calibration curve of nomograph in 1, 3, and 5 years; (E) Decision curve of nomograph; (F)
When compared to a few other clinicopathological characteristics, the nomogram displayed a good capacity for OS prediction.
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cancer based on genes associated with ferroptosis and created a

ferroptosis-associated prognostic RS model made up of six genes

that can be used to predict outcomes and identify the cancer

patients who would respond well to immunotherapy. Three

molecular subtypes of HCC were discovered by Wang et al.,

each with a unique prognosis and metabolic profile. Lin et al.

found 18 lncRNAs and 2 molecular subtypes in HCC with

specific immune dysfunction that present distinct prognostic

characteristics and immunological characteristics, which aids

in understanding the function of lncRNA and motivates the

discovery of immunotherapy targets. In this study, the HCC

molecular subtypes were detected, from the cuproptosis

perspective, since one cannot ignore the regulatory impact of

cuproptosis.

From the literature review, 13 genes associated with

cuproptosis were obtained. After analyzing the differences in

the mRNA expression of cuproptosis-related genes between the

primary tumor samples and adjoining normal tissue samples, it

was noted that a majority of these variations were statistically

significant. HCC patients were categorized into three categories

depending on the consistent clustering of 13 cuproptosis-related

gene expression profiles. The three subtypes had distinct

prognosis characteristics, according to the prognostic analysis.

The prognosis for Clust3 was the worst, followed by Clust2 and

Clust1, while Clust1 showed the best prognosis. Additional

examination of the clinicopathological traits of the various

subtypes revealed that the Clust3 subtype showed a late

clinical T stage and Stage, in addition to a higher Grade. All

these findings were in agreement with its poor prognosis.

Further, the genomic variations displayed by the 3 molecular

subtypes, identified using the TCGA-LIHC dataset were

analyzed. The results implied that the clust1 subtype showed a

lower Aneuploidy Score and Homologous Recombination

Defect. Additionally, after comparing the correlation between

the 5 existing immune molecular subtypes and the 3 molecular

subtypes defined in this study, it was noted that among clust3 and

clust2 subtypes with a poor prognosis had a low proportion of

C4 subtype (lymphocyte depleted subtype) and a high percentage

of C1 subtype (wound healing subtype), which was consistent

with the prognosis of immune molecular subtypes. Then, the

variations in the gene mutations existing between the different

molecular subtypes were also identified, and significant

differences were noted in the mutation frequencies of TP53,

TTN, MUC16, and other genes among the 3 molecular subtypes,

and clust1 had a higher mutation frequency of TP53.

Recent reports have stated that the concentration of the

copper ions in the tumor tissues and serum of cancer patients

was significantly higher than those of healthy patients (Blockhuys

et al., 2017). Previous studies have shown that cuproptosis takes

place by the direct combination of copper ions and the fatty

acylated components present in the TCA cycle. This leads to the

accumulation of the fatty acylated proteins and subsequent loss

of the iron-sulfur cluster proteins, which leads to protein toxic

stress and eventually cell death. Therefore, cuproptosis is closely

related to the TCA cycle (Tsvetkov et al., 2022). TCA is seen to

play a significant role in cellular energy metabolism and it is also

responsible for the onset of numerous diseases, like tumors. At

present, mutations and abnormal expression of TCA key genes

have been found in tumors, which are significantly related to

tumorigenesis and progression. The liver is an important

digestive organ in the human body. The metabolic process of

three major nutrients occurs actively in the liver. HCC is usually

accompanied by the TCA cycle reprogramming, which regulates

energy production through the TCA cycle, which ensures the

survival of the tumor cells even in difficult conditions like

hypoxia, nutrient deficiency, and finally, escaping the immune

system (Ferrarini et al., 2019; Du et al., 2022). The score of TCA

related pathway was calculated by the ssGSEA method.

Significant differences were noted in the 3 molecular subtypes,

with regard to the TCA cycle. Cell death is an essential and fine-

tuning process, which is crucial to eliminating damaged and

redundant cells. Many forms of programmed and non-

programmed cell death have been identified, including

apoptosis, ferroptosis, and necroptosis (Moujalled et al., 2021).

This study could not detect any significant differences between

the 3 molecular subtypes, except in necroptosis and apoptosis,

and there were significant differences in the other four pathways

related to cell growth and death.

The metabolic environment can change the immune

response in the liver and make tumor cells immune escape. In

addition, metabolic rearrangement of immune cells can cause

abnormal self-function (Li et al., 2021). TME is a crucial intrinsic

factor in the emergence, growth, invasion, and metastasis of liver

cancer. The findings of this study showed that different

molecular subtypes exhibited varying degrees of immune cell

infiltration in the immunological microenvironment of different

patients. Additionally, the “ImmuneScore” of the clust3 subtype,

which has a poor prognosis due to the relatively low immune cell

infiltration, was lower compared to that of other subtypes.

Additionally, the immunotherapy sensitivity variations of

several molecular subtypes in the TCGA-LIHC dataset were

examined. The majority of immunological checkpoint genes

were discovered to express differently in various subtypes. In

each of the three molecular categories, the macrophages showed a

significant difference. Macrophages are crucial for

immunological regulatory processes such as the processing

and presentation of antigens and the Toll-like receptor

signaling pathway. Additionally, macrophages have FC

receptors on their surface, which when activated by a specific

antibody can cause an ADCC effect (NK cell-mediated

cytotoxicity) that kills tumor cells (Xing et al., 2020). Through

our analysis, macrophages had significant differences in the

antigen processing and presentation pathway. Lu et al. (2022)

showed that PD-L1 positive host macrophages, representing the

main cell source of PD-L1 in HCC, showed HLA-DRhighCD86high

glycolysis phenotype, significantly produced anti-tumor IL-
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12p70, and polarized through internal glycolysis metabolism.

These results implied that the macrophages play a vital role in the

onset of liver tumors, and the distribution differences between

the three subtypes can provide a basis for tumor treatment.

Further, by analyzing the sensitivity differences among different

subtypes in immunotherapy, it was found that the clust2 and

clust3 subtypes in the TCGA-LIHC dataset showed higher TIDE

scores than those presented by clust1, suggesting that the

clust1 subtype had a lower probability of immune escape and

greater likelihood of benefiting from immunotherapy.

Then, a total of 15 genes among the three subtypes that had a

significant impact on prognosis were identified, and the prognostic

risk model was constructed by KIF2C, PTTG1, CENPM, CDC20,

CYP2C9, SFN, CFHR3, and seven genes was obtained by Lasso

regression and AIC algorithm. Kinesin Family member 2C (KIF2C)

belongs to the kinesin 13 family, and is an M-kinesin, which is

overexpressed in many human tumors. In their study, Wei et al.

(2021) observed that KIF2C was overexpressed in HCC and was

related to several aggressive malignancies that activate the Wnt/β-
catenin signaling pathway and was also involved in the HCC

progression as it interacted with TBC1D7 in mTORC1 signaling.

Cho-Rok et al. (2006) found that Pituitary Tumor Transforming

Gene 1 (PTTG1) was overexpressed in many types of human

cancers. Furthermore, results indicated that when the

PTTG1 gene was silenced, it inhibited the growth of the liver

cells in vivo and in vitro. Studies have shown that centromeric

protein M (CENPM) is closely related to the development of HCC.

The up-regulation of CENPM promotes hepatocarcinogenesis

through a variety of mechanisms and could be considered a new

probable biomarker and a clinical therapeutic target for HCC (Xiao

et al., 2019). Studies have found that CDC20 regulates the process of

the cell cycle mainly by targeting the destruction of key substrates. In

HCC, CDC20 binds to the Destruction box (D-box) motif in

oxygen-dependent Prolyl Hydroxylase 3 (PHD3) to promote its

polyubiquitination and degradation and is seen to play a vital role in

HCC development by controlling PHD3 (Shi et al., 2021).

Nizamuddin et al. found that cytochrome-P450-2C9 (CYP2C9)

has genetic diversity. This gene metabolizes many drugs and is

overexpressed in the human liver (Nizamuddin et al., 2021).

Sulforaphane (SFN) plays an epigenetic regulatory role by

inhibiting histone deacetylase (HDAC) and affects the activity of

carcinogenic transcription factors through the methylation of its

binding sitemotif, which provides insights into the chemopreventive

molecular effects of SFN in HepG2 cells. It is a valuable natural

cancer treatment method (Dos Santos et al., 2020). Complement

factor H-related 3 (CFHR3) is a protein-coding gene that plays a role

in various diseases. Liu et al. (2020) found through bioinformatics

analysis that CFHR3 is a novel prognostic biomarker and

therapeutic target for determining HCC.

Further, the relationship between RS scoring and clinical

characteristics of liver cancer was analyzed. It was found that the

samples with higher clinical grades had higher RSs. A comparison of

the different immunemicroenvironments in the patients belonging to

differing RS groups showed that the “low” group presented a high

infiltration of immune cells, and amajority of the Immune checkpoint

genes were expressed differentially in both groups. In addition, by

analyzing the sensitivity difference betweenRS group to treatment, it is

noted that the “high” group showed a higher TIDE score compared to

the “low” group, indicating that the likelihood of immune escape in

the high-risk group was higher compared to the low-risk group, and

the high-risk group patients were less likely to be benefitted from

immunotherapy. However, the “high” group was more sensitive to

these traditional drugs. This result can provide a reference for

personalized treatment of patients. Simultaneously, the

performance of RS in TCA-related pathways was compared. The

results in this study showed that the low-risk group showed higher

TCA-related pathways scores, and the TCA scores were seen to be

significantly negatively related to the RS, which was consistent with

the results of subtype typing, and TCA scores with poor prognosis

were higher. Finally, the clinical characteristics that showed significant

differences during the Univariate and Multivariate Cox regression

analysis, Stage, and RS were used for constructing a novel nomogram.

Analyzing the calibration and the decision curves indicated that the

model showed a higher prediction accuracy and survival prediction

capacity. Additionally, the cuproptosis-linked genes were chosen as

the target gene, which was essential for the onset, development,

diagnosis, and treatment of HCC. The nomogram model

constructed in this study could be used as the basis for deriving an

individualized treatment plan for HCC patients.

This study provides novel insights into the personalized clinical

treatment planning for HCC patients, however, it does have a few

limitations. First of all, our research only includes bioinformatics

analysis and lacks the verification of experimental clinical samples.

In addition, the study was carried out using a retrospective design

instead of using a prospective design. However, this analysis was

carried out using 2 independent datasets, so the results are still

acceptable and reliable. It can be concluded that prospective clinical

trials and an investigation into the mechanisms involved need to be

carried out for verifying the results noted in the study.

Conclusion

To conclude, this study presented 3 molecular subtypes that

were associated with cuproptosis in liver cancer. These 3 molecular

subtypes showed a heterogeneity in their pathological features,

prognosis, pathway, and immune characteristics. Thereafter, a

classifier known as the prognostic risk model associated with

cuproptosis was constructed and verified. The model has strong

stability, is independent of the clinical and pathological

characteristics, and plays a stable prediction efficiency in

independent data sets. The model has high prediction accuracy

and survival prediction ability, which could be used for predicting

prognosis and selecting the immunotherapy that was best suited

for the patients. These results could help in developing a precise

and individualized treatment strategy for clinical HCC patients.
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