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A B S T R A C T

Objectives: The rapid discovery of clinically significant genetic variants has translated to next-
generation sequencing assays becoming out-of-date by the time they are designed, validated,
and implemented. UW-OncoPlex addresses this through the adoption of a modular panel capable
of redesign as significant alterations are identified. We describe the validation of OncoPlex version
6 (OPXv6) for the detection of single nucleotide variants (SNVs), insertions and deletions (indels),
copy number variants (CNVs), structural variants (SVs), microsatellite instability (MSI), and tumor
mutational burden (TMB) in a panel of 340 genes.
Design: One hundred twelve samples with diverse diagnoses were comprised of formalin-fixed-
paraffin-embedded tissue, fresh-frozen tissue, plasma, peripheral blood, bone marrow, saliva,
and cell-line DNA. Libraries were prepared from genomic and cell-free DNA, hybridized to a
custom panel of xGen Lockdown probes, and sequenced on Illumina platforms. Sequences were
processed through a custom bioinformatics pipeline, and variant calls were compared to prior
orthogonal clinical results.
Results: Accuracy was 99% for SNVs �5% allele frequency, 98% for indels, 97% for SVs, 99% for
CNVs, 100% for MSI, and 100% for TMB (compared to previous OncoPlex versions). Library
preparation turnaround time decreased by 40%, and sequencing quality improved with a 2.5-fold
increase in average sequencing coverage and 4-fold increase in percent on-target.
Conclusions: OPXv6 demonstrates improvements over prior UW-OncoPlex versions including
reduced capture cost, improved sequencing quality, and decreased time to results. The modular
capture probe design also provides a nimble laboratory response in addressing the expansions
necessary to meet the needs of the continuously evolving field of molecular oncology.
1. Introduction

In oncology, a primary goal of precision medicine is to deliver the right drug to the right patient at the right time. Initially this
approach utilized immunohistochemistry-based diagnostic tests to identify patients who might benefit from specific “targeted
.
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therapies”—as was the case with tamoxifen, a repurposed failed anti-estrogen contraceptive with significant therapeutic response in
patients with estrogen binding protein (presumably estrogen receptor) positive breast cancer, and trastuzumab, a monoclonal antibody
that received FDA approval in the 1990s for the treatment of human epidermal growth factor receptor 2 (HER2) positive breast cancer
[1,2]. Immunohistochemistry, however, had limitations, as highlighted by the poor response rate of epidermal growth factor receptor
(EGFR) expressing non-small cell lung cancer to erlotinib and gefitinib, small molecule tyrosine kinase inhibitors directed against EGFR,
in early randomized clinical trials [3]. The subsequent identification of activating EGFR mutations in the small subset of lung cancer
patients who did respond would serve to highlight the need for genetic profiling as a predictive biomarker for therapeutic enrollment
[4]. Consequently, each discovery of new, non-overlapping alterations driving tumorigenesis and the development of corresponding
clinically effective inhibitors, resulted in numerous single-gene tests, which were necessary to adequately classify a tumor subtype,
accompanied by an increase in tissue requirements and cost.

The need to comprehensively assess clinical cancer specimens for an expanding list of alterations critical to therapeutic decision
making led to the adoption of large “fixed-content” genetic panels that utilized massively parallel sequencing, more commonly referred
to as next-generation sequencing (NGS). However, the rapid pace of discovery of clinically significant genes and variants translates to
ever-larger panels that are out-of-date by the time they are designed, validated, and clinically implemented. UW-OncoPlex version 6
(OPXv6) addresses this deficiency through the adoption of modular hybridization capture probes that can be rapidly redesigned as
significant diagnostic, prognostic, and/or therapeutic alterations are identified.

We herein report the analytical validation of OPXv6, a modular targeted NGS assay designed to detect single-nucleotide variants
(SNVs), insertions and deletions (indels), copy number variations (CNVs), and select structural variants (SVs) in 340 genes selected for
their clinical significance in cancer, as well as evaluate for microsatellite instability (MSI) and tumor mutational burden (TMB). This
assay is intended to comprehensively characterize a wide variety of clinical specimens, improving on earlier approaches through
expansion of the spectrum of detected alterations and generation of higher quality sequencing data more efficiently and at decreased
cost, while accommodating for the continued evolution of the molecular oncology field.
Table 1
OncoPlex v6 Gene Panel.

ABL1 BRAFa CRX ESR2 GLTSCR2 MAP2K1 NBN PLK4 RPS20 STAT6
ABL2 BRCA1b CSF1R ETV6a GNA11 MAP2K2 NF1 PML RPTOR STK11
ACVR1 BRCA2b CSF3R EZH2 GNAQ MAP2K4 NF2 PMS2b RRM1 SUFU
AKT1 BRIP1 CTCF FAM175A GNAS MAPK1 NKX2-1 POLD1 RRM2 SUZ12
AKT2 BTK CTNNA1 FANCA GREM1 MAX NOTCH1 POLE RSPO2 TACC3
AKT3 C11ORF95a CTNNB1 FANCB GRIN2A MC1R NOTCH2 PPM1D RSPO3a TACSTD2
ALKa CALR CUX1 FANCC GRM3 MCL1 NOTCH3 PRKAR1A RUNX1 TCF3
ANGPTL1 CARD11 DAXX FANCD2 H3F3A MDM2 NPM1 PRPF40B SAMD9L TERC
ANKRD26 CBL DDR2 FANCE H3F3B MDM4 NPRL2 PRPS1 SDHA TERT
APC CBLB DDX41 FANCF HDAC4 MED12 NPRL3 PTCH1 SDHB TET1
AR CBLC DEPDC5 FANCG HDAC9 MEGF6 NR4A3 PTEN SDHC TET2
ARAF CCND1 DICER1 FANCI HIF1A MEN1 NRAS PTPN11 SDHD TET3
ARID1A CCND2 DNAJB1a FANCL HIST1H3B METa NT5C2 PTPRD SETBP1 TFE3
ARID1B CCNE1 DNMT3A FANCM HNF1A MIOS NTHL1 QKIa SETD2 TFG
ASXL1 CD19 DOCK7 FBXW7 HRAS MITF NTRK1a RAC1 SF1 TGFBR2
ASXL2 CD274 DPYD FGFR1a HSPH1 MLH1b NTRK2a RAD21 SF3B1 TLX1
ATM CD33 EBF1 FGFR2a ID3 MLH3 NTRK3a RAD51B SH2B3 TMPRSS2a

ATR CD74a EGFRa FGFR3a IDH1 MN1 NUDT15 RAD51C SHH TP53
ATRX CDC27 EIF3Ea FGFR4 IDH2 MPL PAK1 RAD51D SLX4 TP73
AURKA CDH1 ELF1 FH IGF1R MRE11A PALB2 RAF1a SMAD2 TRAF7
AURKB CDK12 EML4a FKBP1A IKZF1 MSH2b PAX5 RARA SMAD3 TRRAP
AXIN2 CDK4 EP300 FLT1 IL7R MSH6b PBRM1 RB1 SMAD4 TSC1
AXL CDK6 EPAS1 FLT3 JAK1 MSLN PDCD1LG2 RECQL SMARCA4 TSC2
BABAM1 CDK8 EPCAM FLT4 JAK2 MTAP PDGFRA RELA SMARCB1 TTYH1
BAK1 CDK9 EPHA3 FOXA1 JAK3 MTOR PDGFRB RETa SMC1A TYMS
BAP1 CDKN1A EPHA5 FOXR2 KDM6A MUTYH PHF6 RHEB SMC3 U2AF1
BARD1 CDKN2A EPHB2 GAB2 KDR MYB PHOX2B RICTOR SMO U2AF2
BCL2 CDKN2B EPHB6 GALNT12 KIF5B MYC PIK3CA RINT1 SPOP VHL
BCL2L11 CEBPA ERBB2 GATA1 KIT MYCL1 PIK3CB RIT1 SPRY4 WRN
BCOR CHD1 ERBB3 GATA2 KLF4 MYCN PIK3R1 ROR1 SRC WT1
BCORL1 CHEK1 ERBB4 GATA3 KMT2Aa MYD88 PLCG2 ROS1a SRP72 XRCC2
BCR CHEK2 ERCC2 GEN1 KMT2C MYOD1 PLK1 RPL10 SRSF2 YAP1a

BIRC3 CREBBP ERG GLI1 KMT2D NAB2 PLK2 RPS14 STAG2 ZBTB16
BMPR1A CRLF2 ESR1 GLTSCR1 KRAS NAT2 PLK3 RPS15 STAT5B ZRSR2

a Select introns sequenced in addition to all coding regions.
b Full genes sequenced (introns and exons).
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2. Material and methods

2.1. Gene panel

OPXv6 employs a modular panel of Integrated DNA Technologies (IDT) xGen Lockdown Probes (IDT, Coralville IA), targeted against
340 genes, including 24 genes with recurrent structural alterations, selected for their clinical significance in relation to diagnosis
(somatic or germline), prognosis, and/or therapy selection. The majority of the capture probes were designed and procured through a
consortium of academic laboratories (GOAL project), supplemented with additional IDT xGen probes custom designed to provide
complete coverage of non-repetitive intron and exon sequences of BRCA1, BRCA2, mismatch repair (MMR) genes (MSH2, MSH6, PMS2,
MLH1), additional select regions recurrently involved in fusions, and genes not included in the GOAL consortium probe design (Table 1).

2.2. Sample selection and orthogonal testing

DNA samples used for the validation of OPXv6were derived from 108 unique specimens composed of 29 different adult and pediatric
neoplasms (including CNS malignancies, leukemia/lymphoma, melanoma, sarcoma, and carcinomas of the lung, breast, endometrium,
bowel, and prostate) and 5 germline samples (Fig. 1). All samples had prior molecular characterization via orthogonal clinical tests
including both laboratory-developed amplicon-based [5] and hybrid-capture-based NGS assays and/or a custom commercial RNA
sequencing assay (FusionPlex, ArcherDx, Boulder, CO, USA). Validation samples were comprised of formalin-fixed paraffin embedded
(FFPE) tissue (including biopsies, resections, and cell blocks) as well as fresh-frozen tissue, peripheral blood, bone marrow, cell-free
DNA, and saliva; details regarding diagnosis, specimen type, and preparation can be found in Supplementary Table 1. Four HapMap
samples (NA12891, NA12892, NA18517, and NA12878) (Coriell Cell Repositories, Camden, NJ) were also used to evaluate the overall
performance characteristics of OPXv6, the latter (NA12878) as the positive control for every sequencing run. Collectively, these 112
samples comprised a validation cohort that included multiple known SNVs, Indels, CNVs, SVs, MSI statuses, and a wide range of TMBs.

2.3. DNA isolation, library preparation, hybrid capture, and sequencing

DNA was extracted using one or more of the following kits from Qiagen (Qiagen, Valencia, CA) depending on specimen type and
nucleic acid extraction desired: Qiagen GeneRead DNA FFPE Kit (Catalog #180134), QIASymphony DSP DNAMidi Qiagen Kit (Catalog
#937255), QIAsymphony Circulating DNA Kit (Catalog #93756), Gentra Puregene DNA Isolation Kit (Catalog #158489), or Qiagen
AllPrep DNA/RNA kits (Catalog #80234, 80204, 80284).

Sequencing libraries from non-cell free DNA samples were prepared from at least 250 ng of extracted DNA when available (range:
78–1090 ng), with a median of 270 ng and a standard deviation (SD) of 154 ng, and sheared to an average of 250 bp via sonication
(Covaris, Woburn, MA). Post shear DNA input into library preparation ranged from 11 to 520 ng (median¼ 160 ng, SD ¼ 120 ng). Cell-
free DNA (n¼ 3), which did not require shearing, ranged from 6 to 23 ng in total. Both the amount of DNA sheared and the sheared DNA
input for library preparation for each specimen can be found in Supplementary Table 1. Fragmentation was followed by enzymatic
repair, A-tailing, and simultaneous adapter ligation and barcoding with i5 and i7 indexes to allow for multiplexing (KAPA HyperPrep
Kits, Roche Sequencing and Life Science, Wilmington, MA) prior to pooled multiplex capture according to the “xGen hybridization
capture of DNA libraries for NGS target enrichment” protocol [6]. In brief, adapter ligated barcoded DNA samples were pooled together
with xGen blocking oligonucleotides and human Cot-1 DNA® (Thermo Fisher, Waltham, MA) and then hybridized to the
custom-designed panel of individually synthesized 50-biotinylated complementary DNA oligos targeting a ~1.9 Mb capture of 340
targeted genes (Table 1). Samples were subsequently amplified, purified on the Agilent BRAVO automated workstation (Agilent
Technologies Inc, Santa Clara, CA) using AMPure beads (Beckman Coulter Life Sciences), and quantified prior to sequencing on the
Illumina NextSeq 500 and/or HiSeq 2500 systems (Illumina Inc, San Diego, CA). A total of 14 sequencing runs were performed with 11
NextSeq runs containing up to 12 samples each and 3 HiSeq runs containing up to 24 samples each, including a standard NA12878
control in each.
Fig. 1. Distribution of specimen types tested on OPXv6.
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2.4. Data analysis (bioinformatics pipeline)

After sequences were demultiplexed using bcl2fastq version 2.17 (https://support.illumina.com/sequencing/sequencing_software/
bcl2fastq-conversion-software.html), sequencing reads were mapped against the human reference genome (hg19/GRCh37) using BWA
version 0.6.1 (http://bio-bwa.sourceforge.net/) and aligned using SAMtools version 0.1.18 (http://www.htslib.org/). Duplicate reads
were removed using PICARD version 1.113 (https://broadinstitute.github.io/picard/) prior to local read realignment for indel detection
and ensuing recalibration of quality scores using Genome Analysis Toolkit (GATK, https://www.broadinstitute.org/gatk/). These
recalibrated realignments were processed through a custom bioinformatics pipeline including SNV callers GATK and VarScan version
2.3.7 (http://varscan.sourceforge.net/), SV callers Pindel version 0.2.5a3 (http://gmt.genome.wustl.edu/pindel/0.2.4/index.html),
BreakDancer version 1.4.5 (https://github.com/genome/breakdancer), and GRIDSS version 1.8.1 (https://github.com/PapenfussLab/
gridss), CNV caller CONTRA version 2.5 (http://contra-cnv.sourceforge.net/), and microsatellite instability detection algorithm
mSINGS version 3.5 (https://bitbucket.org/uwlabmed/msings) as previously reported and described in more detail below, as well as
custom scripts for TMB calculation [7–9].

GATK default parameters were utilized for SNV and indel analysis, while VarScan2 user-defined parameters for these variants were
0.03 minimum variant frequency and a minimum of 5 variant reads for SNVs and 0.01 minimum variant frequency and a minimum of 4
variant reads for indels. SNV and indel calls from GATK and VarScan2 were annotated with gene-based annotation, conservation scores,
predicted effects at the protein level, population frequency, and internal UW database frequency using ANNOVAR version 2015_12_14
(http://www.openbioinformatics.org/annovar/). To ensure that key clinically important and/or pathogenic variants are reliably
identified, a custom script utilizing SAMtools mpileup interrogated specific, predefined genomic positions, regardless of read depth.
Using these parameters and scripts, SNVs and indels are routinely called from 5 to 7 bidirectional reads, though a molecular pathologist
may, at their discretion, choose to call a variant with fewer reads depending on the background at the position in question across the
history of the OPXv6 assay (internal UW frequency database).

Pindel was used to identify tandem duplications and indels greater than 10 bp in length [10]. Insertions, deletions, inversions, and
inter- and intra-chromosomal translocations were detected using BreakDancer, which identifies paired-end sequencing reads mapped at
unexpected separation distances or in an unexpected orientation [11], and GRIDSS, which filters out properly aligned reads and then
uses the remaining discordantly aligned read pairs, split reads, soft-clipped reads, one-ended anchored read pairs, and indel-containing
reads to perform genome-wide break-end assembly. In this process GRIDSS decomposes reads into k-mers, places them in a directed
acyclic graph, identifies overlapping breakpoints, and then calls and scores variants (https://genome.cshlp.org/content/early/2017/
11/02/gr.222109.117.abstract) [12]. Structural alterations detected by GRIDSS were annotated by AnnotSV version 1.1.1 (http://
lbgi.fr/AnnotSV/). Prior to reporting, structural rearrangements are confirmed by manual review and evaluation of associated qual-
ity metrics including the number of split and discordant paired end reads (both of the sample in question and other samples within the
run), the magnitude of the GRIDSS quality score, and mapping of the consensus sequence via the UCSC genome browser (BLAT).

CNV analysis was performed using CONTRA, which calculates and normalizes the read count and log ratio on a per-probe basis with
NA12878 acting as reference [13]. Data was further analyzed by custom scripts to average log2 ratios across exons, with adjacent exons
merged into larger segments for read depths that are not significantly different (p > 0.0001 by Student’s t-test).

An mSINGS baseline was established for MSI detection for both NextSeq 500 and HiSeq 2500 by sequencing 18 MSI-high and 20
microsatellite stable (MSS) tumor samples that were previously characterized from the initial validation cohort on both instruments to
Fig. 2. Distribution of mSINGS scores (the number of unstable loci out of 59 possible loci, expressed as a fraction) in the MSI-high and Microsatellite
stable (MSS) samples used to establish the baseline for detection of MSI-high tumors. The threshold used for interpreting MSI status is indicated by a
dashed line.
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identify mononucleotide microsatellite loci present within the capture design that were stable in negative control samples and unstable
in positive control samples [9]. Fifty-nine loci were empirically identified with a cutoff fraction of 0.2 (20%) unstable loci determined to
be the optimal threshold for detection of potential MSI-high samples. The mSINGS score (fraction of unstable loci out of 59 tested loci) of
the 18 MSI-high samples used to establish the baseline ranged from 0.17 to 0.68 (median ¼ 0.34, SD ¼ 0.13) and 0 to 0.18 (median ¼
0.07, SD ¼ 0.04) for MSS samples (Fig. 2).

TMB classification was determined using a custom script to identify all coding or splice site variants absent from population da-
tabases (ExAC, 1000 genome, COSMIC, dbSNP), present in at least 8 reads with a variant allele frequency (VAF) of at least 5%, with an
internal UW database frequency of less than 0.005 present in the tested sample (tumor only).

The complete clinical OPXv6 workflow from sample acquisition to data analysis and reporting is diagrammed in Fig. 3.

3. Results

3.1. Sequencing metrics

Overall sequencing quality was greatly improved across the 14 validation sequencing runs compared to prior versions of UW-
OncoPlex, with a 2.5-fold increase in non-duplicate average coverage (NextSeq: from 291X for OPXv5 to 541X for OPXv6, HiSeq:
from 255X for OPXv5 to 747X for OPXv6) and a four-fold increase in average percent on-target sequencing (from 15% for OPXv5 to 60%
for OPXv6 on NextSeq, and from 18% for OPXv5 to 62% for OPXv6 on HiSeq).

Samples passed the optimum quality control threshold if the average read depth across >90% of the genes was at least 150X, as this
level of coverage is routinely capable of identifying single nucleotide variants with a 5% allele frequency. The corresponding overall
mean target coverage of the full panel required to achieve this gene-level coverage was empirically determined by plotting the fraction
of genes that met or exceeded the minimum coverage (150 or 200X) per sample against the sample’s respective average coverage across
all 340 genes (Fig. 4). To achieve a minimum of 150X coverage for 90% of the 340 genes, approximately 350X average sample coverage
is required, while an average coverage of 450X is required to obtain 200X coverage for 90% of the genes.

Four well-characterized HapMap reference samples were sequenced as part of establishing the performance characteristics of OPXv6
(NA12891, NA12892, NA18517, and NA12878), and detected variants were compared against results from the International HapMap
SNP Consortium array and the 1000 Genomes Project [14,15]. Within the genomic regions targeted by OPXv6, 539, 521, 651, and 565
SNVs were present and detected in NA12891, NA12892, NA18517, and NA12878, respectively. Variants excluded from this analysis
included alterations where complex indels resulted in misannotated SNP genotyping. The 565 variants present in NA12878 were
Fig. 3. The OncoPlex v6 Workflow consists of 6 main steps including genetics preanalytical services, sample preparation, library preparation,
sequencing, processing through the bioinformatics pipeline, and data analysis.
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Fig. 4. Fraction of Genes Meeting or Exceeding Different Minimum Coverage Thresholds. Each data point represents one sample. Blue ¼ 200X,
Orange ¼ 150X.
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included as a quality control measure by evaluating their recovery as a run-specific control sample. Across the 14 runs, accuracy at the
565 positions in NA12878 was 100% (7910/7910).
3.2. Variant analysis

The performance characteristics of OPXv6 are excellent for all tested variant classes (SNVs, Indels, SVs, and CNVs), both using
standard protocols and in the setting of decreased DNA input andmultiple methods of nucleic acid extraction (Table 2). Data used for the
generation of this and subsequent tables were derived from variants identified in previously tested clinical samples, with the exception
Table 2
Performance characteristics by alteration type.

Mutation Type Sensitivity Specificity Reproducibility

Inter-run Intra-run

All SNVs, All VAFsb 98.7% (446/452)a d 100% (31,888/31,888) 99.7% (307/308) 98% (49/50)
excluding indels 98.9% (344/348)a 100% (28,085/28,085) 99.5% (220/221) 97.5% (39/40)

VAF � 5%b 99% (440/444)a d 99.7% (306/307) 98% (48/49)c

VAF 5–10%b 96.4% (27/28) 95.2% (20/21) 100% (4/4)
VAF <5% b 75% (6/8) 100% (1/1) 100% (1/1)

SNVs 95% CI f (for VAF �5%) 97.7%–99.8% 98.2%–99.9% 89.2%–99.9%

All Indels 98.2% (110/112)a d 100% (3865/3865) 100% (89/89) 100% (10/10)
Indels �12 bp 100% (17/17) 100% (1349/1349) 100% (8/8) 100% (1/1)
Indels <12 bp 97.9% (93/95) d 100% (2516/2516) 100% (81/81) 100% (9/9)
Indels 95% CI f 93.7%–99.8% 95.9%–100% 69.2%–100%

All SVs 97.1% (34/35) 92.3% (12/13) 83.3% (5/6)e

SVs 95% CI f 85.1%–99.9% 64%–99.8% 35.9%–99.6%

All CNVs 98.8% (163/165) 98.2% (54/55) 92.9% (13/14)
Amplification 100% (17/17) 100% (8/8) 100% (1/1)
Homozygous deletion 100% (16/16) 100% (7/7) 100% (3/3)
Focal gain 100% (15/15) 83.3% (5/6) 100% (1/1)
Focal loss 100% (13/13) 100% (6/6)
Sub-chromosomal gain 97.7% (43/44) 100% (2/2) 100% (1/1)
Sub-chromosomal loss 98.3% (59/60) 100% (26/26) 87.5% (7/8)
CNVs 95% CI f 95.7%–99.9% 90.3%–100% 66.1%–99.8%

a One sample was from DNA extracted from a separate tumor block that was analyzed at an outside hospital (OSH); it contained one SNV and one
indel that were not detected by OPXv6.

b Small indels, typically less than <12bp are identified by VarScan2 and GATK. They are therefore included both in the SNV calculations above (as
specified) and in the indel and SV calculations depending on size.

c Variant missed due to low coverage, exclusion results in 100% concordance for all variants and SNVs only with VAFs �10%.
d PHOX2B (detected by an outside lab via Sanger sequencing) was not detected by OPXv6.
e A single fusion was missed due to poor DNA quality using the standard DNA extraction method.
f All CIs were calculated by the Clopper-Pearson method.
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of specificity (which included both clinical and HapMap samples as discussed in additional detail below).

3.2.1. Single nucleotide variants and indels
To evaluate the performance characteristics of OPXv6 in the detection of SNVs and Indels, OPXv6 results were compared to those

from orthogonal clinical test results, excluding results of the four HapMap samples. The analytical sensitivity of OPXv6 was excellent
with 98.7% (446/452, 95% CI [97.1%–99.5%]) of the SNVs and indels detected at all variant allele frequencies (VAFs) (Table 2);
moreover, VAFs determined by OPXv6 were highly correlated by linear regression with an R2 of 0.92 compared to previous clinical
results (Fig. 5). For the six SNVs not detected, two were detected using DNA extracted from a different tumor block at an outside
hospital, one was an indel in a complex homopolymer region (likely incorrectly annotated at an outside laboratory), and three were
present at VAFs below 5%. SNVs and indels were further sub-categorized according to their VAFs: 5% or greater, 5–10%, and less than
5% (Table 2). OPXv6 detected 99% of the SNVs and indels (440/444) with VAFs above 5%; however, sensitivity decreased to 75% for
VAFs below 5%. Our conservative limit of detection (LOD) for SNVs and indels was therefore 10% tumor purity for detection of a
heterozygous variant.

Inter-run and intra-run concordance of all SNVs and indels showed excellent agreement, with only one discordant variant in each
group (Table 2). The single discordant inter-run SNV had an allele frequency of 5%, while the intra-run SNV discordance was due to low
coverage of 93X at the specific position in one replicate. For all indels, both inter-run and intra-run concordance was 100%, regardless of
the size of the alteration.

An interrogation of 355 SNVs and indels that are clinically important and/or analytically difficult to detect was also employed, and
was used to determine the specificity of OPXv6 at clinically-relevant genomic positions for all tested samples including HapMaps.
Specificity was determined by comparing previously detected variants with VAFs greater than 5% on OPXv6. The specificity of OPXv6
was 100% (31,888/31,888 variants) for the 355 positions assessed across 90 validation samples, including 44 samples utilized for inter-
run comparison and 9 samples for intra-run repeats (Table 2).

3.2.2. Structural variants (SVs)
OPXv6 detected 97.1% (34/35, 95% CI [85.1%–99.9%]) of targeted SVs, with only anMSH2-STAMBP1 rearrangement not detected

(Table 3). Near-perfect repeatability and reproducibility was also observed for the tested SVs, with a single fusion discordant in each
category. Specifically, an MSH2 inversion was not detected in one of the inter-run replicates, and an SQSTM1-NTRK1 fusion was not
detected in an intra-run replicate due to low coverage of only 120X, due to poor DNA quality (Table 2).

3.2.3. Copy number variants (CNVs)
Clinically reported CNVs were assessed to determine the performance of OPXv6. Gene amplifications and homozygous deletions

were detected with 100% sensitivity and precision (both between and within runs), while less robust single gene copy gain or copy loss
had mildly decreased sensitivity (Table 2). Additionally, one focal gain was not detected with an inter-run replicate and one sub-
chromosomal loss was not detected on an intra-run replicate (Table 2). Such findings are not surprising as low copy number gains
and losses (both focal and sub/chromosomal alterations) are challenging to detect in the presence of FFPE artifact.

3.2.4. Microsatellite instability (MSI) and tumor mutational burden (TMB)
After establishing an mSINGS baseline for OPXv6MSI detection for both the NextSeq 500 and HiSeq 2500 instruments using 18 MSI-

high and 20MSS FFPE tumor samples, we evaluatedMSI in an additional 54 unique samples. We intentionally selected several cases that
were very close to the positive threshold (0.2 mSINGS units) and/or demonstrated high signal-to-noise ratios on OPXv5. MSI by OPXv6
correctly classified 53/54 cases, including two cases that were false positives by prior clinical testing (Table 4). One case, a renal cell
carcinoma, had an mSINGS score falsely increased by OPXv6 secondary to low mean sample coverage (mSINGS score 0.24 with an
average coverage of 199X).

In clinical practice, MSI status using OPXv6 is determined by evaluation of the sample in totality, including evaluation of TMB, tumor
hypermutation signature, and assessment for the presence of MSI-inducing alterations. Using this approach, MSI interpretation
Fig. 5. Linear regression demonstrating the correlation of VAFs between OPXv6 and orthogonal results.
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Table 3
Structural variant assessment.

Type Gene 1 Gene 2 Clinically Reported Breakpoints Clinical Detection Method Detected on v6

Fusion ALK STK32B chr2:29447949 chr4:5475193 OPXv5 Y
Fusion ALK EML4 chr2:29446985 chr2:42543449 OPXv4 Y
Deletion AR AR chrX:66935652 chrX:66943378 OPXv5 Y
Fusion BRAF KIAA1549 chr7:138554584 chr7:140491365 OPXv5 Y
Translocation BRCA2 intergenic chr13:32929064 chr1:31605622 OPXv5 Y
Fusion DNAJB1 PRKACA chr19:14222945 chr19:14628284 OPXv4 Y
Deletion EGFR EGFR chr7:55120823 chr7:55223569 OPXv4 Y
Fusion ERG TMPRSS2 chr21:39871035 chr21:42874907 OPXv5 Y
Fusion FGFR1 TACC1 chr8:38271170 chr8:38692626 OPXv5 Y
Fusion FGFR2 NPM1 chr5:170,814,856 chr10:123,263,530 OPXv5 Y
Fusion FGFR3 TACC3 chr4:1808681 chr4:1737103 OPXv5 Y
Inversion KDM6A Intergenic chrX:44921996 chrX:68498474 OPXv5 Y
Fusion MET EXOC4 chr7:116435878 chr7:133440326 OPXv4 Y
Fusion MET TBC1D10C chr11:67171961 chr7:116411487 OPXv5 Y
Deletion MLH1 Intergenic chr3:37091968 chr3:37237643 OPXv5 Y
Inversion MSH2 intergenic chr2:47669528 chr2:38121107 ColoSeq Y
Inversion MSH2 Intergenic chr2:47647684 chr2:49777102 OPXv5 Y*
Fusion MSH2 SRBD1 chr2:47655221 chr2:45816237 OPXv5 Y
Fusion MSH2 STAMBP1 chr2:47641412 chr2:74060505 OPXv5 N**
Fusion NTRK1 Intergenic chr1:156843724 chr1:162342951 OPXv5 Y
Fusion NTRK1 TPM3 NA NA ARCHER Y
Fusion NTRK3 ETV6 chr12:12018895 chr15:88614738 OPXv5 Y
Deletion PDGFRA PDGFRA chr4:55136850 chr4:55139049 OPXv5 Y
Tandem Dup PIK3R1 PIK3R1 chr5:67587753 chr5:67591150 OPXv5 Y
Fusion RAF1 MKRN2 chr3:12616316 chr3:12641373 OPXv5 Y
Fusion RELA C11orf95 NA NA c/w histology Y
Fusion RELA C11orf95 NA NA c/w histology Y
Fusion RELA C11orf95 NA NA c/w histology Y
Fusion RET CLIP2 NA NA OncoPanel and ARCHER Y
Fusion RET KIF5B chr10:43610740 chr10:32313817 ARCHER Y
Fusion RET CCDC6 exon 12 exon 1 ARCHER Y
Fusion RET SNRPN70 NA NA ARCHER Y
Fusion RET PRMT7 NA NA OncoPanel and ARCHER Y
Fusion ROS1 CD74 chr5:149783823 chr6:117646454 OPXv5 Y
Fusion RSPO3 PTPRK chr6:127441024 chr6:128785759 OPXv5 Y

Y* Fusion detected in 2 of 3 runs, see concordance studies.
N** Fusion detected below cutoff quality (GRIDSS filter kept intact secondary to false positive rate).

Table 4
Sensitivity and specificity of OPXv6 MSI and TMB.

Alteration Concordance Sensitivitya Specificityb

mSINGS score 97.8% (90/92)c 96% (24/25) 98.5% (66/67)
MSI interpretation 100% (92/92) 100% (25/25) 100% (67/67)

MSI interpretation 95% CI e 96.1%–100%

TMB 97.7% (43/44)d

TMB 95% CI e 88%–99.9%

a Number of OPXv6 positive mSINGS/number of OPXv5 positive mSINGS.
b Number of OPXv6 negative mSINGS/number of OPXv5 negative mSINGS.
c The OPXv6 MSI false positive and OPXv6 false negative mSINGS score (one each) were both corrected by director review.
d A single major discordance was detected (changes across 2 categories).
e All CIs were calculated by the Clopper-Pearson method.
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concordance reached 100% after director’s review and blinded evaluation of the 54 samples (Table 4). Over the course of the validation
and additional clinical runs, we noted that lower DNA input trended towards an increasedmSINGS score. This trend did not result in any
incorrect MSI classifications, when using the comprehensive approach outlined above, supporting the MSI interpretation lab policy
requiring director review in conjunction with the mSINGS algorithm for determining MSI status.

Tumor mutational burden (TMB) is best established by exome sequencing [8]. Systematic comparison of TMB to exome sequencing
was performed on OPXv5 for 20 samples (5 mismatch repair-deficient and 15 mismatch repair-intact tumor samples). From these 20
samples, the tumor mutation qualitative categories of low, intermediate, and high were established as 0–6 mutations/Mb of coding
sequence, 7–11 mutations/Mb, and�12 mutations/Mb respectively. An additional validation set of 251 tumor samples from 32 distinct
tumor types and 25 germline samples were subsequently evaluated on OPXv5, 21 of which were mismatch repair-deficient and 255 of
which were mismatch repair-intact. This data recapitulated known trends in total mutation burden according to tumor type [16]. Paired
8
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OPXv5 and OPXv6 tumor cases were assessed for concordance of TMB and qualitatively classified into low, intermediate, and high
according to the classification scheme above. Major discordances of TMB were defined as changes across 2 categories (from low to high
or high to low), and minor discordances were defined as changing by only one category (e.g. from low to intermediate).

TMB was more challenging to analyze in initial test batches, as the historical error profile from PCR and sequencing artifacts of
OPXv6 was still being established. Among OPXv6 samples with OPXv5 validated TMB data, 22/23 (96%) samples had no major dis-
cordances and 21/23 (91%) samples were perfectly concordant by TMB category (Table 4). The single major discordance was in a
prostate cancer sample with clear evidence of MSI that is most likely a false negative result by OPXv5. We subsequently evaluated TMB
in 21 samples prospectively on three clinical OPXv6 runs spanning a variety of tumor types (Fig. 1, Supplementary Table 1) in which
TMB was adjusted based on well-established artifact profiles. While the TMB range did not appreciably change, concordance appeared
to improve. For these cases, 19/21 (90%) had no major discordances and 21/21 (100%) were perfectly concordant with an R2 cor-
relation of 0.97 (Fig. 6A). When the single case with a very high TMB was excluded the linear regression slightly decreased, with an R2

correlation of 0.91 (Fig. 6B).
3.3. Effect of DNA input and DNA extraction methods

Prior OncoPlex versions ideally required at least 500 ng of DNA to obtain sufficiently high-quality libraries to yield robust sequence
data. In order to assess the minimum DNA input quantity for OPXv6, 4 samples were prepared using two different DNA input quantities
for shearing; “standard” DNA input averaged 236 ng, while the comparative “low” DNA input averaged 119 ng (See Supplementary
Table 2). The concordance between the different DNA inputs was 100% across all alteration types (Table 5). One low abundance SNV
that was detected at a VAF below 5% was not detected at either input level by OPXv6.

Due to the variety of samples submitted for clinical testing in our laboratory, multiple DNA isolation kits are in clinical production,
with the specific extractionmethod used depending on the clinical specimen being extracted. Themost common extraction protocol uses
the Qiagen GeneRead DNA FFPE Kit DNA extraction kit, which was compared with the total nucleic acid (TNA) extraction followed by
DNA isolation, either as part of DNA/RNA AllPrep or via Qiagen GeneRead DNA FFPE Kit DNA extraction. Samples processed by TNA
extraction followed by DNA isolation demonstrated improved performance for all alteration types except for low copy number alter-
ations. A single SNV (SLX4 p.T84A) was identified only after TNA extraction, as the GeneRead DNA FFPE kit extraction from the same
FFPE sample failed average coverage quality metrics (96X for the GeneRead DNA FFPE kit compared to 521X for the DNA/RNA AllPrep
kit). An SQSTM1-NTRK1 fusion was also not detected using the standard DNA isolation on an intra-run replicate due to similarly failed
coverage metrics likely due to poor DNA quality (114X compared to 574X). Higher quality scores by GRIDSS were observed for all
structural variants detected by TNA extraction. For CNVs, findings were very similar between the extraction kits.

4. Discussion

Since the UW-OncoPlex assay was first clinically offered in August of 2012, there have been four major assay updates, each con-
taining increasing numbers of clinically relevant genes and expanded biomarker assessment necessary for comprehensive tumor
profiling. Though the sequencing technology and the supporting bioinformatics pipelines have evolved alongside each update, the
method for target-gene enrichment has remained static. OPXv6 replaces the fixed content targeted hybridization-based capture design
used in previous assays (Agilent SureSelect, Agilent Technologies, Santa Clara CA) with a modular design (IDT xGen Lockdown Probes,
IDT, Coralville IA) capable of the more frequent updates necessary to maintain pace with clinical discovery. In addition to its modular
design update, OPXv6 also expanded the number of targeted genes from 262 to 340 genes (including 24 genes with recurrent structural
alterations), which were chosen for their clinical significance across a wide range of neoplasms, and updated the associated pipelines for
optimal variant detection.

Ultimately, this most recent iteration of OncoPlex (OPXv6) achieved a sensitivity of 99% for SNVs, 98% for indels, 97% for SVs, 99%
for CNVs, 100% for MSI, and 100% for TMB compared to prior orthogonal methods. Reproducibility and repeatability were likewise
high for all variant types, and specificity of SNV and indel detection was 100%. We also investigated the limit of detection of SNVs and
Fig. 6. A and B Linear regression demonstrating TMB correlation between OPXv5 and OPXv6.
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Table 5
Effect of DNA input and extraction methods to sensitivity of OPXv6.

Mutation Type Standard Input Low Input DNA extraction TNA extraction

SNVs 96.9% (31/32) 96.9% (31/32) 85.7% (18/21) 90.5% (19/21)
Indels 85.7% (6/7) 85.7% (6/7) 60% (3/5) 80% (4/5)
SVs 100% (1/1) 100% (1/1) 75% (3/4) 100% (4/4)
CNVs 100% (11/11) 100% (11/11) 100% (3/3) 66.7% (2/3)

TNA ¼ total nucleic acid.

A.J. Kuo et al. Practical Laboratory Medicine 19 (2020) e00153
indels and determined that we could reliably detect 5% variant allele frequency, suggesting that although we have set a minimum tumor
content of 20% neoplastic cell nuclei, samples with as little as 10% tumor content can be interpreted with discretion and a caveat
statement indicating that false-negative results cannot be entirely excluded in the setting of low tumor content. DNA input requirements
were also evaluated, and between the validation cohort and subsequent clinical runs, we determined that OPXv6 had the ability to detect
SNVs, indels, SVs, and CNVs in the setting of extremely low DNA quantities (less than 1 ng/μL in 40 μL). This evaluation, however,
highlighted an assay-specific limitation - that lower DNA input trended towards an increased mSINGS score, which could result in false-
positive reporting of MSI-high status, if evaluated in isolation. This phenomenon did not result in any incorrect classifications, as our
process requires director interpretation and review of the mSINGS score in the context of all other genomic findings (i.e. detection of
pathogenic mismatch repair mutations, increased tumor burden, and/or presence/absence of MLH1 methylation) and the clinical
context. Of note, the MSI-high samples evaluated to identify unstable loci for inclusion in the mSINGS algorithm consisted of colon,
endometrial, and prostate cancer, while a broader range of tumor types was included in the cohort of MSS samples. Decreased sensitivity
for the detection of low copy number changes (similar to prior versions) was also highlighted as a limitation, which is to be expected
given that they are difficult to detect in the setting of FFPE artifact. Overall, the performance characteristics of OPXv6 are comparable to
previously described assays [7,17,18].

Clinical assays used to assess genetic alterations in the setting of neoplastic processes are often presented with samples that are sub-
optimal, which can challenge the analytical and interpretive capabilities of clinical assays. In addition, as our understanding of biology,
medicine, and the natural history of diseases have progressed, new and expanded types of samples are potential substrates for genetic
assessment. Thus, we challenged OPXv6 using a broad range of sample types (cell-free DNA, saliva, FFPE tissue, fresh-frozen tissue,
peripheral blood, and bone marrow aspirates) that were orthogonally evaluated using multiple clinical methods, compared across two
Illumina sequencing platforms, and extracted DNA with multiple nucleic acid isolation methods. We demonstrated that OPXv6 was
capable of identifying all classes of relevant genomic findings in all sample types tested, including circulating tumor (ctDNA), and was
concordant with prior methods. Additionally, we determined that DNA isolated following total nucleic acid (TNA) extraction demon-
strated comparable results and showed a trend towards improved sequencing metrics and variant detection. More importantly, in the
context of a negative DNA UW-OncoPlex test, RNA isolated as part of the TNA extraction was immediately available for potential reflex
testing. Currently, this approach is standard for pediatric neoplasms, where fusions can be more common.

In addition to the advantages realized in analytical performance, scalability, and capture updates, the adoption of the modular IDT
xGen lockdown probes, and their accompanying workflow, resulted in numerous time-saving process improvements. The new process
resulted in a 40% reduction of OPXv6 library preparation turn-around time, requiring only 3 days from DNA shearing to sequencer
loading compared to a 5-day workflow for prior UW-OncoPlex versions. Time savings arose from the ligation of adapters on day 1 of
library preparation, which allowed for multiplex hybridization capture with associated decreased pipetting, reduced hybridization time
of 4 h (compared to 24 h), and shorter wash steps (from 3 to 1.5 h). Another advantage is that the pooled specimen capture by hy-
bridizing in a single Eppendorf tube early in the preparation process not only reduced pipetting, which limited potential for cross
contamination or mix up of samples during the workflow, but also decreased required reagent amounts. In addition to the laboratory
workflow optimization, the substitution of a new SV caller (GRIDSS) further decreased turn-around time, resulting in sequencing data
becoming available in as little as 4–5 days after initiation of testing. The decreased time to data allows for more rapid reporting of
clinically significant findings, but also will result in lower overall cost-per-result due to decreased effort from laboratory staff and more
efficient reagent utilization.

The implementation of the IDT xGen chemistry resulted in significant increases in average overall coverage and percent on-target
rate of OPXv6 compared to prior OncoPlex versions, with a 2.5-fold and 4-fold increase, respectively. These improved coverage met-
rics likely stemmed from improved efficiency of probe hybridization to target sequences (secondary to the use of xGen Blocking Oligos
and Human Cot-1 DNA®, which resulted in reduced non-specific adapter binding and blockage of repetitive DNA sequences) and
increased on-target sequencing rate [19,20]. This increased coverage has significant implications in clinical cases with low tumor
content and/or poor sequencing quality, as was highlighted by several of the validation cohort samples which included clinical cases
where prior UW-OncoPlex testing failed to detect clinically significant mutations that were subsequently detected by an alternative
methodology. One such example detected by OPXv6 is a TPM3-NTRK1 fusion in a papillary thyroid carcinoma, which may be amenable
to treatment with the FDA-approved TRK inhibitor larotrectinib [21–23]. Improved coverage and on-target rates will allow for improved
detection of clinically-relevant findings in precious clinical samples, not only providing important precision medicine data, but also
potentially reducing the need for additional, invasive procedures to obtain more tissue for additional laboratory studies.

As precision medicine has evolved from narrowly defined testing indications and therapies targeting specific alterations in char-
acteristic tumor types to treatments that are tumor agnostic, the need for diagnostic platforms to accommodate more and varied targets
has emerged. This evolution in understanding and applications drives technological advances, which in turn further inform our
10
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understanding of cancer etiology and progression. We believe that OPXv6, and other comprehensive somatic profiling assays, exem-
plifies the analytical and performance capabilities needed to keep pace with the rapidly expanding understanding of genetic markers
important to oncology diagnostics and rapid pace of clinical care. Given the excellent analytical performance, comprehensive content,
reduced turn-around time, and decreased cost, OPXv6 has become the single platform for clinician-directed tumor testing at the Uni-
versity of Washington. Additionally, implementation of OPXv6 allowed for replacement of multiple assays, including OPXv5 and a
rapid, smaller NGS panel targeting a limited set of frequently mutated oncogenes. This powerful tool, when combined with expert
interpretation and data assessment, will enable us to continue to offer choices instead of condolences to those diagnosed with cancer.
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