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Abstract 
The primary objectives of the management of patients with inflammatory bowel disease (IBD) are to prevent IBD flares, prevent/delay disease 
progression and improve patients’ quality of life. To this end, one needs to identify risk factor(s) associated with flare-ups and disease progres-
sion. We posit that disruption of circadian rhythms is one of the key factors that is associated with risk of flare-up and disease progression. 
This hypothesis is based on published studies that show: (1) The circadian rhythm regulates many biological processes including multiple 
IBD-relevant biological processes that are critical in inflammatory/immune processes such as environment/microbe interaction, microbe/host 
interaction, intestinal barrier integrity and mucosal immunity—all central in the pathogenesis of IBD, and (2) Circadian machinery is the primary 
tool for the host to interact with the environment. Circadian misalignment results in a loss of preparedness of the host to respond and adjust to 
the environmental changes that could make the host more vulnerable to IBD flare-ups. In this review, we first provide an overview of circadian 
rhythms and its role in healthy and disease states. Then we present data to support our hypothesis that: (1) IBD patients have disrupted circadian 
rhythms (“social jet lag”) and (2) circadian misalignment and associated disrupted sleep decreases the resiliency of IBD patients resulting in 
microbiota dysbiosis, more disrupted intestinal barrier integrity and a more aggressive disease phenotype. We also show that circadian-directed 
interventions have a potential to mitigate the deleterious impact of disrupted circadian and improve IBD disease course.
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Introduction
Inflammatory bowel disease (IBD) is a chronic inflamma-
tory condition, including Crohn’s disease (CD) and ulcerative 
colitis, which involves inflammation of the intestinal mu-
cosa due to a dysregulated immune system.1 The mainstay 
of treatment involves controlling the inflammatory response, 
preventing disease flare-ups, and improving quality of life. 
Yet, despite several biologics with potent anti-inflammatory 
properties, at least 40% of IBD patients continue to have in-
flammation, frequent flare-ups, and complications leading to 
hospitalization and even surgery in a subset of these patients. 
Thus, there is still an urgent unmet need to better understand 
the risk factors that decrease the resiliency of IBD patients to 
better control gut inflammation and immune dysregulation 
that is required to maintain long-lasting remission. We posit 
that disrupted circadian homeostasis is such a risk factor. 
This hypothesis is based on published studies that show: (1) 
The circadian rhythm regulates many biological processes 
that play an important role in the pathophysiology of IBD2 
and (2) circadian machinery is the primary tool for the host 
and its gut microbiome to interact with the environment.3 
Circadian misalignment results in loss of preparedness of the 

host to respond and adjust to the environmental changes.4,5 
This could make the host more vulnerable to IBD flare-ups. 
In this review, we will first provide an overview of circadian 
rhythms and their role in healthy and disease states. Then, we 
will (1) summarize evidence showing that a disrupted circa-
dian rhythm could promote an aggressive IBD disease course/
phenotype and evidence that shows that circadian misalign-
ment could be one of the triggers for an IBD flare-up and (2) 
provide evidence that circadian hygiene and chronobiology 
are underappreciated but potentially important tools to opti-
mize IBD management.

Circadian rhythms and triggers for circadian 
disruption
The very first description of the circadian rhythm dates back 
to 1729, when Jean-Jacques de Mairan described the daily 
rhythm of mimosa plant leaves opening and closing, which 
persisted when placed in darkness. We have since learned 
about the complexities of the circadian rhythm, including 
the central and peripheral circadian rhythms with their in-
trinsic clocks and the need for external stimuli/cues.6 The 
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master pacemaker of the circadian rhythm is the suprachi-
asmatic nucleus (SCN), located in the hypothalamus.6 When 
removed from its central location and examined ex vivo, it 
continues to show rhythmic expression of proteins for over a 
year,7 demonstrating its intrinsic pacemaker capabilities. The 
primary function of the circadian machinery is to prepare the 
host to respond to environmental cues and to coordinate that 
response among the different organ systems. The circadian 
machinery is the essential “language” for the bidirectional 
crosstalk between the host and environment and among the 
host’s different organs. This function is achieved through (1) 
ensuring circadian rhythmicity throughout the body by a bi-
directional relationship between the master clock and periph-
eral clocks, in which the central clock regulates the peripheral 
clocks, and the peripheral clocks conversely influence the cen-
tral clock, and (2) neuronal and endocrine systems, such as 
the hypothalamic-pituitary-adrenal axis.8 It is thus not sur-
prising that disruption of circadian homeostasis would com-
promise the host to respond to the environmental triggers and 
increase the risk of pathologies.9

How does circadian machinery achieve its daunting 
function? In brief, on a cellular level, circadian locomotor 
output cycles kaput (CLOCK) and neuronal PAS domain-
containing protein 2 (NPAS2) form a heterodimer with aryl 
hydrocarbon receptor nuclear translocator-like protein 1 
(ARNTL, also known as BMAL1).10,11 During the natural 
daytime, this heterodimer functions as a transcription factor 
for period circadian homologues (PER1, PER2, and PER3) 
and cryptochromes (CRY1 and CRY2).12 At night, a nega-
tive feedback process occurs in which PER and CRY form 
a heterodimer to suppress CLOCK and BMAL1 and break 
down PER and CRY proteins.11 As PER and CRY proteins 
are being degraded, CLOCK and BMAL1 can again form 
heterodimers and start the process from the start as the day-
time begins. Other proteins that play an important role in 
the clock mechanism and that will appear in this review are 
REV-ERBα, REV-ERBβ and RAR-related orphan receptors 
α, β and γ (RORα, RORβ, and RORγ).13,14 They form 
complexes with ROR/REV-ERB-response elements (RORE), 
leading to antiphase oscillation between BMAL1 and PER2.11 
Remarkably, most of our organs and organ systems have cir-
cadian machinery. A study in male baboons demonstrated 
that over 80% of protein-coding genes are under circa-
dian control.15 In addition, epigenetic modifications, post-
transcriptional, and post-translational processes are also 
involved in creating daily rhythms.11,16

Circadian disruption, or circadian dysrhythmia/misalign-
ment, can occur when the body receives signals that promote 
a particular phase of the circadian rhythm at the wrong time, 
and is associated with numerous diseases, including gastro-
intestinal disease.2,17 A disrupted circadian rhythm likely 
decreases resiliency to disease,2 as evidenced by worsening of 
intestinal barrier disruption, endotoxemia and steatohepatitis 
in alcohol-fed mice when their circadian rhythm is disrupted.4 
Signals that can influence the circadian rhythm are called 
Zeitgebers, which is German for “time givers”. Common 
zeitgebers are light (the primary cue for the central circadian 
clock), eating (the primary cue for intestinal and liver circadian 
rhythms), exercise, and temperature.18 Activities that can lead 
to circadian disruption are shift work (activity when the body 
naturally rests), jet lag (travel across multiple time zones), so-
cial jet lag (variation in sleep/wake time on weekdays versus 

weekend days), late night eating (when the body is naturally 
fasting), bright street lights and use of light-emitting devices 
at night-time (when the body is naturally exposed to dark-
ness).2,17 Even a 1-h shift, as occurs with daylight savings time, 
has been associated with increased risk of disease and body 
function compromise, such as myocardial infarction and car 
accidents.19,20 Bright light at the wrong time, such as at night 
when the sun is down, leads to altered levels of melatonin and 
cortisol18 and can impair cognitive performance.21 When food 
is ingested at the wrong time (wrong time eating, WTE), misa-
lignment can occur between the peripheral clock and the cen-
tral clock.22 Disruption of the circadian rhythm also occurs 
when an individual’s day and night rhythm does not align 
with their chronotype, which is their biological pattern for 
sleep and wake cycles. There are 3 main types, the early bird 
or early chronotype (tendency towards early wake time), the 
night owl or evening chronotype (tendency towards staying 
up late) and an intermediate type.2

Sleep, circadian, and IBD
Patients with IBD tend to have poor sleep quality, which is as-
sociated with worsening of disease activity and quality of life 
and increased risk of disease flares.2,23–26 Healthy individuals 
who received the proinflammatory cytokine interleukin-6 
(IL-6) parenterally developed significant fatigue, had sup-
pression of their REM sleep, and demonstrated changes in 
their slow wave sleep.27 Sleep deprivation can promote a 
proinflammatory state as evidenced by elevated IL-6 and 
white blood cell levels during daytime.25,28,29 Conversely, the 
presence of intestinal inflammation can result in sleep distur-
bance, causing a vicious cycle for the patient.25,30 It should be 
noted that even in the absence of overt inflammation, IBD 
patients tend to have impaired sleep quality.31

Disruption of the circadian rhythm has been associated 
with worse outcomes in IBD. Increased rest-activity fragmen-
tation, suggestive of circadian disruption, in patients with 
IBD is associated with increased systemic inflammation and 
an increase in pro-inflammatory microbiome.32 A genetic pol-
ymorphism in PER3, one of the clock genes, is associated 
with a more aggressive disease phenotype in CD.33 In addi-
tion, IBD patients with an evening chronotype tend to have 
a more severe disease course requiring escalation to biolog-
ical therapies23,34 and CD patients with social jet lag or sleep 
deprivation tend to have a more aggressive disease phenotype 
and complications.35,36

In mice, sleep deprivation resulted in worse colitis after ad-
ministration of dextran sodium sulfate (DSS), but not in the 
absence of DSS exposure.37 In a similar study, shifting light/
dark cycles in mice led to worse colitis after DSS exposure, 
but again these changes were not observed in the circadian 
disrupted mice without DSS.5 In a mouse model with colon-
specific genetic circadian disruption (BMAL1 knock out in 
colonic epithelial cells), administration of DSS led to worse 
colitis as compared to non-circadian disrupted mice.38 These 
animal studies demonstrate that sleep deprivation and cir-
cadian disruption alone do not cause an inflammatory re-
sponse, but rather increase the susceptibility to inflammation 
after exposure to a pro-inflammatory insult. In later studies, 
it was found that circadian disruption was associated with 
intestinal barrier dysfunction, likely predisposing mice to 
worsening inflammation.4 Additionally, circadian disruption 
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was associated with decreased production of short-chain fatty 
acids, an essential energy source for the intestinal epithelial 
cells that tend to have protective effects on the intestinal bar-
rier function.38

Circadian rhythmicity of the immune system
In patients with IBD, the immune system and its inflamma-
tory response are in overdrive. The inflammatory response 
with its proinflammatory cytokines such as IL-6, tumour ne-
crosis factor alpha (TNFα), and IL-17, as well as leukocyte 
recruitment and homing facilitated by chemokines are under 
control of the circadian clock.39,40 BMAL1 was found to reg-
ulate the expression of chemokine CXCL5 regulating neu-
trophil trafficking, REV-ERBα regulates gene expression in 
macrophages to control inflammation, and RORγ is involved 
in the development and differentiation of IL-17 secreting 
T-helper cells.41–43 Based on multiple studies in healthy 
individuals, it was discovered that the immune system is most 
active in the evening and early night.44–47 Genetic disruption 
of the circadian mechanism leads to opposing effects on the 
immune system: mice with CLOCK knockout have lower 
levels of proinflammatory cytokines, whereas mice with CRY 
knockout have increased levels,48,49 emphasizing the impor-
tance of an intact circadian machinery in control of the inflam-
matory response. Conversely, the presence of inflammation 
in itself can alter the expression of clock genes, potentially 
worsening the detrimental inflammatory process due to lack 
of regulation.50 In a mouse model, exposure to DSS markedly 
reduced the basal expression of circadian genes within the 
colon.51 In an in vitro study, TNFα and TGFβ both reduced 
the expression of cold inducible RNA-binding protein, which 
under normal circumstances promotes expression of clock 
genes.52 Other cytokines including IL-1β, IL-6, IFNα, and 
IFNγ did not alter the expression in this study. Furthermore, 
TGFβ suppresses the negative circadian clock regulators Per1, 
Per2, Per3, Rev-erbα, RORα, and DBP.52 Taken together, this 
suggests a bidirectional relationship between the circadian 
machinery and the immune system (Figure 1).

Circadian rhythm disruption and intestinal 
barrier function
The intestinal barrier protects the body from toxins and en-
vironmental factors that may trigger inflammation when 
encountering the immune system. When the barrier is dys-
functional, referred to as gut leak, proteins that are foreign 
to the body or bacterial products such as endotoxins can il-
licit or worsen an inflammatory response such as in IBD.53 
The robustness of the intestinal barrier has a circadian ma-
chinery.54,55 Disruption of the circadian rhythm increases the 
susceptibility of the intestinal mucosa to injury,4,5 as apical 
junctional complex proteins that form tight junctions within 
the intestinal barrier are under direct control by the circadian 
rhythm.56 This was further demonstrated in a mouse model 
where circadian disruption resulted in gut leak and was fur-
ther exacerbated by alcohol ingestion.57 In chronically shifted 
mice, who displayed disrupted circadian rhythms, there was 
evidence of increased intestinal permeability with a loss of 
barrier function.58 This is further demonstrated by an inverse 
relationship between the severity of gut leak and serum mela-
tonin levels, a marker of circadian output.59,60 A similar effect 

is seen in humans, where individuals who work night shifts 
have worse gut leak after drinking 1 glass of red wine for 7 
days as compared to day shift workers.61 In addition, higher 
rates of IBD are seen in shift workers when compared to non-
shift workers.62

Circadian rhythm disruption and the 
microbiome
The microbiome plays an integral part in maintaining the 
intestinal barrier, digestion of food and the production of 
hormones.3 Just as most of the cells in the body have a cir-
cadian rhythm, the composition of the gut microbiome and 
the production of metabolites (such as short chain fatty acids 
(SCFA)) changes throughout the day,63,64 in turn, affecting 
the host’s circadian rhythm.65,66 In germ-free mice, small in-
testine epithelial cells have a loss of diurnal variation in 
gene expression,67 thought to be due to loss of cyclical his-
tone acetylation with a reduction in histone deacetylase 3 
(HDAC3) recruitment, demonstrating the importance of the 
gut microbiome in circadian rhythm function. The host and 
microbial circadian rhythm processes appear to have a bidi-
rectional relationship,3 as the microbial circadian rhythm is 
in part regulated by the host core CLOCK mechanism, as ev-
ident by the loss of circadian variation when the host core 
CLOCK genes are genetically altered.63 Disruption of the host 
circadian rhythm can affect the composition and function of 
the microbial community.68–70 In mice with circadian disrup-
tion, their microbiome tends to have a higher abundance of 
proinflammatory bacteria and a decrease in health-promoting 
bacteria that produce SCFA and support the host immune 
system.64,68,71 Circadian disruption increases the vulnerability 
of dysfunction. Light/dark disrupted mice on a regular diet 
had no alteration of their microbiome, but when fed a high-fat 
high sugar diet or alcohol-containing diet, their microbiome 
changed significantly.68 In addition, WTE was associated 
with a decreased abundance of SCFA-producing bacteria and 
increased gut leak.72 The importance of the microbiome is fur-
ther evidenced by its protective mechanism in an alcohol-fed 
mouse model: an SCFA promoting prebiotic normalized the 
microbiota community and SCFA production, and slowed 
down colon carcinogenesis in alcohol-fed, WTE mice.73 In 
addition to gut microbiome variations, the oral microbiome 
also shows diurnal variations, which were affected by food 
timing.74,75 In addition, circadian rhythm has been shown to 
impact the oral microbiome in humans due to its influence on 
salivary flow, tooth function, and oral homeostasis.76

Circadian rhythm hygiene as a therapeutic 
target in the management of IBD
As demonstrated throughout this review, it is biologically 
imperative to have an appropriately functioning circadian 
rhythm. While the central circadian clock drives the periph-
eral circadian clocks, the peripheral circadian clocks can 
conversely affect the timing of the central circadian clock. 
The circadian rhythm, both centrally and peripherally, is 
influenced by external cues, such as light, food, and other 
bodily exposures (Figure 1). The strongest cue determines the 
flow of the rhythm. For example, the timing of food consump-
tion can in fact overrule influential signals coming from the 
SCN.77 Changing the external cues that impact the circadian 
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rhythm can have a positive impact on the disease state in IBD 
as we will be showing in the following paragraphs.

Phototherapy in IBD
Bright light therapy (BLT), or phototherapy, refers to the 
non-invasive practice of exposing the human body to broad-
spectrum bright light of 2000-10 000 lux during daytime 
when light exposure naturally occurs.11 Its benefit is well 
known in the field of neuropsychiatry, where it helps patients 
with sleep disorders, seasonal affective/depressive disorders 
(by directly stimulating areas of the brain that regulate 
mood), attention deficit hyperactivity disorder, autism spec-
trum disorder, and delirium.78–81 All these disorders are as-
sociated with disruption of the circadian rhythm,82 and BLT 
is now studied in additional chronic diseases associated with 
circadian misalignment. For example, in animal models with 
myocardial infarction, BLT attenuated the size of the myo-
cardial infarct through increased PER2 levels.83 Translated to 
humans, ensuring appropriate light–dark patterns in the in-
tensive care units is associated with better health outcomes.78 
In a randomized controlled trial looking at individuals with 
depression and diabetes, BLT improved both their mood and 
their insulin sensitivity.84 Furthermore, exposure to blue light 
specifically during daytime hours promotes the nighttime cir-
cadian function of melatonin and was found to inhibit the 
growth of various cancer cell types.85–87 More recently, studies 

have shown that “timed” BLT can either delay shift (when it 
is given in the evening before bedtime) or forward shift (when 
it is given in the morning at wake up time) and restore the 
disrupted circadian rhythms, such as those caused by jet lag, 
social jet lag or shift work.88,89 The beneficial effects of pho-
totherapy are even seen in individuals that are blind, if the 
pathway from the retinal ganglion cells to the SCN, known as 
the retinohypothalamic tract (RHT), and the rest of the brain 
are intact.90,91 The effects of BLT in IBD remain unknown to 
date, but the prospect of its beneficial impact is intriguing 
since patients with IBD have known circadian misalignment 
with social jetlag and poor sleep.23,24

In addition to bright light therapy that focuses on light 
exposure at the right time during the day, efforts should be 
undertaken to minimize or eliminate light exposure at the 
wrong time, ie, nighttime. While studies on the effect of night-
time light exposure in IBD are lacking, studies have shown 
that even dim light exposure at night increases inflammatory 
responses.92–94 Policies on light pollution and other environ-
mental exposure to light would benefit not only IBD patients 
but also the general population.

Chrononutrition in IBD
Coordinating the time of food consumption with the cir-
cadian rhythm is referred to as chrononutrition.2 Many 
processes related to the processing of food are under the 

Figure 1. Schematic overview of the circadian rhythm with external and internal cues influencing its rhythm. There is a bidirectional relationship 
between the central and peripheral circadian rhythms, as well as a bidirectional relationship between circadian disruption (specifically within the 
gastrointestinal tract as discussed here) and the inflammatory response. BLT = bright light therapy; GI = gastrointestinal; IL = interleukin; SCFA = short 
chain fatty acids; SCN = suprachiasmatic nucleus; TGF = transforming growth factor; TNF = tumour necrosis factor. Created with BioRender.com.
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control of the circadian clock, including the uptake, synthesis, 
and digestion of nutrients.95 By means of a bidirectional rela-
tionship, food intake and the activation of nutrient signalling 
pathways impacts CLOCK and CLOCK-controlled genes and 
downstream metabolic processes. One example of circadian 
disruption is wrong-time eating (WTE), which affects the pe-
ripheral circadian rhythm within the gastrointestinal tract 
and liver. In studies looking at obesity and metabolic syn-
drome in humans, consuming most calories earlier in the day 
can result in greater weight loss compared to later in the day, 
despite equal food intake.96,97 The importance of meal timing 
is further demonstrated by the observation that consuming 
breakfast was associated with a normal oscillation pattern of 
CLOCK genes, whereas skipping breakfast adversely affected 
the expression of CLOCK and CLOCK-controlled genes in 
individuals with diabetes as well as healthy controls.98,99 In 
addition, food timing influences the composition and daily 
rhythms of salivary microbiota within 1 week, and eating 
later in the day is associated with the pro-inflammatory com-
position of the oral microbiota.75 Similar results were seen 
in an animal model, where it was demonstrated that WTE 
was associated with a higher abundance of pro-inflammatory 
microbiota and loss of normal circadian oscillation of SCFA-
producing, anti-inflammatory bacteria.65

In addition to the time of the day, the duration of time 
during which food is consumed is of importance. Time-
restricted feeding (TRF), in which food is consumed within 
a 6-8 h time frame during the active phase (daytime in 
humans, dark period in rodents), improves the internal cir-
cadian clock function and has beneficial health effects in 
metabolic disorders, including improvement in beta-cell func-
tion and insulin sensitivity,100,101 and in oncologic diseases, by 
improving antitumour immune responses, inhibiting tumour 
growth, and increasing sensitivity to cancer treatment.102 
Similar to the timing of the day, TRF has a positive effect 
on gut microbiome composition.95 TRF can increase micro-
bial diversity and restore the disrupted circadian rhythm of 
the microbiome caused by inappropriate dietary habits (WTE 
and/or high-fat diet) in animal models.103–105 These benefits are 
maintained when alternating between 5 days of TRF and 2 
days of ad libitum consumption in mice, reflecting the human 
lifestyle of workdays and weekend days.100 In addition, TRF 
restores the peripheral circadian rhythm within the gastroin-
testinal tract and the liver, and normalized body weight and 
glucose metabolism in mice with Bmal1 knockout in the hy-
pothalamic suprachiasmatic nucleus living in complete dark-
ness.106 Chrononutrition might also be beneficial in IBD. For 
example, TRF ameliorated intestinal inflammation induced 
by DSS in mice,107 suggesting that timed eating promotes in-
testinal healing in the setting of inflammation. However, the 
benefits of TRF are not well described in humans and its 
benefits in IBD need to be explored further.

Chronopharmacology
Many studies have demonstrated that drug targets, in fact, 
have varying levels of expression throughout the day and 
night, commonly referred to as target cycling.15,108,109 This 
observed phenomenon suggests that chronotherapy, the prac-
tice of administering medications at a specific time, could 
optimize the efficacy and maximize therapeutic benefits of a 
variety of drugs.110 Determining the optimal time of drug ad-
ministration is complex, as drugs are affected by absorption, 

distribution, metabolism, and excretion, which in turn are 
also regulated by circadian rhythms.95 For example, expres-
sion of small intestine drug uptake transporters oscillates 
throughout the day, and gastric pH and gastrointestinal mo-
tility were also found to have circadian variations.111,112 It 
has, therefore, been suggested that drugs with the following 
characteristics would be suitable for chronotherapy: cycling 
target, cycling physiology, short half-life, and cycling non-
specific target (eg, target associated with side effects).95,108 As 
discussed, the immune system and inflammatory cascade also 
exhibit a circadian rhythm, with their active phase being in 
the evening and early night.44–47 Various studies demonstrated 
that anti-inflammatory medications, including nonsteroidal 
anti-inflammatory drugs, glucocorticosteroids and disease-
modifying anti-rheumatic drugs (DMARD) have better ef-
ficacy when administered at nighttime,113,114 likely as they 
influence the inflammatory response at its peak.44–47,115

Chronotherapy in IBD is a relatively new field of study, as 
evidenced by the very limited published data. The known cir-
cadian rhythm of the immune system with variations in its 
function suggests that the administration of immunogenic 
drugs at inappropriate times could result in suboptimal effi-
cacy and a higher risk of side effects and anti-drug antibody 
development.116 The only published clinical study looking at 
chronotherapy in IBD was done by Swanson et al, in which 
they looked at the timing of thiopurines and how it affects 
metabolite profiles.117 Based on a cross-over trial with 26 
patients, morning dosing of thiopurines led to more optimal 
drug levels. Interestingly, patients with more optimal drug 
levels when taking the drug in the morning also had an earlier 
chronotype, suggesting that a patient’s chronotype can help 
define the optimal time for drug administration. It should 
be noted, however, that while patients in this study were 
asked to keep food timing and content the same, this was not 
monitored throughout the study and could have confounded 
the study results as individuals may have changed food timing 
behaviours based on medication administration timing.

Sulfasalazine, a DMARD used in IBD, acts on the 
drug transporter ABCG2, which is under the control of 
activating transcription factor 4, one of the CLOCK mech-
anism components.118 ABCG2 was found to have circadian 
oscillations in mice, which could lead to variations in bioavail-
ability of sulfasalazine. Berberine, a plant-derived chemical, is 
a REV-ERBα agonist and showed a time-dependent efficacy 
in improving inflammation in a colitis mouse model,119 either 
due to diurnal variation in REV-ERBα expression or time-
dependent changes in colitis severity. While no data exists on 
chronotherapy for biologics in IBD, it is reasonable to hypoth-
esize that intravenous infliximab, with immediate systemic 
drug exposure, would be best administered shortly before the 
rise in inflammatory activity. Preliminary analysis from our 
group demonstrates that intravenous infliximab administered 
earlier in the day in patients hospitalized for IBD flare-up 
leads to better outcomes (data not published). On the other 
hand, we can hypothesize that the efficacy of subcutaneous 
administration of biologics, with slow absorption and lower 
peak concentrations,120 may not be affected by circadian var-
iation in the inflammatory response. Newer therapies for 
IBD include Janus Kinase inhibitors (JAKi) and sphingosine 
1-phosphate (S1P) receptor modulators, both taken orally 
daily. In animal models, worsening of colitis in circadian 
disrupted mice after DSS is in part mediated through the JAK 
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pathway.38 Baricitinib, a JAKi approved for rheumatoid ar-
thritis, was more effective in terms of clinical disease activity 
scores, histopathology and bone destruction markers when 
administered during lights-on (rest) period in mice.121 S1P is 
upregulated at the beginning of the light period in humans, 
with peak levels around 08:00 AM.122,123 This suggests that 
JAKi and S1P use in IBD could have optimal administration 
times based on the time of day.

Conclusion
The circadian rhythm machinery is crucial for maintaining gut 
health. The circadian rhythm and the environment are con-
stantly communicating, and when this interaction is misaligned, 
the body’s resiliency to detrimental triggers decreases. Circadian 
misalignment is extremely common in our modern societies due 
to light polluted environments, social obligations leading to shift 
work, jet lags and social jet lags and high-fat/sugar-containing 
food eaten during nighttime, ie, WTE. This circadian rhythm dis-
ruption and associated poor sleep quality combined with other 
disrupters such as stress in genetically susceptible individuals 
promote intestinal and systemic inflammation leading to 
worsening of the IBD disease course. Conversely, the inflamma-
tory response further disrupts the circadian rhythm leading to 
a vicious cycle. Thus, circadian-directed interventions, such as 
BLT targeting the central circadian clock or timing of eating and 
chronotherapy targeting the peripheral circadian clocks, may be 
essential in the management of IBD.
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