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Abstract

World Health Organization goals against soil-transmitted helminthiases (STH) are pointing

towards seeking their elimination as a public health problem: reducing to less than 2% the

proportion of moderate and heavy infections. Some regions are reaching WHO goals, but

transmission could rebound if strategies are discontinued without an epidemiological evalu-

ation. For that, sensitive diagnostic methods to detect low intensity infections and localiza-

tion of ongoing transmission are crucial. In this work, we estimated and compared the STH

infection as obtained by different diagnostic methods in a low intensity setting. We con-

ducted a cross-sectional study enrolling 792 participants from a district in Mozambique. Two

stool samples from two consecutive days were collected from each participant. Samples

were analysed by Telemann, Kato-Katz and qPCR for STH detection. We evaluated diag-

nostic sensitivity using a composite reference standard. By geostatistical methods, we esti-

mated neighbourhood prevalence of at least one STH infection for each diagnostic method.

We used environmental, demographical and socioeconomical indicators to account for any

existing spatial heterogeneity in infection. qPCR was the most sensitive technique com-

pared to composite reference standard: 92% (CI: 83%– 97%) for A. lumbricoides, 95% (CI:

88%– 98%) for T. trichiura and 95% (CI: 91%– 97%) for hookworm. qPCR also estimated

the highest neighbourhood prevalences for at least one STH infection in a low intensity set-

ting. While 10% of the neighbourhoods showed a prevalence above 20% when estimating

with single Kato-Katz from one stool and Telemann from one stool, 86% of the neighbour-

hoods had a prevalence above 20% when estimating with qPCR. In low intensity settings,
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STH estimated prevalence of infection may be underestimated if based on Kato-Katz.

qPCR diagnosis outperformed the microscopy methods. Thus, implementation of qPCR

based predictive maps at STH control and elimination programmes would disclose hidden

transmission and facilitate targeted interventions for transmission interruption.

Author summary

Soil-transmitted helminths (STH) are parasitic worms present in over 1 billion people.

Humans release STH eggs to the environment through faeces, and they become infected

by egg ingestion or larvae skin penetration. The higher the number of eggs in an infection

(high intensity infection) the higher the morbidity severity. For that, the World Health

Organization (WHO) aims to eliminate STH as a health problem by reducing moderate

and high intensity infections below 2% in 96% of endemic countries by 2030. STH infec-

tions main control strategies are mass drug administration to people at risk, and water,

sanitation, and hygiene improvements. Nowadays, some regions are reaching WHO

goals. Thus, tools to confirm if control strategies could be halted are needed. In this study,

we selected a low intensity district in Southern Mozambique where we evaluated how dif-

ferent diagnostic techniques detect STH when intensity of infection is low. In addition, we

also created district maps for STH estimated infection prevalence based on the different

diagnostics assessed in order to identify the location of ongoing transmission. qPCR

showed to be the most sensitive technique. Hence, maps based on the widely used Kato-

Katz could underestimate the STH prevalence and lose hidden transmission.

Introduction

More than 1 billion people have soil-transmitted helminths (STH) infection, worms that

develop part of their life cycle in the soil and are transmitted to humans by egg ingestion or

skin penetration. They are Ascaris lumbricoides, Trichiuris trichiura, Necator americanus and

Ancylostoma duodenale. These infections are widely distributed in tropical and subtropical

areas, with the greatest burden on children and on poor populations. People with light inten-

sity STH infections can be asymptomatic, but heavier infections can cause anaemia, malnutri-

tion, impaired growth and delayed development, among others [1].

Thus, the World Health Organization 2021–2030 Neglected Tropical Diseases Roadmap

has set the ambitious goal of reducing the proportion of moderate and high intensity infections

to less than 2% in 70% and 96% of endemic countries by 2025 and 2030, respectively [2]. The

mainstay of STH morbidity control strategy is mass drug administration (MDA) with anthel-

mintics to population at risk, once a year if prevalence is over 20% and twice a year if it is over

50%. To decrease transmission and reinfection, WHO also recommends interventions

intended to increase the accessibility to safe water, improved sanitation, and hygiene (WASH)

[3].

Some regions are approaching WHO goal of reducing the proportion of moderate and high

intensity infections to less than 2% and, thus, reaching STH elimination as a public health

problem [4,5]. But transmission could rebound from residual hotspots if interventions are

halted without a thorough epidemiological evaluation [6]. Hence, firstly, sensitive and specific

diagnostic methods to low intensity infections are essential [7,8]. WHO guidelines recommend

detecting and measuring infection with Kato-Katz technique based on a single stool sample
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per child [3,9]. If this technique is suitable for low intensity settings is questionable [8]. Sec-

ondly, robust survey methods to identify ongoing transmission hotspots are also crucial [7,10].

Cross-sectional surveillance studies can be costly and arduous. But geostatistical modelling

showed to be an efficient method to improve surveillance at a reduced cost [11,12]. However,

geospatial prediction might be sensitive to the diagnostic technique employed [10].

In Mozambique, a national survey conducted in 2005-2007 showed a STH prevalence of

53.5% in schoolchildren [11]. That prompt the NTDs national program to start yearly MDA in

2011. In 2018, estimated prevalence of moderate-to-heavy intensity infection exceeded the 2%

target threshold [13]. Nevertheless, some regions in Mozambique appear to have reached

WHO goals.

In this study, we aim to appraise the value of diagnostic methods on estimating the preva-

lence of infection when assessing ongoing transmission. Therefore, we predicted the preva-

lence of STH infection based on different diagnostic methods, including the recommended

Kato-Katz, in a low intensity area in Mozambique where unsafe WASH conditions abound.

Methods

Ethics statement

The study was performed according to the Declaration of Helsinki (version of Fortaleza, Brazil,

October 2013), current ICH-GCP guidelines and all applicable national and local regulatory

requirements (Spanish Royal Decree 1090/2015). National Bioethics Committee for Health in

Mozambique granted approval for this study (Ref.:517/CNBS/17). Participation in this study

was voluntary. We obtained written informed consent in either Portuguese or Changana from

all study participants older than 18 years all. Caregivers provided written informed consent for

participants under 18 years all. Participants between 15 and 17 years old also provided written

informed assent. For illiterate caregivers, informed consent was conducted in presence of a lit-

erate witness independent from study.

Study area

The study was conducted in Manhiça District, Southern Mozambique, a rural setting with a

predominantly young population [14]. The climate is subtropical with a warm and rainy sea-

son (November to April) and a cool and dry season (June to October). The average annual

temperatures oscillate from 22˚C to 24˚C and the average annual precipitation from 600mm

to 1000mm. Villages typically comprise a loose conglomeration of compounds separated by

garden plots and grazing land. Houses are simple, with walls typically made of cane and con-

ventional material. The main occupations are farming, petty trading and employment on a

large sugar cane estate.

Since 1996, the Manhiça Health Research Centre (Centro de Investigação em Saúde de

Manhiça, CISM) runs a Demographic Surveillance System (DSS) in the area and a morbidity

surveillance system at the Manhiça District Hospital and the other peripheral district health

posts. The DSS currently covers the entire district: 2380km2 with a population of 201,845

inhabitants under surveillance, 44% of which are<15 years of age. The demographic trends in

Manhiça District have been described in detail elsewhere [14].

Sample size justification

In the absence of updated data on STH prevalence after MDA initiation, we assumed a conser-

vative 50% prevalence in both age groups to ensure a sample size enough to achieve a precision

of 5% in the estimation of the 95% CIs regardless of the true prevalence. Thus, the estimated
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sample size was 384. We assumed 10% of loss to follow-up or participation rejection in all

square area and, due to the needed equal division for regular sampling in the study area this

10% arised approximately 13%. Then, we required 440 participants younger than 15 years old

and 440 participants older than 15 years old.

Study population and selection

A regular sampling design was used to obtain spatial representativeness. A regular sampling

design is a uniform sampling methodology specified in advance of data collection that sam-

pling points are selected relative to a sampling origin [15,16]. To design it, we divided the

whole study area using a regular grid formed by 440 square areas of 1,750m by 1,750m resolu-

tion. One household was selected by defined area, the closest to the centroid, and then one per-

son between 5 to 15 years of age and one person older than 15 years old were randomly

selected and invited to take part in the study (S1 Fig). In case of participation declining, the fol-

lowing household closest to the centroid was selected and so forth. Those selected individuals

that reported having taken anthelmintics any time during the previous 30 days were excluded.

When a household was unoccupied or its head refused to take part in the study, the next clos-

est-to-centroid household was selected.

Sample collection

Samples were collected between December 2017 and December 2018. Two stool samples were

collected from each participant on two consecutive days. A field worker visited candidates’

household, invited them to participate and provided written informed consent and study ques-

tionnaire when they accepted to participate. The field worker provided a stool collection kit (a

sterile 50ml flask, a paper sheet, a wood stick and three pairs of surgical gloves) to each partici-

pant and instructed them to ensure they collected adequate quantity and quality of sample.

Each participant was requested to provide more than 10g of stool, marked with a line in the

flask. Samples were collected on the following morning after recruitment and another stool

collection kit was provided for a second stool sample. In case of absence, non-eligibility or

unwilling to participate, another candidate within the same age group in the household was

selected. Collected samples were kept in a cold box and were transported to CISM for labora-

tory analysis on the day of collection (Fig 1).

Laboratory methods

Microscopy detection. Soil-transmitted helminths were diagnosed by the microscopic

detection of eggs in stool samples using the Telemann concentration technique [17]. For quan-

titative assessment of infection, a duplicate Kato-Katz thick smear test from Sterlitech Corpo-

ration was used. Each smear was examined within 30 min after preparation. Based on the 41.7

mg template, the number of eggs detected per slide was multiplied by 24 in order to obtain the

number of eggs per gram of faeces [18]. As an ongoing quality control, slides were stored in a

refrigerator and a ten percent were randomly selected and blindly re-read by a second techni-

cian within an hour after preparation. In case of inconsistency, a third re-examination was per-

formed and the data of the third reading was used. After microscopy examination, samples

were aliquoted and stored at—80˚C at CISM for forthcoming molecular analysis.

A study member provided parasitological results to all participants. All parasitological posi-

tive participants were treated with albendazole at the clinic following the national guidelines.

Following treatment, one stool sample per participant was collected at day 21 and this sample

was examined according to the same procedure in order to monitor cure [18].
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Fig 1. Diagram flow of recruitment of 5 to 15 years old participants and over 15 years old participants and their

sample collection and analysis.

https://doi.org/10.1371/journal.pntd.0009803.g001
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DNA extraction and qPCR. Unpreserved stool samples were stored at—20˚C and trans-

ported under frozen conditions to Leon University, Spain. There, DNA extraction was per-

formed using the PowerFecal Pro DNA kit (Qiagen; Germany), following manufacturer’s

instructions, using 250 mg of stool as input material. The extracted DNA samples were stored

at -20˚C and sent to the Leiden University Medical Centre, Netherlands, for further analysis.

Two different multiplex real-time PCR detection panels were used to detect and quantify para-

site specific DNA as previously published [19–21]. Panel 1 targets A. duodenale, N. americanus,
A. lumbricoides and S. stercoralis while panel 2 targets T. trichiura and Schistosoma spp. Ampli-

fication, detection and analysis were performed using the CFX real-time detection system

(Bio-Rad laboratories). The PCR output consisted of a cycle threshold (Ct) value. Ct values

were analysed using Bio-Rad CFX software (Manager V3.1.1517�0823) [21]. Samples run for

50 cycles and no Ct cut-off was used. Further specifications of the used primers and probes,

including the sequences and their original publications, have been summarized in S1 Table.

Appropiate negative and positive control samples were included in each PCR run. Also the

LUMC-team scored 100% for each included target at the annual international helminths exter-

nal quality assessment scheme (HEMQAS) provided by the Dutch Foundation for Quality

Assessment in Medical Laboratories (SKML) [22]. The outcome of Schistosoma spp. and S.

stercoralis PCR will not be presented here.

Obtaining and processing risk factors data. Spatial datasets on environmental factors

know to be associated with the presence and transmission of STH infections were obtained for

analysis [23]. These included: i) mean, minimum and maximum estimates of land surface tem-

perature (LST) [24], ii) average vegetation indices (normalized difference vegetation index

(NDVI), enhanced vegetation index (EVI)) and middle-infrared (MIR) [25], iii) top soil pH

H20 [26] and, iv) soil composition (clay, silt and sand fraction of the top soil) [26].

Due to the relatively small study area, we resorted to satellite images provided by the Mod-

erate Resolution Imaging Spectroradiometer (MODIS) instrument operating in the Terra

spacecraft (NASA), which measure 36 spectral bands and it acquires data at lowest spatial reso-

lution of 250m. From the family of MODIS products, we downloaded global MOD13Q1 and

MOD11A2 data, which are provided every 16 days at 250m spatial resolution [24,25]. The

MOD13Q1 product includes vegetation indices such as Normalized Difference Vegetation

Index (NDVI) and Enhanced Vegetation Index (EVI). The latter minimizes canopy back-

ground variations and maintains sensitivity over dense vegetation conditions. It also includes

mid-infrared band (MIR) which has been found to be useful to discriminate water surfaces;

water highly reflects wavelength in the range of MIR band (2.1 μm) [27]. The MODA11A2

product includes gridded continuous measures of land surface temperature; night (night-LST)

and day (day-LST). Fortnightly continuous gridded maps of day-LST, NDVI, EVI and MIR

for the study area were produced for 2017 and 2018, and eventually aggregated by calculating

the mean, minimum, maximum and standard deviation for the entire period. Soil data includ-

ing soil-pH and soil composition (fraction of clay, sand and silt) at the top soil, were obtained

from the ISRIC-World Soil Information project [26] (S2 Table). This project provides gridded

maps of soil composition at 250m resolution worldwide. All mentioned environmental vari-

able processing was conducted using ArcMap 10.5 (ESRI, Redlands, CA).

Population density and socioeconomical, water and sanitation information were obtained

from CISM DSS. Population density was estimated by the number of households located in a

radius of less than 1km around every household.

A socioeconomical wealth index was built based on household characteristics and assets to

attribute a household socioeconomic score (SES) to each household of Manhiça district. For

that, we performed a multiple correspondence analysis (MCA) to determine the weights of

every characteristic or asset and 17 household characteristics and assets were included [28].
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We excluded water and sanitation variables to account them separately, since they are key fac-

tors of STH infection. [29] Manhiça district household SES was then divided in tertiles to clas-

sify households in poor socioeconomical status, middle socioeconomical status and rich

socioeconomical status during participants’ description. SES continuous variable was also kept

to be used during statistical modelling of infection.

Water accessibility was established as “water inside the household” or “water outside the

household” and “water free” or “having to pay for water.” Sanitation standard was defined by

owing a latrine or toilet in the household or not.

Data analysis

Participants’ description. Participant population and STH infections were described

using absolute and relative frequency. Categorical variables were expressed as absolute fre-

quency and percentage and they were compared with Chi-square test.

Diagnostic sensitivity. We estimated the diagnostic sensitivity for Telemann technique

from one stool sample (first sample) and two stool samples (first and second sample), single

and duplicate Kato-Katz in one stool sample, single and duplicate Kato-Katz in two stool sam-

ples and qPCR. For single Kato-Katz we always used the first slide read in each duplicate Kato-

Katz. Due the absence of a STH gold standard diagnostic technique, we defined the diagnostic

sensitivity using a composite reference standard (CRS) as a proxy. The CRS was built using all

the techniques described above; where a participant was considered infected if positive for at

least one of the diagnostic methods used.

Intensity of infection. We used WHO thresholds [30] to classify the intensity of infection

per parasite based on the Kato-Katz faecal egg count. We evaluated the faecal egg counts agree-

ment (Spearman‘s rank correlation coefficient) [31] with single Kato-Katz in one stool sample

for: duplicate Kato-Katz in one stool sample, single Kato-Katz in two stool samples and duplicate

Kato-Katz in two stool samples. Moreover, we evaluated the faecal egg counts agreement (Spear-

man‘s rank correlation coefficient) [26] with qPCR in one stool sample for: single and duplicate

Kato-Katz in one stool sample, and single and duplicate Kato-Katz in two stool samples.

Statistical modelling of infection. All statistical analysis was carried out in R Statistical

Software Version 3.5.3 [32] and STATA version 16 (StataCorp., TX, USA). Collinearity was

explored using cross-correlations among explanatory variables. To address the issue of collin-

earity in our model, if a pair of variables had a Pearson’s correlation coefficient greater than

0.80, only one of two them was retained in the model. The choice of which variable was kept in

the model is explained below.

We predicted household level prevalence of at least one STH infection. For that, we fitted a

generalized linear model assuming a binomial distribution (STAT R package) to model Tele-

mann, Kato-Katz and qPCR detected at least one STH infection (positive or negative). The

explanatory variables used were inhabitants’ age and gender, household water accessibility,

owing a latrine, number of households located in a radius of< 1km around each household,

top soil sand fraction, top soil pH, LST mean and NDVI mean. (S2 Table) SES was not

included in the model since showed high collinearity with water and sanitation variables and

environmental variables. Household prevalence was predicted from the response variables: at

least one STH infection detected by Telemann (from one or two stools), Kato-Katz (single and

duplicate from one and two stools) or qPCR (from one stool) for each participant. For each

diagnostic methodology, one, two or four measurements were accounted for each participant

considering the number of slides or stools examined. Thus, a participant was positive if at least

one of the measurements per methodology was STH positive. All available data was analysed

regardless of follow-up condition.

PLOS NEGLECTED TROPICAL DISEASES The impact of diagnostic tools on infection prediction in a low intensity setting

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009803 October 25, 2021 7 / 19

https://doi.org/10.1371/journal.pntd.0009803


We used variograms (gstat R package) to assess if spatial autocorrelation remains in the

residuals (unexplained variance) after fitting the binomial generalized linear model of mea-

sured outcome. All variograms of the point predictions built for all diagnostic techniques

(Telemann from one stool and from two stools, single Kato-Katz from one stool, duplicate

Kato-Katz from two stools and qPCR) were contained within the tolerance limits. Thus, we

concluded that the data did not show any strong evidence of spatial correlation(S2 Fig).

We obtained estimated neighbourhood prevalences by averaging household level estimated

prevalence per neighbourhood. Thus, we used Manhiça district neighbourhoods to visualize

the estimated prevalence for at least one STH infection.

Results

Descriptive analysis

We enrolled 792 participants with both microscopy and qPCR results, 375 in the 5–15 years

old group and 417 in the over 15 years old. (Fig 1). The group over 15 years old had a highest

proportion of women (66.9%) compared to the 5–15 years old group (48.5%, p-value < 0.001).

Around half of the participants (54.7%) had a poor socioeconomical status, a higher pro-

portion in the over 15 years old group (60.9% compared to 47.7%, p-value = 0.001). In terms

of water conditions, 32.3% were using unimproved water access, this percentage was slightly

higher in the over 15 years old participants (35.3%) than in the 5–15 years old (29.1%, p-

value = 0.016). Specifically, 7.7% of all participants used surface water, 9.1% in the over 15

years old and 6.1% in the 5–15 years old group (p-value = 0.016). Regarding sanitation access,

no differences were observed between groups: 88.9% were using either unimproved sanitation

or open defecation. But a higher proportion of participants owned a latrine in their household

in 5 to 15 years old (56.8%) compared to over 15 years old (49.4%, p-value = 0.037). Of those

study participants owning a latrine, 7.6% had a hygiene station (soap and water) available at

the moment of conducting the questionnaire, 6.6% in 5–15 years old and 8.7% in over 15 years

old (p-value = 0.342).

Regarding the number of residents per household, 68.8% lived with more than 4 people; in

particular, 73.8% in 5–15 years old participants and 52.3% of over 15 years old participants (p-

value < 0.001). Ten per cent in over 15 years old lived alone. (Table 1)

Prevalence of STH

Manhiça district prevalence for at least one STH by single Kato-Katz in one stool was 13.1%,

11.5% in children between 5 to 15 years old and 14.6% in over 15 years old (p-value = 0.188).

A third of participants (29.8%) were detected to be hookworm infected for at least one of

the techniques, followed by T. trichiura infected (13.8%) and A. lumbricoides infected (8.1%, p-

value < 0.001). A higher proportion of participants between 5 to 15 years old than over 15

years old were T. trichiura infected (19.2% and 9.1% respectively, p-value < 0.001). In the con-

trary, a higher proportion of participants in over 15 years old had hookworm infection (38.4%

compared to 20.3%, p-value < 0.001). No differences were observed between groups concern-

ing A. lumbricoides. qPCR detected the highest number of infections. Regarding hookworm,

only N. americanus but not A. duodenale were detected by qPCR. (Table 2)

qPCR exhibited the highest sensitivity compared to the CRS: 94.9% of sensitivity for hook-

worm, 94.5% for T. trichiura and 92.2% for A. lumbricoides. In Kato-Katz, the sensitivity

among the number of slides or samples used showed no difference. In Telemann, no difference

was observed between using one or two stools neither. For hookworm, Telemann from one

stool sample was more sensitive than single Kato-Katz from one stool sample and, Telemann
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Table 1. Description of study participants’ characteristics by frequency and percentage, n (%). Water and sanitation are defined according UNICEF Joint Monitoring

Programme [33].

Participants 5 to 15 years old (n = 375) Participants > 15 years old (n = 417) All participants (n = 792)

Gender�

Female 182 (48.5) 279 (66.9) 461 (58.2)

Male 193 (51.5) 138 (33.1) 331 (41.8)

Age (years old)

5–10 208 (55.5) 208 (26.3)

10–15 167 (44.5) 167 (21.1)

15–24 68 (16.3) 68 (8.6)

25–34 58 (13.9) 58 (7.3)

35–44 73 (17.5) 73 (9.2)

45–54 47 (11.3) 47 (5.9)

55–64 56 (13.4) 56 (7.1)

65–74 72 (17.3) 72 (9.1)

� 75 43 (10.3) 43 (5.4)

Household socioeconomical status�

Rich 56 (14.9) 39 (9.4) 95 (12.0)

Middle-class 140 (37.3) 124 (29.7) 264 (33.3)

Poor 179 (47.7) 254 (60.9) 433 (54.7)

Main water source access�

water inside the household 99 (26.4) 90 (21.6) 189 (23.9)

basic water access 109 (29.1) 91 (21.8) 200 (25.3)

limited water access 35 (9.3) 51 (12.2) 86 (10.9)

unimproved water access 109 (29.1) 147 (35.3) 256 (32.3)

surface water use 23 (6.1) 38 (9.1) 61 (7.7)

Water payment�

payment for water access 137 (36.5) 116 (27.8) 253 (31.9)

no payment for water access 238 (63.5) 301 (72.2) 539 (68.1)

Owing a latrine�

household owing a latrine 213 (56.8) 206 (49.4) 419 (52.9)

Main sanitation conditions 0 (0.0)

safely managed sanitation 30 (8.0) 22 (5.3) 52 (6.6)

basic sanitation 19 (5.1) 16 (3.8) 35 (4.4)

limited sanitation 1 (0.3) 0 (0.0) 1 (0.1)

unimproved sanitation 168 (44.8) 176 (42.2) 344 (43.4)

open defecation 157 (41.9) 203 (48.7) 360 (45.5)

Handwashing facility

with soap and water 14 (3.7) 18 (4.3) 32 (4.0)

without soap or water 47 (12.5) 35 (8.4) 82 (10.4)

no facility 152 (40.5) 153 (36.7) 305 (38.5)

NAβ 162 (43.2) 211 (50.6) 373 (47.1)

Total number of household residents�

1 1 (0.3) 42 (10.1) 43 (5.4)

2–4 97 (25.9) 157 (37.6) 254 (32.1)

5–7 186 (49.6) 139 (33.3) 325 (41.0)

8–10 59 (15.7) 50 (12.0) 109 (13.8)

>10 32 (8.5) 29 (7.0) 61 (7.7)

� Chi-square p-value < 0.05.
β NA: Non-applicable. Handwashing facility data was only available for those that had a latrine at home.

https://doi.org/10.1371/journal.pntd.0009803.t001
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from two consecutive stool samples was more sensitive than single or duplicate Kato-Katz

from one stool sample. (Fig 2 and S3 Table)

STH intensity of infection

Fourteen participants (1.8%) had moderate intensity infection detected by single Kato-Katz

from one stool: nine with A. lumbricoides, one with T. trichiura, three with hookworm and

Table 2. Number of participants infected by each soil-transmitted helminth detected by Telemann in one or two stool samples, single and duplicate Kato-Katz in

one stool sample, single and duplicate Kato-Katz in two stool samples, multiplex qPCR and by a composite reference standard (CRS, positive for at least one diag-

nostic technique) per each age group.

5–15 years old (n = 375) > 15 years old (n = 417) All (n = 792)

A. lumbricoides
(%)

T. trichiura
(%)

hookworm

(%)

A. lumbricoides
(%)

T. trichiura
(%)

hookworm

(%)

A. lumbricoides
(%)

T. trichiura
(%)

hookworm

(%)

Telemann x1 β 13 (3.5) 24 (6.4) 34 (9.1) 14 (3.4) 15 (3.6) 68 (16.3) 27 (3.4) 39 (4.9) 102 (12.9)

Telemann x2 † 18 (4.8) 31 (8.3) 44 (11.7) 19 (4.6) 20 (4.8) 86 (20.6) 37 (4.7) 51 (6.4) 130 (16.4)

Single Kato-Katz

x1 β
12 (3.2) 19 (5.1) 21 (5.6) 10 (2.4) 13 (3.1) 48 (11.5) 22 (2.8) 32 (4.0) 69 (8.7)

Duplicate Kato-

Katz x1 β
13 (3.5) 25 (6.7) 26 (6.9) 12 (2.9) 14 (3.4) 55 (13.2) 25 (3.2) 39 (4.9) 81 (10.2)

Single Kato-Katz

x2 †
17 (4.5) 27 (7.2) 32 (8.5) 14 (3.4) 18 (4.3) 68 (16.3) 31 (3.9) 45 (5.7) 100 (12.6)

Duplicate Kato-

Katz x2 †
18 (4.8) 32 (8.5) 38 (10.1) 16 (3.8) 20 (4.8) 76 (18.2) 34 (4.3) 52 (6.6) 114 (14.4)

qPCR 25 (6.7) 67 (17.9) 70 (18.7) 34 (8.2) 36 (8.6) 154 (36.9) 59 (7.5) 103 (13.0) 224 (28.3)

CRS 28 (7.5) 72 (19.2) 76 (20.3) 36 (8.6) 37 (9.1) 160 (38.4) 64 (8.1) 109 (13.8) 236 (29.8)

β from one stool sample per participant
† from two consecutive stool samples per participant

CRS: Composite reference standard, positive for at least one diagnostic technique.

https://doi.org/10.1371/journal.pntd.0009803.t002

Fig 2. Estimated sensitivity and 95% confidence intervals [95% CI] of Telemann in one or two stool samples, single and

duplicate Kato-Katz in one stool sample, single and duplicate Kato-Katz in two stool samples, multiplex qPCR compared

to the composite reference standard (CRS) per A. lumbricoides, T. trichiura and hookworm.

https://doi.org/10.1371/journal.pntd.0009803.g002
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one with A. lumbricoides and T. trichiura moderate intensity of infection. No participants had

high intensity of STH infection. (Table 3)

Regarding Kato-Katz methodologies agreement, the highest agreement with single Kato-

Katz from one stool sample was observed in duplicate Kato-Katz from one stool (ρ> 0.90) for

all STH. In all three species, this was followed by single Kato-Katz from two stool samples and

then duplicate Kato-Katz from two stool samples. In the case of A. lumbricoides, all three meth-

odologies showed a ρ> 0.90. (S3 Fig) In addition, single and duplicate Kato-Katz from two

stool samples also displayed good agreement between them (ρ> 0.90) in all three species.

qPCR Ct-values and faecal egg counts agreement (single and duplicate Kato-Katz from one

and two stools) showed good correlation in A. lumbricoides. On the other hand, we observed

weak correlation among them for T. trichiura and hookworm. (Fig 3)

District estimated prevalence of STH infection

Neighbourhood estimated STH prevalence based on Telemann from one stool ranged between

1% to 36% and between 5% and 52% from two stools. Ten per cent of neighbourhoods

Table 3. Number and percentage of participants with a low, moderate or high intensity of any STH infection detected by single Kato-Katz from one stool; according

to WHO. [34].

5–15 years old (n = 375) > 15 years old (n = 417) All (n = 792)

Low (%) Moderate (%) High (%) Low (%) Moderate (%) High (%) Low (%) Moderate (%) High (%)

A. lumbricoides 6 (1.6) 6 (1.6) 0 (0.0) 6 (1.6) 4 (1.0) 0 (0.0) 12 (1.5) 10 (1.3) 0 (0.0)

T. trichiura 17 (4.5) 2 (0.5) 0 (0.0) 13 (3.1) 0 (0.0) 0 (0.0) 30 (3.8) 2 (0.3) 0 (0.0)

Hookworm 20 (5.3) 1 (0.3) 0 (0.0) 46 (11.0) 2 (0.5) 0 (0.0) 66 (8.3) 3 (0.4) 0 (0.0)

At least one STH 35 (9.3) 8 (2.1) 0 (0.0) 55 (13.2) 6 (1.4) 0 (0.0) 90 (11.4) 14 (1.8) 0 (0.0)

https://doi.org/10.1371/journal.pntd.0009803.t003

Fig 3. Agreement between qPCR Ct value with fecal egg count logarithm of the four quantitative microscopic methods (single and duplicate Kato-Katz in one

stool sample, and single and duplicate Kato-Katz in two stool samples) for A. lumbricoides, T. trichiura and hookworm. In each graph, the concordance

correlation coefficient (ρ) and p-value are provided.

https://doi.org/10.1371/journal.pntd.0009803.g003
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(n = 25) showed estimated prevalence above 20% when using Telemann from one stool and

16% of neighbourhoods (n = 42) when using Telemann from two stools.

Neighbourhood estimated STH prevalence using single or duplicate Kato-Katz from one

stool spanned between 1% and 36% and between 1% and 37% respectively. Estimated preva-

lence using single or duplicate Kato-Katz from two stools spanned from 4% to 43% and from

4% to 46% in that order. Ten per cent of the neighbourhoods (n = 25) had an estimated STH

prevalence above 20% when using single and duplicate Kato-Katz from one stool, 11%

(n = 27) of the neighbourhoods based on single Kato-Katz from two stools and 12% (n = 30) of

them based on duplicate Kato-Katz from two stools.

qPCR estimated STH infection prevalence per neighbourhood ranged between 6% and

72%. Eighty six per cent of neighbourhoods (n = 222) showed an estimated prevalence above

20% (Figs 4 and S4)

Discussion

Our results indicate that qPCR is the most sensitive technique and estimated the highest neigh-

bourhood prevalences for at least one STH infection in a low intensity setting. Thus, qPCR

should be the preferred diagnostic tool for transmission interruption evaluation.

qPCR detected the highest number of infected participants for all STH species. It also had

the highest sensitivity using a composite reference standard; microscopy techniques showed

limited sensitivity. This is in accordance with other studies, which expose that microscopy sen-

sitivity is reduced in low intensity infections [8,35–39].

For hookworm, Telemann from one stool had higher sensitivity compared to single Kato-

Katz from one stool as well as Telemann from two stools had higher sensitivity than Kato-Katz

from one stool (duplicate and single). This could be because hookworm detection by Kato-

Katz is very delicate to the time between slide preparation and reading [40–42].

Fig 4. District map of the estimated prevalence of at least one STH infection calculated with a generalized linear model assuming a binomial distribution for

Telemann in one and two stools, single and duplicate Kato-Katz in one stool, single and duplicate Kato-Katz in two stools and qPCR in one stool. Base layer map

obtained in https://data.humdata.org/dataset/mozambique-administrative-levels-0-3.

https://doi.org/10.1371/journal.pntd.0009803.g004
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This study did not display statistical evidence of different sensitivity among Kato-Katz

number of slides or samples used neither between Telemann number of samples like in other

studies [39,43].

Regarding intensity of infection, single Kato-Katz and duplicate Kato-Katz egg count highly

agreed, both using one and two stool samples. In this study, samples were thoroughly homoge-

nized before slides were prepared. Slides were read by four different technicians in a blinded

way, following good laboratory practice. Furthermore, ten per cent of samples were reread by

a senior lab technician. In the laboratory, stool samples were labelled with a unique sample

code which could not simply be traced back to the original participant identification number.

This in order to prevent any potential bias by the microscopists during the two-slide and two-

sample readings. Hence, our results infer that single-slide Kato-Katz would be sufficient if

samples are well homogenized, even at low intensities of infection.

We observed a good correlation between faecal egg count and qPCR Ct-values for A. lum-
bricoides, but weak for T. trichiura and Hookworm. The reason could be the low intensities of

infection–qPCR highly detected infection with very low egg burden. Moreover, there is still lit-

tle understanding on worm burden and qPCR results relationship [44]. Note that, it is

observed that A. lumbricoides fertile egg excretion is not linearly correlated with worm burden

at low intensity of infections. It is inferred that qPCR could be detecting DNA from other

worm specimens than the egg [8,36,45], and thus, detecting prepatent infections (immature

worms not releasing eggs) [44]. Other studies found better correlation between eggs per gram

and PCR results, but they were using other PCR outcomes such as DNA copies [38,43,46,47].

Geospatial models estimation in Manhiça district allowed us to identify hotspot neighbour-

hoods for at least one STH infection. This could enable more focused strategies to target areas

at risk of continued transmission. [11] In addition, Fronterre et al (2020) showed that geospa-

tial estimated prevalences are a more efficient survey design than classic survey sampling strat-

egies based on random sampling when evaluating transmission interruption. [12]

qPCR model exhibited the highest estimated prevalence of infection of at least one STH per

neighbourhood, followed by Telemann from two stools. As mentioned above, qPCR could be

informing us of infection and not necessarily morbidity. But, it is necessary to identify infec-

tion location—even if low intensity—to target interventions on ongoing transmission sites to

achieve transmission interruption goals. If intensity of infection is low, geospatial predictions

based on the widely use Kato-Katz could be far from the true prevalence and hidden transmis-

sion could still be occurring [3,48]. To solve that, a diagnostic submodel of Kato-Katz egg

counting method could be incorporated in the model to account for Kato-Katz poor sensitivity

as Farrel et al. 2018 did [49] or estimate with more sensitive diagnostics.

A preferable diagnostic method to monitor transmission interruption could be qPCR.

qPCR demands a high-tech lab equipment and high cost consumables [50] but it is very sensi-

tive using a single stool [45]. qPCR could ascertain sustained or increased transmission once

MDA is halted [37,38,49]; it was used to confirm transmission interruption in Japan [5]. In

addition, qPCR could integrate other helminths surveillance, such as schistosomiasis or stron-

gyloidiasis [51]. A reference lab with appropriate equipment could process the surveillance

samples. But before that, some points should be accomplished. Cost reduction is crucial for

qPCR implementation. Multiparallel qPCR showed cost diminution [46] and some studies are

attempting to optimize a sample pooling protocol to make qPCR surveillance more cost-effec-

tive [52]. Moreover, sample storage, DNA extraction and qPCR protocols should be harmo-

nized [45,47,53]. In addition, an external quality assurance for reference labs should be

established [49,54]. Lastly, a qPCR threshold based on a universal unit should be created for

program decision, to consider patent infections and discard residual DNA detection [44,54].
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However, our study has limitations. First, Kato-Katz diagnostic methodologies were com-

pared using nested samples, the first egg count of duplicate Kato-Katz is the same than the sin-

gle Kato-Katz egg count to which it is compared. Even though microscopy reading bias is

unlikely as explained above, some residual bias could have occurred. Second, we fit geospatial

models assuming a binomial distribution for all diagnostic methodologies in order to compare

them. For low intensity settings, a negative binomial model when estimating STH infection

prevalence using quantitative diagnostics could account for overdispersion and add more pre-

cision to the model.

Our study observed an area in southern Mozambique where MDA started in 2011 and in

2017, reached WHO guidelines: a prevalence of infection of at least one STH below 20% and

had less than 2% moderate to high intensity infections measured by single Kato-Katz. How-

ever, water and sanitation conditions were mostly inadequate. Thus, exists a high probability

for transmission to rebound if MDA discontinued [55]. Actually, children under 15 years old

receiving yearly MDA were still A. lumbricoides, T. trichiura and/or hookworm infected. Thus,

transmission from uncured or adult reservoir may be recurrent.

In this situation, policy-makers should target interventions to ongoing transmission regions

regardless of morbidity indicators. STH control programmes need an efficient tool for trans-

mission interruption confirmation, great efforts on that might be cost-saving at long term [7].

This study proposes geospatial prediction as an essential instrument for targeting STH infec-

tion areas and discusses the diagnostic implication in this prediction. Community regular sam-

pling (including schoolchildren and adults) in addition to environmental data (e.g satellite

images) and socioeconomical data (e.g. DHS) could be used to detect STH infection hotspots

at lower sampling costs [12]. The implementation of qPCR based predictive maps at STH con-

trol and elimination programmes in low intensity settings would bring programmes closer to

the true prevalence and disclose hidden transmission.

Supporting information

S1 Table. Oligonucleotide primers and detection probes for multiplex real-time PCR for

the simultaneous detection of soil-transmitted helminths.

(DOCX)

S2 Table. Potential predictors for human soil-transmitted helminths infection considered

for the binomial generalized linear model.

(DOCX)

S3 Table. Sensitivity and 95% confidence intervals [95% CI] of Telemann in one or two

stool samples, single and duplicate Kato-Katz in one stool sample, single and duplicate

Kato-Katz in two stool samples, multiplex quantitative qPCR compared to the composite

reference standard (CRS) per for A. lumbricoides, T. trichiura and hookworm.

(DOCX)

S4 Table. Estimated prevalence of at least one STH infection and its associated standard

error per region using Telemann from one or two stools, single Kato-Katz from one or two

stool samples, duplicate Kato-Katz from one or two stools and qPCR.

(DOCX)

S1 Fig. A) Distribution of all households (black dots) in Manhiça district. B) Household loca-

tion of study participants (black dots) after regular sampling. Base layer map obtained in

https://gadm.org/download_country_v3.html

(DOCX)

PLOS NEGLECTED TROPICAL DISEASES The impact of diagnostic tools on infection prediction in a low intensity setting

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009803 October 25, 2021 14 / 19

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009803.s001
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009803.s002
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009803.s003
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009803.s004
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009803.s005
https://gadm.org/download_country_v3.html
https://doi.org/10.1371/journal.pntd.0009803


S2 Fig. Assessment of spatial autocorrelation in the residuals. Telemann from one or two

stools, single Kato-Katz from one or two stool samples, duplicate Kato-Katz from one or two

stools and qPCR variograms after fitting the binomial generalized linear model of at least one

STH infection.

(DOCX)

S3 Fig. Fecal egg count agreement of single Kato-Katz in one stool with the other quantita-

tive microscopic methods (duplicate Kato-Katz in one stool sample, and single and dupli-

cate Kato-Katz in two stool samples) for A. lumbricoides, T. trichiura and hookworm. In

each graph, the concordance correlation coefficient (ρ) and p-value are provided. The dashed

line corresponds to the perfect correlation.

(DOCX)

S4 Fig. District map of the probability of the estimated prevalence of at least one STH

infection exceeding 20% (WHO threshold to start MDA). It was calculated with a general-

ized linear model assuming a binomial distribution for Telemann in one and two stools, single

and duplicate Kato-Katz in one stool, single and duplicate Kato-Katz in two stools and qPCR

in one stool. Base layer map obtained in https://gadm.org/download_country_v3.html

(DOCX)

Acknowledgments

Our sincere gratitude goes to all field workers and lab technicians that participate in this study

for their constancy and persistence. We particularly would like to thank Eric Brienen for his
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