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Sertoli cells are immune privileged cells, important for con-
trolling the immune response to male germ cells as well as
maintaining the tolerogenic environment in the testis. Addi-
tionally, ectopic Sertoli cells have been shown to survive and
protect co-grafted cells when transplanted across immuno-
logical barriers. The survival of ectopic Sertoli cells has led to
the idea that they could be used in cell based gene therapy. In
this review, we provide a brief overview of testis immune
privilege and Sertoli cell transplantation, factors contributing
to Sertoli cell immune privilege, the challenges faced by viral
vector gene therapy, the use of immune privileged cells in cell
based gene therapy and describe several recent studies on
the use of genetically engineered Sertoli cells to provide
continuous delivery of therapeutic proteins.

Introduction

Testis immune privilege is important for preventing a detrimental
immune response against the auto-immunogenic germ cells.1

Sertoli cells (SC) are one of the main players responsible for this
property of the testis and studies have shown that SC survive
long-term when transplanted across immunological barriers, i.e.,
allo- or xeno-transplantation, without the need of immuno-
suppressive therapy.2 SC are also capable of prolonging the
survival of other cells, such as pancreatic islets, when co-
transplanted with the SC.2 More recently, it has been suggested
that SC can be used as a vehicle for cell based gene therapy.2

This is supported by studies that showed SC can be genetically
engineered to process and secrete biologically active proteins3,4

and that genetically engineered SC retain their immune privilege
potential.4,5 These data support a new role for immune privileged

SC, which is to use them as a delivery vehicle for therapeutic
proteins without tissue rejection or other detrimental host
immune responses. This approach, which combines both gene
and cell therapy, circumvents problems normally encountered
with viral vector gene therapy such as immune-mediated elimina-
tion of vector, insertional mutagenesis and low tissue availability.
The potential use of SC in cell based gene therapy is vast and
could be extended to the treatment of several diseases e.g.,
hemophilia (factor VIII or IX), type I diabetes (insulin), type
II diabetes (glucagon-like peptide-1, GLP-1) and rheumatoid
arthritis (antagonists of pro-inflammatory cytokines).

Testis Immune Privilege

The testis is an immune privileged site that not only provides the
tolerogenic environment for protection of the maturing, auto-
immunogenic germ cells, but also allows for prolonged survival of
foreign (allogeneic and xenogeneic) tissues after transplantation
into the interstitial space.1,2 The immune privilege status of the
testis has been recognized for over two centuries with variable
survival of testicular tissue transplants or tissues engrafted into
the testis.6 The first study to demonstrate testis immune privilege
was performed by John Hunter in 1767 when testes transplanted
as allografts into the abdominal cavity of a hen were found to have
“perfectly normal structure.”6 Despite this early beginning, it was
not until the 1970s and early 1980s that testicular immune
privilege was examined more thoroughly.6 During this time, a
series of reports documented that various tissues (e.g., skin,7,8

parathyroid fragments,7,9-11 pancreatic islets12,13 and insulinoma
tissue14) would survive even when they were grafted into the
testes of different species, verifying the testis as an immune
privileged site.

In order to identify the mechanism responsible for testis
immune privilege, various components were explored including
the lower temperature of the scrotum,9,15 impaired lymphatic
drainage,9,16 locally produced hormones,17,18 Leydig cells,18
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spermatogenesis and germ cells,11,15 and all were found not to
be required for testis immune privilege. This suggested that
immunoregulatory mechanisms attributed to the remaining
cellular components of the testis, primarily SC (also macrophages
and possibly peritubular myoid cells), were responsible for
creating and maintaining immune privilege in the testis.

Sertoli Cells

SC are somatic cells that together with the germ cells and
peritubular myoid cells comprise the seminiferous tubules of
the testes. They provide nutrients and factors required for the
development and protection of the germ cells.19 Since the germ
cells develop after the immune system has determined its set of
self antigens that can be tolerated, and possess a profile of novel
cell surface markers that can be recognized as foreign by the host
immune system,20,21 they should be subjected to immunological
rejection. However, SC provide protection to the germ cells by
creating a physical barrier (blood-testis barrier/SC barrier) and
secreting immunomodulatory factors, thus contributing to
testicular immune privilege.

SC immune privilege is attributed to their production of several
factors that can control the immune response (reviewed else-
where).2,22,23 They secrete molecules that inhibit interleukin-2
production and proliferation of B and T lymphocytes.2 They
express several complement inhibitors (e.g., decay accelerating
factor (DAF), serping1),23 and survive when exposed to an
antibody/complement-mediated killing assay.24 Moreover, they
express indoleamine-2, 3-dioxygenase (IDO), adhesion molecules
(intercellular adhesion molecule 1 (ICAM), vascular cell adhesion
molecule 1 (VCAM)), immunoregulatory cytokines (e.g., trans-
forming growth factor β (TGF-β), interleukin-6, activin),
chemokines [chemokine (C-C motif) ligand 27 (CCL27)], apo-
ptosis inhibitors (serpina3n, protease inhibitor-9), and enzymes
that produce anti-inflammatory prostanoids (prostaglandin E
synthase, prostaglandin I synthase).2,22,23 Overall this can lead to
immunosuppression and tolerance.

Sertoli Cell Co-transplantation Studies

Small animal models. The importance of SC in creating an
immune privileged environment in the testis was confirmed by
co-transplantation studies where SC were shown to survive and
protect co-transplanted cells in situations (allo- and/or xeno-
transplantation) where most other cells were immunologically
rejected. The first study to demonstrate that SC survive as
allografts and protect other co-transplanted cells was described
by Selawry and Cameron in 1993.25 SC were isolated from either
PVG or Sprague Dawley rats and transplanted along with islets
from Sprague Dawley rats into the renal subcapsular space of
diabetic male or female PVG rats. Sixty-five percent of the
rats that received SC along with islets and a short course of
immunosuppression (cyclosporin) remained normoglycemic for
more than 100 d as compared with zero percent of the control
group transplanted with islets alone and 30 percent of rats that
received islets and treatment with cyclosporin. Modification of

the SC isolation procedure and addition of a recovery period
(culturing the cells for 48 h) prior to transplantation improved
the use of SC such that when transplanted as allografts they
could protect islets even without the use of immunosuppressive
drugs.26 Since publication of these studies, both the survival of
SC as allografts and their ability to protect co-engrafted allogeneic
islets has been confirmed by several investigators, as extensively
discussed in a recent review.2

The immunoprotective capabilities of SC also include pro-
tection of xenogeneic islets when co-transplanted with a short
course of immune suppression27,28 or use of encapsulation.29,30 In
one study, islets isolated from tilapia fish and SC isolated from
Wistar-Furth rats were co-encapsulated and transplanted into
diabetic BALB/c mice. The mean graft survival time, as deter-
mined by lowering of blood glucose levels, was prolonged signifi-
cantly to 46 ± 10.9 d in mice transplanted with encapsulated
SC and islets as compared with controls that received only
encapsulated islets (21 ± 6.7 d).29 Furthermore, the protection of
co-transplanted tissue by SC was not limited only to islets.
Sanberg et al., showed that SC when co-transplanted with
xenogeneic adrenal chromaffin cells into rat brain also protected
the transplanted cells, and decreased microglia response at the
site of transplantation.31 Similarly, SC have been shown to pro-
tect xenogeneic hepatocytes,32 xenogeneic neurons,33 allogeneic34

or xenogeneic skin35 and allogeneic heart grafts.36

Large animal models. Selawry et al., examined the immuno-
protective ability of testes in a primate model. They transplanted
allogeneic islets into the interstitial space of cryptorchid testes
from diabetic Rhesus monkeys37 (also discussed in a review38),
receiving a brief course of cyclosporin (20 mg/kg, on days -3 to
+3). They found that the animals remained normoglycemic for
8, 54 and 60 mo. After 5 y, removal of the testis from the
normoglycemic monkey resulted in a return to hyperglycemia.
Tissue obtained for histological examination revealed the presence
of insulin-positive islets. Subsequently, porcine islet xenografts
were transplanted into the interstitium of dog testes with or
without immunosuppression.39 Grafts collected after 100 d were
positive for insulin and glucagon staining and no difference in
survival of islets was observed between the animals that received
immunosuppression vs. those that did not.

Male germ cells isolated from pigs, goats, cattle, dogs, and
sheep have also successfully colonized the seminiferous tubules of
immune-competent, large animal testes when transplanted as
allografts without immune suppression.40-47 In the case of goats
and sheep several offspring were produced.43,47 It is important to
note that similar experiments performed in rodents resulted in
limited colonization unless immune suppression was used.48-50

The reason for the difference in success of these species is unclear.
The immunoprotective role of SC isolated from pigs has also

been studied in primates. Neonatal porcine Sertoli cells (NPSC)
together with neonatal porcine islets have been transplanted into
the omental pouch, kidney, pancreas, and liver of non-diabetic
macaques. After 2 mo, tissues were analyzed for cell survival.
While inhibin (a marker for SC) and glucagon (a marker for islet
a cells) immunoreactive cells were found, no insulin (a marker
for islet β cells) positive cells were detected.51
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The first clinical trial using SC was performed in Mexico. In
this study, initially 12 type I diabetic patients were enrolled and
later 11 more patients were added to the group. All the subjects
received NPSC co-transplanted with neonatal porcine islets into a
device that had been placed into the subcutaneous space of the
patients 2 mo prior. After transplantation, exogenous insulin dose
requirement was reduced greater than 33% in more than half of the
patients52 and half of the patients had improved hemoglobin A1c
levels. Two of the patients remained insulin independent for up to
2–3 mo.53 Although porcine insulin was detected at 28 mo in one
patient and at 4 y in two patients by HPLC, no porcine C-peptide
(an indicator of graft function) was detected in the patient’s blood.53

However, low amounts of porcine C-peptide were detected in the
patient’s urine under basal conditions and this value increased after
stimulation with L-arginine.52 Additionally, mullerian inhibiting
substance (MIS)-positive SC and insulin- and glucagon-positive
islets were detected 3 y after transplantation. This trial has faced
serious criticism due to safety and ethical concerns associated with
clinical transplantation of porcine tissue; and because the procedure
was not tested in a large animal model, such as non-human
primates, prior to clinical transplantation.54

Survival of Transplanted SC

While the aforementioned studies indicate that SC can protect
co-transplanted tissues, the ability of SC to protect themselves is
better than the protection they provide to co-transplanted tissues.
For example when allogeneic mouse SC were co-transplanted with
islets, the survival of co-transplanted islets was successful in ~59%
of mice whereas over 90% of the grafts contained numerous SC.55

Additionally, protection of xenogeneic islets requires immune
suppression27,28 or encapsulation29,30 while porcine SC can survive
without immune suppression.56 Survival of SC as xenografts was
first demonstrated by transplanting porcine SC into rat brain.57

The SC survived for 2 mo without immunosuppression.
However, the brain is also an immune privileged site in the
absence of SC. Later, a study published by Dufour et al., showed
that SC isolated from neonatal pigs survived as xenografts for at
least 90 d when transplanted into the renal subcapsular space (a
non immune privileged site) of non immune suppressed Lewis
rats.56 Graft survival was verified by staining with vimentin
(NPSC marker) and by PCR for pig specific cytochrome oxidase
II. Survival of NPSC for at least 40 d has been confirmed after
transplantation to BALB/c mice or female Wistar rats.39,58 NPSC
have also survived and protected neonatal pig islets for more than
200 d after transplantation to diabetic C57BL/6 mice (28 Rayat
GR, personal communication). However this required a short
course of monoclonal antibody therapy. These data suggest that
survival of SC is better than the co-transplanted cells and led to
the concept that engineered immune privileged SC may be used
to deliver various therapeutically relevant proteins.

Gene Therapy

The goal of gene therapy is to replace absent or faulty genes with
functional genes and consequently eliminate the root cause of the

disease. Hereditary single-gene defects, such as β-thalassemia,
were initially considered important candidates for gene therapy.
More recently, cancer, cardiovascular disease, diabetes mellitus
and neurodegenerative disorders have been added to this list.59

Gene therapy delivery vehicles include non-viral and viral
vectors. Non-viral vectors offer advantages such as, being non-
pathogenic, less toxic and being produced in relatively large
amounts. However, the efficiency of gene transfer is lower than
with viral vectors.60 Furthermore, transgene expression tends to
be transient and is limited by endosome/lysosomal degradation.
Therefore, viral vectors are often the preferred choice for
delivering genes of interest because they allow for sustained and
high levels of expression of the transgene.60 Viral vectors currently
used in gene therapy can be grouped into non-integrating
(adenoviral and herpes simplex-1 virus) and integrating
[oncoretroviruses, lentiviruses, and adeno-associated viruses
(AAV)] categories.59 Although, viral vectors are efficient means
of delivering targeted DNA they have also been associated with
unwanted and potentially very serious side effects.

The major problem encountered by viral vectors is the host’s
immune response. Administration of viral vectors results in
generation of innate (mediated by inflammatory cytokines) and
adaptive (humoral and cell-mediated) immune responses. Because
adenoviral vectors retain most of their viral genome they induce
stronger immune responses. The innate immune response is of
major concern as it leads to the clearance of approximately 90%
of adenoviral vector DNA when injected intravenously.61 The
humoral immune response is also a major problem for adeno-
viral vectors or AAV as humans are a natural host to these viruses
and already have preformed neutralizing antibodies and memory
B cells against these viruses and their serotypes.61 In addition,
a cell-mediated immune response (CD4+ and CD8+ T cells)
can also be elicited against adenoviral vector.61 The immuno-
genicity of adenoviral vectors can be seen in the Gelsinger
tragedy that occurred in 1999. In this trial, a second generation
adenoviral vector expressing human ornithine transcarbamylase
was administered into the hepatic artery of 17 y old Jesse
Gelsinger.62 Eighteen hours following gene transfer, the subject
started showing signs of systemic inflammatory immune res-
ponse to the viral vector and later died due to multi-organ
system failure.62

In terms of innate immune response, AAV is a weak immunogen
and does not elicit a strong inflammatory response.61 However,
AAV (mainly AAV2 serotype) has been shown to interact with
complement factors, mainly C3, C3b, iC3b thereby increasing its
uptake into macrophages and enhancing their activation.61 Recently
in a clinical trial, the adaptive immune response to AAV became
evident. In this trial, hepatocytes were transduced with rAAV
expressing canine Factor IX and infused through the hepatic
artery into seven subjects to treat hemophilia. A gradual loss in
transgene expression was observed and later studies revealed that
the transduced hepatocytes were destroyed by cell-mediated
immunity targeting antigens of the AAV capsid.63 Of all the viral
vectors described, lentiviral vectors are the least immunogenic.
However, it has been shown in vivo that an immune response can
be elicited against lentivirus-encoded transgene products.64,65
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Besides an immune reaction, another major concern with the
use of integrating viral vectors is insertional mutagenesis.59

Although genomic integration is an essential feature to obtain
stable expression of the transgene, it is a double-edged sword that
can also lead to insertional mutagenesis and potentially cancer if
insertion of the vector occurs near proto-oncogenes. This concern
became apparent during the clinical gene therapy trials conducted
for patients suffering with severe combined immunodeficiency
(SCID) using a retroviral vector for transferring the gene of
interest.66 Long-term follow up of the clinical trials for SCID-X1
(due to mutation in the gene encoding the common cytokine-
receptor c chain)67 showed evidence of a functional immune
system and sustained clinical results in 17 out of 20 patients.68

However, T-cell acute lymphoblastic leukemia developed in five
patients.67 Three patients responded to chemotherapy and are in
remission but unfortunately one patient died from refractory
leukemia.67 The cause of the leukemia-like disorder was due to
the insertion of the vector genome near the oncogene, LIM
domain only 2.67 This is a cause for concern since insertion of the
gamma-retrovirus is not random but more likely to integrate
into transcriptionally active regions of the chromatin.69,70 No
case of insertional mutagenesis has been reported in ADA-SCID
trials [another form of SCID, caused by the lack of adenosine
deaminase (ADA) enzyme], but detailed analysis of cells obtained
from 5 patients revealed insertion close to proto-oncogenes.67

Besides SCID, retroviral vector gene therapy has been extended to
other diseases including Wiskott-Aldrich syndrome71 and chronic
granulomatous disease.67 Desirable clinical success has been
achieved in Wiskott-Aldrich trial however one of the patients
developed T cell leukemia.71 In the chronic granulomatous disease
clinical trial, limited initial clinical benefits have been reported in
patients due to loss of transgene expression67 and unfortunately,
expansion of gene modified cells was also observed in three of the
patients (out of 12 subjects who underwent treatment72) due to
the insertional activation of growth-promoting genes. One of the
patients died of severe sepsis and multiorgan failure 2.5 y after
treatment.67

Several in vivo animal studies have shown that while lenti-
viral vectors can also exhibit insertional mutagenesis, they are
generally less mutagenic than gamma-retroviral vectors.73 In the
first lentiviral vector clinical trial,74,75 no incidence of abnormal
proliferation of cells (leukemia) or other adverse events have been
reported, suggesting that lentiviral vectors are safe to be used
in gene therapy.74,75 Clinical success comparable to allogeneic
hematopoietic stem cell transfer has also been reported in another
lentivirus trial with no vector related toxicity or leukemia,76

suggesting that lentiviral vectors could decrease the chance of
insertional mutagenesis.

Besides these promising findings, another clinical trial using
lentiviral vectors has recently triggered alerts from regulatory
bodies.77 In this study, CD34+ hematopoietic stem cells were
transduced with a lentiviral vector expressing human β-globin to
correct β-thalassemia.78 Despite the promising results, a clonal
expansion of erythroid precursors has been reported. Although
the exact mechanism of the clonal expansion has to be verified,
it has been postulated that it is due to insertion of the vector

into the gene locus for high mobility group A2 protein.77 Thus
although great advances have been made in order to overcome
insertional mutagenesis, no viral vector currently meets desirable
clinical safety standards.

Cell-Based Gene Therapy-Utilizing Immune
Privileged Cells

Cell based gene therapy is defined as the use of cells carrying a
protein of interest to target specific diseases. Cell based gene
therapy holds great promise to treat both genetic and acquired
diseases. This approach can also overcome viral vector based
concern i.e., insertional mutagenesis. For example cells carrying
the transgene can be expanded in culture, screened for insertional
mutagenesis and the cells expressing high levels of transgene and
devoid of vector insertion near proto-oncogenes could be utilized
in clinical trials. The major limitation of this approach is that the
cells carrying the transgene would be rejected. To escape immune
rejection, immune privileged cells [e.g., SC or mesenchymal stem
cells (MSC)] could be used in a cell based gene therapy approach.

Using immune privileged cells in cell based gene therapy has
been studied by several investigators. We will first discuss the
cell based gene therapy approach using MSC. MSC are multi-
potent stem cells that retain their capacity to differentiate toward
chondrogenic, adipogenic and osteoblastic lineages. Recently the
immune privileged properties of MSC have been explored more
extensively and it has been shown that like SC, they survive
the host’s immune response when transplanted across immuno-
logical barriers.79-81 Initial experiments performed in 1997,
showed efficient MSC transduction with a retroviral vector
carrying interleukin-3 gene and laid the foundation of using
MSC in cell based gene therapy.82 Later, MSC engineered to
produce interleukin-2 or interferon-β, have been shown to reduce
tumor growth and prolong animal survival.80 Furthermore, MSC
producing Akt1 (pro-survival protein) or human insulin reduce
cell death in cardiac ischemia80 and ameliorate diabetes in animal
models, respectively.80 Besides the vast potential of MSC as a
cell based gene therapy vector their major drawbacks are hetero-
geneity and tumor formation.80 Recently, two studies utilizing
human83 or monkey MSC,84 have highlighted the issue of tumor
formation by showing spontaneous transformation of MSC when
cultured in vitro. Moreover, when these transformed MSC were
injected into NOD/SCID mice subcutaneous tumors developed
verifying that they are highly tumorigenic.84 Because differen-
tiated SC do not have the above mentioned problems they are
excellent candidates for efficient and safe cell based gene therapy.

Sertoli Cells as a Vehicle for Cell Based Gene Therapy

The ability of immune privileged SC to survive after transplanta-
tion suggests that they can be engineered to deliver therapeutic
proteins. As an initial attempt to explore this possibility, we
examined the ability of SC producing green fluorescent protein
(GFP) to survive allotransplantation and continue to express
GFP.5 SC isolated from transgenic TgN (GFPU) 5Nagy ICR
mice engineered to express GFP were transplanted into the renal
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subcapsular space of BALB/c mice.5 Analysis of the grafts revealed
the long-term survival (at least 60 d) of GFP-expressing SC
(Fig. 1), with SC detected in 70% of the grafts. When GFP-
expressing islets were transplanted as controls, all islet grafts were
rejected within 17 d.5 This study mentioned above verified that
genetically engineered SC retained their immune privileged
status but it did not examine their ability to secrete a clinically
relevant, therapeutic protein.5 In 2006, Trivedi et al., modified
Lewis rat SC with a recombinant adenoviral vector expressing
enhanced GFP (eGFP) and a human trophic factor, neuro-
trophin-3 (hNT-3), and found that the modified SC secreted
biologically active hNT-3 in vitro.4 After transplantation as
allografts into the acutely injured spinal cord of Sprague-Dawley

Figure 1. SC isolated from transgenic mice (TgN (GFPU) 5Nagy) survive and
express GFP when transplanted as allografts in BALB/c mice. Thirteen million
SC were transplanted into the renal subcapsular space of BALB/c mice.
The graft bearing kidney was collected at day 60 post-transplantation
(A and B) and double immunostained for GATA-4 (SC marker, A) and GFP (B).

Figure 2. Production of insulin protein by NPSC transduced with adenoviral vector carrying furinmodified human insulin cDNA. (A and B) NPSCwere cultured
overnight as a monolayer on chamber slides, transduced with Ad-CMV-HI vector at a MOI of 0 (A) and 100 (B). Slides were collected after 24hrs, fixed with
1% paraformaldehyde and immunostained for insulin (A and B). Nontransduced SC do not express insulin (A), while transduced SC express insulin (brown, B).
Twenty million NPSC transduced with Ad-CMV-HI vector (MOI 100) were transplanted into the renal subcapsular space of diabetic SCID mice. Graft bearing
kidneys were collected at days 1 (C and D) and 10 (E and F) post-transplantation and immunostained for NPSCmarker, vimentin (antibody does not cross react
with mouse tissue) (brown, C and E) or insulin (brown, D and F). All the sections were counterstained with hematoxylin (blue).
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rats, the modified SC survived and expressed eGFP for at least
42 d. While significant amounts of hNT-3 were present 3 d post-
transplantation, hNT-3 was not detected at later time points.4

Thus, they could not determine whether hNT-3 was beneficial as
an in vivo therapy.

More recently, mouse and porcine SC have been engineered to
express basal levels of insulin (nonglucose regulated) to determine
whether they are capable of normalizing blood glucose levels
in diabetic mice.3 BALB/c mouse and porcine SC transduced
with a recombinant adenoviral vector containing furin-modified
human insulin cDNA (Ad-CMV-HI), expressed insulin mRNA
(data not shown) and protein (Fig. 2B) and secreted significant
amounts of insulin into the cell culture media. Moreover, when
20 million cells were transplanted into the renal subcapsular space
of diabetic SCID mice there was a significant decrease in blood
glucose levels which remained significantly decreased for 5 d.3

However, due to the epichromosomal nature of the adenoviral
vector, this decrease in blood glucose level was transient and
subsequently returned to the diabetic state within 8 d. The rise
in blood glucose correlated with a corresponding loss of insulin
expression without evidence of SC death (Fig. 2C–F). Together,
these findings suggest that both mouse and porcine SC can be
engineered to express a biologically-active and therapeutically
relevant protein at levels adequate for the treatment of a disease
establishing their utility as novel tools for gene therapy.

The adenoviral vector described above allowed for high but
transient expression of insulin by SC. In order to produce stable,
long-term expression of insulin, a lentiviral vector that contains
furin-modified human insulin cDNA upstream of ZsGreen
fluorescent protein all under the control of elongation factor 1
a (EF) promoter was created (LVEF-HI-ZsGreen). This vector
has been preliminarily tested using a mouse Sertoli cell line
(MSC-1). MSC-1 cells are a mouse SC line isolated from C57Bl/6
x SJL transgenic mice that contain the transforming region of the
SV40 virus (T antigen) fused to the transcriptional regulatory
sequences of human MIS.85 MIS was used in order to direct
expression of SV40 to SC. While MSC-1 cells lack many of the
immune privileged abilities of primary SC,23 they survive for over
60 d in 88% of recipients when transplanted as allografts into
diabetic BALB/c mice.55 Thus, MSC-1 cells are a good model
to test the stability and function of the LVEF-HI-ZsGreen
lentiviral vector.

After transduction with the lentiviral vector (LVEF-HI-
ZsGreen), MSC-1 cells (MSC-1-LVEF-HI-ZsGreen) expressed
insulin mRNA (Fig. 3A) and protein (Fig. 4B) for at least 9 mo
indicating stable integration of the insulin construct into the
cells. However, the amount of insulin secreted by the cells into
the cell culture media was low as determined by ELISA. Twenty
million MSC-1-LVEF-HI-ZsGreen cells were transplanted as
allografts into the renal subcapsular space of diabetic BALB/c
mice. As expected the MSC-1-LVEF-HI-ZsGreen cells were
unable to normalize blood glucose levels in the diabetic recipients
due to low insulin production and secretion by these cells.
Nonetheless, when the grafts were immunostained for cell survival
numerous MSC-1-LVEF-HI-ZsGreen cells were detected at 1, 5,
12 and 20 d (Fig. 4C, data shown for day 20). Consistently,

insulin mRNA was detected by RT-PCR in grafts collected at
days 1, 5, 12 and 20 (Fig. 3B). However, insulin protein was not
detected by immunohistochemistry in any of the grafts (Fig. 4D).
The lack of insulin immunostaining could be explained by the
very low amount of insulin produced by these cells, which could
be further masked by tissue embedding and processing.

Although the in vivo lentiviral data lack the ability to show
biological function of insulin protein, they provide evidence that
genetically engineered SC retained their immune privileged pro-
perties, survived long-term, and stably expressed insulin mRNA
when transplanted as allografts. Future studies are ongoing to
generate a vector which will provide stable, high insulin expression
and secretion that will normalize blood glucose levels.

Conclusion and Future Perspectives

In this review, we have summarized the past literature support-
ing the idea that SC are capable of surviving and protecting
co-grafted cells when transplanted across immunological barriers.
We have also provided evidence for the potential use of immune
privileged SC as a means of delivering therapeutic proteins of
interest.

After evaluating the long-term in vivo function of genetically
engineered immune privileged SC in rodents, this approach could
be extended to generate transgenic mice and pigs expressing
proteins of interest specifically by SC which may decrease the

Figure 3. Insulin mRNA production by MSC-1-LVEF-HI-ZsGreen cells.
(A) Transduced MSC-1 cells were grown as monolayer in DMEM plus 10%
fetal bovine serum plus 250 ug/ml of G418 for 9 mo. RT-PCR was
performed on MSC-1-LV-HI-GFP cells (Lanes 2 and 3) or non-transduced
MSC-1 cells (Lanes 4 and 5) for insulin (Lanes 2 and 4) and cyclophilin
(Lanes 3 and 5). Lane 1 is the 1kb plus DNA Ladder (Invitrogen).
(B) Twenty million transduced MSC-1 cells were transplanted into
the renal subcapsular space of diabetic BALB/c mice. RT-PCR was
performed on grafts collected at days 1 (Lanes 2 and 3), 5 (Lanes 4 and
5), 12 (Lanes 6 and 7) and 20 (Lanes 8 and 9) post-transplantation for
insulin (Lanes 2, 4, 6 and 8) and cyclophilin (Lanes 3, 5, 7 and 9). Lane 1 is
the 1kb DNA Ladder (Invitrogen). Care and maintenance of animals
described in Figure 3B , 4C and D was performed in accordance with
the Institute for Laboratory Animal Research Care and Use of Laboratory
Animals, and Texas Tech University Institutional Animal Care and Use
Committee-approved protocols.
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problems associated with the use of viral vectors. The advantage of
the pig model is that large numbers of transgenic SC could be
obtained. Moreover, it will be easy to screen for insertional
mutagenesis as only the animals without testicular tumors will be
used for transplantation. The limitation of this approach is that it
could only be utilized in targeting diseases where cell or tissue
specific expression of the transgene is not required.

Besides delivering insulin for type I diabetes, SC could be
used to deliver native GLP-1 in diabetic patients, in whom,
sulfonylurea, metaformin or both have failed. GLP-1 was shown
to enhance pancreatic β-cell mass by stimulating β-cell prolifera-
tion and neogenesis in healthy and diabetic rodents.86 Due to the
short half-life of GLP-1 (only a few minutes), various GLP-1
analogs with extended half-life have been developed e.g.,
exenatide, liraglutide or taspoglutide. Recently, clinical trials of
taspoglutide were suspended due to hypersensitivity reactions
and gastrointestinal side effects.87 Moreover, some of the benefits
obtained from native GLP-1 are mediated by GLP-1 metabolites
which are not compensated by analogs so more interest has
been drawn to native GLP-1 gene therapy.87 Another promising
area applicable to SC therapy is rheumatoid arthritis. Approxi-
mately, 5 million Americans suffer from this disease and 150,000
new cases are diagnosed each year.88 Although a variety of

pro-inflammatory cytokines are involved in causing arthritis,
tumor necrosis factor-a and interleukin-1, are the main focus
of therapy because besides inducing joint inflammation they
also cause bone loss. Systemic or intra-articular delivery of these
cytokine’s antagonists, tumor necrosis factor receptor fusion
protein or interleukin-1 receptor antagonist protein via injection
was proposed as a potential treatment.89 However, rapid loss
of these proteins after high dose injections severely limited the
long-term efficacy of this treatment and more research has
been directed toward delivering these antagonists through gene
therapy. Genetically engineered SC may be valuable tools to
deliver these antagonists or anti-inflammatory cytokines to
ameliorate or delay the onset of severe arthritis, respectively.

To conclude, this review emphasizes the unique immune
privileged nature of SC and highlights the potential usefulness of
engineered SC as tools for the delivery of biologically active
proteins for use in the treatment of a wide variety of clinically
relevant diseases. The final frontier involves the development
of methods allowing SC to produce bioactive molecules in a
physiologically regulated manner. SC are often referred to as
“nurse cells” based on their ability to nurture the developing
germ cells. It appears calling SC “nurse cells” is fitting given their
potential for use in clinical therapy.

Figure 4. Immunohistochemical analysis of MSC-1-LVEF-HI-ZsGreen cells and detection of insulin after transplantation. (A and B) MSC-1-LVEF-HI-ZsGreen
cells were grown in culture for 9 mo as described in the legend for Figure 3A. Immunofluorescence was performed to detect GFP (A) and insulin
(B) protein expression. Cells were counterstained with blue hoechst dye to detect cell nuclei. C-D) Transduced MSC-1 cells (20 million) were transplanted
into the renal subcapsular space of diabetic BALB/c mice. The graft bearing kidney was collected at day 20 post-transplantation and immunostained for
the MSC-1 cell marker, larger T-antigen (brown, C) and insulin (D). Insets are higher magnification of C and D. Sections were counterstained with
hematoxylin (blue).
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