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Abstract

Background: Questions remain regarding the utility of self-reported ethnicity (SRE) in genetic and epidemiologic
research. It is not clear whether conditioning on SRE provides adequate protection from inflated type I error rates
due to population stratification and admixture. We address this question using data obtained from the Multi-Ethnic
Study of Atherosclerosis (MESA), which enrolled individuals from 4 self-reported ethnic groups. We compare the
agreement between SRE and genetic based measures of ancestry (GBMA), and conduct simulation studies based
on observed MESA data to evaluate the performance of each measure under various conditions.

Results: Four clusters are identified using 96 ancestry informative markers. Three of these clusters are well
delineated, but 30% of the self-reported Hispanic-Americans are misclassified. We also found that MESA SRE
provides type I error rates that are consistent with the nominal levels. More extensive simulations revealed that this
finding is likely due to the multi-ethnic nature of the MESA. Finally, we describe situations where SRE may perform
as well as a GBMA in controlling the effect of population stratification and admixture in association tests.

Conclusions: The performance of SRE as a control variable in genetic association tests is more nuanced than
previously thought, and may have more value than it is currently credited with, especially when smaller replication
studies are being considered in multi-ethnic samples.

Background
The use of self-reported race and ethnicity (SRE) in
genetic and epidemiologic studies has been much dis-
cussed in the literature [1-8]. Some researchers pro-
posed to completely ban their utilization in these studies
claiming that race and ethnicity are poorly defined social
constructs with weak biologic and genetic basis [2,3,9].
Others, however, have argued that completely disregard-
ing racial and ethnic differences in genetic and epide-
miologic studies may not be appropriate, since these
differences can be useful when generating and exploring
new hypotheses regarding the effect of environmental
and genetic risk factors and their interaction on impor-
tant medical outcomes [1,9].

Some studies have found SRE to be closely related to
an individual’s genetically estimated ancestry proportions
[8,10] and have suggested that SRE may provide adequate
control against type I error inflation and/or loss of power
due to population stratification and admixture in genetic
association tests. However, it has also been shown [5,11]
that while SRE may be sufficient to predict the continent
or subcontinent on which an individual’s ancestors were
born, genetic markers may provide a finer genetic ances-
try measure capable of capturing more subtle variation
within ethnic groups. In fact, most investigators currently
rely on a genetic measure of an individual’s ancestral
background as a control variable against confounding
due to population stratification and admixture in genetic
association tests instead of the SRE. This use of genetic
background measures is particularly common in large
endeavors such as in genome-wide association studies.
However, in smaller candidate gene studies, investigators
have asked whether accounting for SRE alone might be

* Correspondence: jdivers@wfubmc.edu
1Department of Biostatistical Sciences, Wake Forest University School of
Medicine Winston-Salem, North Carolina 27157, USA
Full list of author information is available at the end of the article

Divers et al. BMC Genetics 2011, 12:28
http://www.biomedcentral.com/1471-2156/12/28

© 2011 Divers et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:jdivers@wfubmc.edu
http://creativecommons.org/licenses/by/2.0


sufficient to control for the confounding effect, especially
when the number of markers needed for controlling
against confounding effects that are caused by population
stratification and admixture is large compared to the
number of variants to be tested.
We used ancestry informative markers (AIMs) and

phenotypic data on left-ventricular hypertrophy (LVH)
collected in the context of the Multi-Ethnic Study of
Atherosclerosis (MESA) to address two related ques-
tions: (1) what agreement is there between SRE and
clusters created based on the genotyped AIMs? (2) In
multi-ethnic genetic association studies, does SRE pro-
vide comparable type I error control to that provided by
genetic ancestry background measures, such as indivi-
dual ancestry proportions or genetic background scores?
To address these two questions we compared three sets
of measures; SRE, individual ancestry proportion (IAP)
estimates obtained using STRUCTURE [7,12], and a
genetic background score (GBS) which we define below.
We then tested for their genetic association with left
ventricular mass and its related systolic functional coun-
terpart, the left ventricular ejection fraction. These two
phenotypes are known to vary considerably between
ethnic groups. We also used these phenotypes as the
basis to generate plasmodes [13,14] and to illustrate the
potential for type I errors when genetic association stu-
dies are conducted on phenotypic variables that are dif-
ferentially distributed among the 4 ethnic groups
(African-Americans (AA), Chinese-Americans (CA),
European-Americans (EA) and Hispanic-Americans
(HA)) represented in MESA.
LVH is a condition where the ventricular mass

increases as existing cells of the LV enlarge or hypertro-
phy [15]. LVH is one of the most potent risk factors for
cardiovascular disease, particularly ischemic heart dis-
ease and heart failure [16,17], and its reversal has
recently been shown to reduce the rate of cardiovascular
events independently of the blood pressure level [18].
Risk factors associated with LVH include age, gender,
hypertension, obesity, and diabetes [18,19]. There is sig-
nificant evidence of ethnic differences in the distribution
of LVH. The rate of occurrence of LVH in EA is
approximately 16%, compared to 33-43% in AA [20-23].
Many of the risk factors for LVH also differ across eth-
nic groups and may partially account for the observed
ethnic differences in LVH. However, given the number
of potential determinants of LVH, there are plausibly
several genes acting independently or synergistically to
increase risk for LVH in different populations. A sub-
stantial amount of work has been done and published
on LV mass and other LVH related phenotypes using
data collected in MESA [24] and other studies.

Results
Agreement between self-reported ancestry and the
genetic background scores
Ward’s minimum variance and the K-means clustering
algorithm applied on the 96 AIMS yielded similar clus-
ters. Here we present only the results from the K-means
algorithm. Figure 1 shows 4 clusters: the CA cluster,
represented by the triangles in the graph, is completely
separated from the remaining clusters with very few
cases where SRE and the clustering algorithm disagree;
the AA cluster, represented by the circles, is also well
delineated, as is the EA cluster represented by the plus
signs. The HA cluster, represented by the diamonds,
appear to be the most heterogeneous group with most
of the self-identified Hispanics being clustered with the
AA and the EA. This finding is not surprising since His-
panics in the MESA were recruited in the New York
City and Los Angeles areas. The New York City area
has a large population of Caribbean Hispanics who are
known to have a significant degree of African ancestry,
whereas Hispanics in the Los Angeles are mostly of
Mexican descent with limited African ancestry [25].
Table 1 shows the agreement between self-reported eth-
nicity and the observed clusters. The agreement coeffi-
cient � between the two classification procedures is
about 0.83 when all four self-reported ethnicities are
analyzed jointly. However, the agreement between these
two methods is almost perfect (� = 0.98) when the self-
reported Hispanics were not considered in the analysis.
The marginal homogeneity test, which in this case is
testing the null hypothesis that 2 classification methods
are consistently assigning the same individuals to the
same cluster, is rejected at the 0.05 significance level
when the self-reported Hispanics are included in the

analysis 1
2 9 8= =( ). , pvalue 0.001 . We failed to reject

the same hypothesis at that same significance level when
we repeated the analysis excluding the self-reported

Hispanic-Americans 1
2 3 6= =( ). , pvalue 0.06 . This

secondary analysis reinforces the previous results
observed with the kappa coefficient. In MESA, there is a
very high agreement between self-reported ethnicity and
individual ancestry estimates computed using genotyped
AIMs for Americans who identify themselves as either
of European, African or Chinese descent. SRE seems to
be a less reliable indicator for Hispanic-Americans. We
note that the term Hispanic-Americans, in general,
refers more to social-cultural factors than to a geneti-
cally homogeneous group of people. These findings have
motivated the genotyping of additional ancestry infor-
mative markers in the MESA study in an effort to better
tease out genetic variations among the self-reported HA.
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A set of ancestry informative markers that allow for a
better distinction between individuals coming from
Latin American have since been added to the set of
AIMs in order to refine the individual ancestry estimates
computed in this sample.

Agreement between self-reported ancestry and the
ancestry proportion estimates
We also ran the program STRUCTURE to obtain indivi-
dual ancestry proportion estimates assuming 4 ancestral
populations. Let Q = (q1,q2,q3,q4) denote the ancestry
proportion of an individual in the dataset where qi repre-
sents the proportion of alleles that this individual has
inherited from the ith ancestral population. Q therefore
estimates, for each individual, the proportions of African,
Chinese, European and American ancestry estimated

based on the genotyped AIMs. In general, for individuals
who have not experienced a recent admixture event in
their lineage, it is expected that the Q vector will have 3
of its components very close to 0 and the fourth compo-
nent close to 1. All significant deviations from these
numbers can be seen as either evidence of recent admix-
ture events, a sign of discrepancy between self-reported
ancestry and estimated ancestry given that each MESA
participant self-identified with only one ethnic group, or
weak resolution due to limited ancestry informativeness
content of the marker panel. The average ancestry pro-
portion estimate is given for each self-reported ethnic
group in Figure 2. This figure shows very little difference
between self-reported ancestry and estimated ancestry
proportion for AA, CA and EA. However, one can again
observe more discrepancy between self-reported HA and
their ancestry proportion estimates, which confirms the
initial results observed with the genetic background
scores. This result is not entirely surprising and is usually
the first one cited to discourage reliance on SRE only as a
control variable in genetic association tests. Although
self-reported ethnicity can help group individuals coming
from geographically distant regions, it does not always
distinguish those who have mixed origins. However, as
will be seen below, it seems that in multi-ethnic samples,
misclassification errors in the SRE and the number of
ancestral populations represented in the samples play a

Figure 1 Principal component analysis in 2D of the MESA AIMs. The Hispanic-American group seems to be more heterogeneous than the
remaining groups with fairly large number of self-identified Hispanics being assigned to the same cluster as the self-identified European-Americans.

Table 1 Agreement between self-reported ethnicity and
the 4 observed clusters

Self-reported Ethnicity Assigned Ethnic group Total

AA CA EA HA

African American 637 0 8 67 712

Chinese American 0 717 1 0 718

European American 1 0 630 81 712

Hispanic American 69 3 135 498 705

Total 707 720 774 646 2847
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more important role on the performance of SRE as a
control than the actual ancestry proportions. Different
linkage disequilibrium may also affect the performance of
SRE and GMBAs in general, but that is a separate issue.

Distribution of body surface adjusted (BSA) LV mass and
the LV ejection fraction
The summary statistics for the distribution of BSA LV
mass and the LV ejection fraction by self-reported eth-
nicity is given in Table 2. The p-value of the Wald 3
degrees of freedom test for equality of the mean LV
mass in all 4 groups is 7 × 10-14, which shows strong
evidence that the mean LV mass is different between
the 4 self reported ethnic groups. The association of
SRE with the distribution of the LV ejection fraction is
more pronounced compared to what is observed with
adjusted LV mass. Although the observed mean and
standard deviation of the LV ejection fraction in each
ethnicity appear to be very close, its overall distribution
varies in the 4 ethnic groups. The Kruskal-Wallis test
comparing this distribution in the 4 ethnic groups has a
p-value of 2 × 10-24, which strongly suggests that the
distributions are different in the 4 self-reported ethnic
groups. These two results confirm the presence of the

previously identified ethnic specific differences in the
distribution of both BSA adjusted LV mass and the LV
ejection fraction. We also note that after standardizing
both phenotypic variables, SRE explains only 3% of the
variation explained in LV mass while it explains 19.5%
of the variations in LV ejection fraction. Therefore, it is
expected that variations in ethnicity will play a more
important role in determining the level of LV ejection
fraction compared to adjusted LV mass.

Figure 2 Comparison between self-reported ancestry and structured estimated ancestry proportion. Ideally without admixture, each
group would be represented by just one bar. That is if the vector Q = (q1,q2,q3,q4) represents the ancestry score for each individual in the
dataset, Q should have 3 of its components equal to 0 and one component equal to 1. As can be seen from this figure, this is not the case.
Self-reported ancestry is again less reliable for the Hispanic-American population since its graph seems to be the farthest away from the ideal
situation.

Table 2 Distribution of adjusted LVH and adjusted
ejection fraction by self-reported ethnicity

Self-reported
Ethnicity

BSA adjusted LV mass LV ejection fraction

AA CA EA HA AA CA EA HA

N 498 591 544 519 498 591 544 519

Mean 79.9 73.8 75.8 80.7 68.4 72.3 68.5 68.7

Standard deviation 17.0 13.6 15.5 17.6 7.6 6.1 7.4 7.5

Minimum 37.4 42.2 40.4 34.6 40.6 45.3 22.2 28.1

Q1 68.3 64.7 64.9 68.5 63.5 68.4 64.2 64.4

Median 77.9 72.1 73.8 78.0 69.0 72.9 68.6 69.9

Q3 89.7 81.5 85.6 89.6 73.6 76.3 73.6 73.9

Maximum 146.6 180.4 163.6 153.1 88.1 81.6 86.6 84.4
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Association between the AIMs and body surface adjusted
LV mass and LV ejection fraction
It is known that population stratification can lead to
confounding issues in genetic association studies [26].
To assess the magnitude of this confounding effect in
the MESA study, we tested each SNP for association
with LV mass and the LV ejection fraction accounting
for SRE, IAP and GBS respectively. We observed better
agreement between the p-values obtained with GBMAs
than we did between either one of them with SRE. For
example, the Spearman correlation coefficient between
the p-values observed with the three pairs of control
variables (SRE, IAP), (SRE, GBS) and (IAP, GBS) are
respectively 0.85, 0.89 and 0.98. This result suggests that
SRE is performing as well as the IAP and GBS although
the p-values observed when controlling for the GBMAs
are closer to each other, which is to be expected. The
type I error rate observed with the resampling proce-
dure are shown in Table 3 for LV mass and Table 4 for
the LV ejection fraction. These tables show that SRE, at
least in the context of the MESA, offers the same level
of protection against type I error due to population and/
or admixture than the GBMAs. Moreover, the

association tests, for which SRE was used as a control
variable, seemed to be a bit conservative. It is worth
noting that when confounding due to population strati-
fication is ignored, the type I error inflation that ensued
is respectively 6 times the nominal rate for BSA adjusted
LV mass and 14 times this rate for the LV ejection frac-
tion (result not shown).
As mentioned above, the second set of simulation stu-

dies was designed to better understand when SRE might
perform well as a control variable in genetic association
tests.
These simulations showed that when the confounder

is univariate - that is, when there are exactly 2 ancestral
populations, some type I error inflation may still occur
when SRE is used as a control variable. We observed
this inflation even in the absence of misclassification
error. If there is a discontinuity point, as would most
likely be the case when a sample of African Americans
and European Americans is collected, the bigger the gap
in the observed ancestry proportion the smaller the type
I error inflation. Therefore, it is safe to conclude that
the inflation rate depends on the composition of the
sample. For example, when the study sample is com-
prised of admixed individuals derived from intermating
between exactly 2 ancestral populations, the type I error
inflation can be very small when the study sample is
composed of individuals whose ancestry proportions are
near the extreme values (near 0 or 1). This type I error
inflation becomes substantial when the sample is com-
posed of individuals whose ancestry proportion is near
50%. Figure 3 shows the observed type I error for differ-
ent gap values assuming that the marker has an effect size
of 0.5 (Figure 3a) and l standard deviation (Figure 3b).
Self-reported ethnicity does not always correspond to true
ethnicity. Some misclassifications or discrepancies
between self-reported ethnicity and true ethnicity are
likely to occur. The amount of type I error inflation that
occurs when ethnicity is reported with error is an increas-
ing function of the misclassification rate. The effect of var-
ious misclassification rates is displayed in Table 5 for gap
values varying from 0.05 to 0.5 by 0.15 and misclassifica-
tion rate varying from 0.05 to 0.15 by 0.025. Three obser-
vations can be made from this table: (1) as noted above,
controlling for true ethnicity even if it were known can
still lead to type I error inflation depending on the distri-
bution of individual admixture in the sample, (2) the
higher the misclassification rate, the higher the type I
error inflation rate, and (3) the effect of misclassification
error on type I error inflation is not uniform; the bigger
the gap in the observed distribution of admixture, the
more negative its effect will be on the type I error
inflation.
The type I error rates observed for simulation 3 are

displayed in Figure 4. SRE performed as well as the

Table 3 Type I error associated with the test for
association between LV mass and the 96 AIMs

Control variable Average
Type I
error

Standard
error

Observed
minimum

Type I error

Observed
Maximum
Type I error

Individual
admixture
estimates

0.033 0.006 0.0105 0.042

Principal
components

0.048 0.0074 0.021 0.052

Self-reported
Ethnicity

0.037 0.006 0.021 0.052

Ignoring
confounding

0.320 0.022 0.221 0.357

Table 4 Type I error associated with the test for
association between LV ejection fraction and the 96 AIMs

Control variable Average
Type I
error

Standard
error

Observed
minimum

Type I error

Observed
maximum
Type I error

Individual
admixture
estimates

0.038 0.0058 0.021 0.042

Principal
components

0.048 0.007 0.021 0.052

Self-reported
Ethnicity

0.042 0.004 0.031 0.053

Ignoring
confounding

0.705 0.009 0.694 0.737

Note that when the confounding effect is ignored the type I error is about 14
times the nominal rate. However, controlling for Self-reported ethnicity alone
in this case is sufficient to keep the type I error rate at its nominal value.
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GBMAs in the multi-ethnic sample. Contrary to the uni-
variate case, where the distribution of the ancestry pro-
portions represented in the sample appeared to affect
the performance of SRE, these proportions seem to mat-
ter less in a multi-ethnic sample. In fact, SRE performed
as well in all 4 cases described in simulation 2 although
the ancestry proportions are quite different in each sce-
nario. However, misclassification errors remain a signifi-
cant determinant of the level of type I error control that
is achieved.
We ran additional simulations studies in order to bet-

ter understand the effect of misclassification errors on
the type I error rate. We considered two scenarios that
are described in Figure 5. Figure 6 displays the type I
error rate observed when the admixed sample has 3
ancestral populations. Figure 6a shows that when there
is misclassification, as would be the case under the sce-
nario illustrated in Figure 5a, SRE would not perform as
well as the GBMAs. When the ambiguous situation is
removed such that there are no misclassification errors
(Figure 5b), controlling for SRE leads to type I error
rates that are in accordance with the nominal level (Fig-
ure 6b). This result seems to suggest that for multi-eth-
nic samples, misclassification errors have a more
significant effect on the performance of SRE as a control
variable than the actual ancestry proportion values
themselves. We also noted that the type I error rate
associated with the (2, 1) effect size is about 3 times
higher than the rate observed with (1, 2). As explained
in the methods section, these vectors represent the
effect sizes associated with the first 2 components of the
ancestry proportion vector that we used to simulate the

trait. Based on the symmetry observed on all 4 valid
regions identified in figure 5a, one would expect the
same amount of type I error inflation for the 2 sets of
effect sizes. However, the distribution of allele frequen-
cies in the 3 ancestral populations appears to also affect
the degree of confounding that occurs, such that the
type I error inflation due to misclassification errors is
worst for some cases than it is for others. For example,
when we changed the allele frequency of marker G2 from
(0.2, 0.4, 0.6) to (0.4, 0.2, 0.6) to make it independent but
identically distributed with G1 then the observed type I
error rate dropped from 0.165 to 0.07. We repeated the
same experiment by keeping the frequency of G1 fixed
and changing the frequency of G2 to (0.1, 0.3, 0.5). The
observed type I error was 0.18; as demonstrated above,
by changing the order of the first 2 components of the
allele frequency vector, this type I error is reduced to
0.065. The type I error associated with the scenario
described in figure 5b remained around the preset
threshold of 0.05 independently of the choice of allele
frequencies in the 3 ancestral populations.
We also considered the effect of misclassification error

between self-reported ethnicity and true ethnicity when
the study sample is made of 4 ancestral groups according
to their representation in the MESA sample. We looked
at the effect of discrepancy between true and self-
reported in each ethnic group separately. We observed a
small, almost negligible, type I error inflation when a
misclassification rate varying between 5% and 15%
occurred in exactly one ethnic group for individuals
whose self-reported ethnicity is simulated to be
European-Americans, African-Americans or Hispanic-
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Figure 3 Empirical type I error observed when self-reported ethnicity (assuming no misclassification error) and individual ancestry
proportion are respectively used as control variables in the association test. Figure 3a shows the effect of the gap in the distribution of individual
admixture on type I error rate when controlling for admixture and ethnicity when the effect size is equal to 0.5. One can observe on figure 3a that there
is a slight type I error inflation even when true ethnicity is used instead of the true ancestry proportion. This inflation decreases as the gap in the
admixture distribution increases. The admixture distribution in this case is univariate as would be observed for an admixed population derived from
intermating between exactly 2 ancestral populations. Figure 3b shows higher type I error inflation rate when the effect size is equal to 1.
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Americans. However, significantly higher type I error
inflation follows when there are discrepancies between
SRE and true ancestry for individuals whose initial ances-
try was Asian. This result makes sense intuitively
because, as can be seen in Figure 1, the Chinese-Ameri-
can cluster is completely separated from the remaining

3 clusters. A misclassification error involving these indi-
viduals is more costly than a misclassification involving
the other 3 ethnic groups who all share, albeit at different
levels, the European ancestry component. Figure 7 shows
the type I error inflation associated with various misclas-
sification rates for each simulated ethnic group. When
misclassification occurs for all groups, the type I error
inflation can be as high as 11 times the expected level.
This type I inflation is again an increasing function of the
misclassification rate and seems to depend on the admix-
ture history of the individuals represented in the sample.

Discussion
We focused on the utility of self-reported ethnicity as a
control variable in genetic and epidemiologic studies.
We used data collected in the MESA for LVH traits,
specifically, LV mass and ejection fraction, to illustrate
our points. LVH is one of the strongest determinants of
cardiovascular outcomes. Ethnic differences in the distri-
bution of both LV mass and the LV ejection fraction
have been reported in many studies, and we found sig-
nificant evidence of an ethnicity related effect on these
phenotypes in the MESA sample.
We observed a high degree of agreement between self-

reported ethnicity and two GBMAs computed using
genotyped ancestry informative markers. The self-
reported Hispanic-Americans were by far the most het-
erogeneous group represented in this dataset. This result
is not surprising given the current definition of the term
“Hispanic” which refers to a group of individuals who
are culturally and genetically quite diverse. It is now
well accepted that the ancestry distribution of self-
reported Hispanics reflects, at different degrees, the
genetic contribution of the three ancestral populations
Africans, Europeans and Native American [27].
Another factor that may explain the genetic heteroge-

neity detected among the self-reported Hispanics may be
the lack of individuals from the Native American ances-
tral groups represented in the sample. The initial panel of
ancestry informative markers used in the MESA study
was chosen based on their capacity to distinguish
between individuals of Chinese, African and European
ancestry. This panel might not be adequate to detect
subtle variation between individuals who self identified as
Hispanics. Following this analysis, a new panel of mar-
kers known to be particularly informative for Hispanics
was typed in an effort to better understand the observed
variation in the estimation of ancestry in this ethnic
group. However, judging by the observed type I error
rates, it appears that ancestry proportions estimated with
the current marker panel work well as control variables
in all the association tests that we have considered.
We could not directly evaluate the type I error on the

original sample since it is not known which markers are

Table 5 Observed type I error rates when controlling for
individual ancestry estimate, true ethnicity and self-
reported ethnicity assuming various misclassification
error rates when admixed population results from
intermating between exactly two ancestral populations

Gap Misclassification rate Ethnicity Admixture SRE

0.05 0.067 0.046 0.402

0.05 0.075 0.087 0.041 0.46

0.1 0.089 0.061 0.432

0.125 0.083 0.059 0.42

0.15 0.071 0.047 0.427

0.05 0.061 0.054 0.517

0.2 0.075 0.075 0.059 0.52

0.1 0.077 0.051 0.518

0.125 0.063 0.045 0.517

0.15 0.067 0.055 0.492

0.05 0.058 0.05 0.631

0.35 0.075 0.06 0.056 0.622

0.1 0.067 0.051 0.657

0.125 0.06 0.052 0.62

0.15 0.054 0.044 0.642

0.05 0.064 0.066 0.752

0.5 0.075 0.061 0.063 0.767

0.1 0.043 0.038 0.787

0.125 0.05 0.043 0.783

0.15 0.062 0.064 0.765

• Case 0: Proportions observed in the MESA data
• Case 1: Proportions close to an I4 identity matrix
• Case 2: Proportions close to 0.25 in each group
• Case 3: Proportions close to a diagonal matrix

(diag~0.55, off-diag~0.15)
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Figure 4 Observed type I error rate when the sample is multi-
ethnic. Controlling for self-reported ethnicity leads to the preset
significance level. It seems the value of ancestry proportions matters less.
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really under the null hypothesis in that sample. Neverthe-
less, self reported ethnicity appeared to be effective as a
control variable to protect against population stratification
and admixture as the genetic background scores and the
estimated individual ancestry proportions since we
observed significant agreement between the set of markers
that show significant p-values independently of the control
variable selected for the analysis. The plasmode analysis

showed similar results. The type I error was kept at its
appropriate level independent of the choice of controls
variables, and did show significant inflation when none of
them is included in the model. We should note that we
did observe a stronger correlation between the p-values
obtained when the control variable was estimated using
the AIMS than the p-values observed between either of
the genetic based measures and SRE. The simulation study
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Figure 6 Observed type I error rate when there is misclassification error between SRE and admixture. We observed significant type I error
inflation in figure 6a that is due to the possibility for misclassification error described in figure 5a. Once we the ambiguity is removed (figure 5b) and
there is no possible misclassification errors, we see that observed type error rate is maintained at the preset significance level. The distribution of allele
frequencies in the 3 ancestral populations appears to also affect the degree of confounding that occurs, such that the type I error inflation due to
misclassification errors is worst for some cases than it is for others. For example, when we changed the allele frequency of marker G2 from (0.2, 0.4, 0.6)
to (0.4, 0.2, 0.6) to make it independent but identically distributed with G1 then the observed type I error rate dropped from 0.165 to 0.07. We repeated
the same experiment by keeping the frequency of G1 fixed and changing the frequency of G2 to (0.1, 0.3, 0.5). The observed type I error is now 0.18, and
again by changing the order of the first 2 components of the allele frequency vector, this type I error is reduced to 0.065. The type I error associated
with the scenario described in figure 5b remain around the preset threshold of 0.05 independently of the choice of allele frequencies in the 3 ancestral
populations.

5a 5b 

 

Figure 5 Boundaries for simulated ancestry proportions when there are 3 ancestral populations. Figure 5a shows 4 valid regions, and if
one decides to assign ethnicity according to the maximum value of the vector (adx1, adx2, adx3), it is not exactly clear what the correct
ethnicity assignment should be for the individuals whose ancestry proportions fall in region IV. There is no such ambiguity in figure 5b.
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shows that, when the number of ancestral populations is
equal to 2, even controlling for an individual’s true ethni-
city might lead to significant type I error inflation depend-
ing on the composition of the study sample. We saw that
as the gap value was increasing, the performance of true
ethnicity was improving and even got very close to the
nominal level when the gap was equal to 0.5. However,
controlling for the genetic based measure of ancestry led
to the correct type I error rates independently of the value
of the gap. It is rarely the case that a study participant will
report their ethnicity without errors. Self reported ethni-
city errors may occur for various reasons, some people
may not be fully aware of their true ethnicity while others
may identify with one ethnic group despite their admixed
background. Therefore, the use of SRE as a control vari-
able when K = 2 is discouraged. Our analyses simply sug-
gest that there may be cases where SRE might provide
adequate type I error control in the presence of population
stratification. This MESA sample, given its composition,
seems to be one of these cases. SRE would not necessarily
perform as well in other cases. Investigators, in general,
will be best served by allocating part of the resources avail-
able for their study to genotype the appropriate set of
ancestry informative markers. However, SRE seems to be a
valuable alternative in multi-ethnic samples when the mis-
classification rate is likely to be small. This observation is
particularly true for smaller studies like candidate gene
and other replication studies where a relatively small num-
ber of markers are being considered. It is also not unex-
pected; for example, Walcholder et al. [28] used the law of
total probability and stratification to show that the bias
due to the confounding effect of admixture decreased with
the number of ancestral populations that intermated to
lead to the admixed population under consideration. They
showed using simulated data that the relative bias when

K = 3 was between 0.95 and 1.05. We have treated SRE
and genetic ancestry as confounders in association tests.
We should note that they could also act as effect modifiers
depending of the context. However, this distinction cannot
be done by a simple test statistic. More information about
the causal pathway is needed.

Methods
The MESA study was designed to investigate the deter-
minants and progression of subclinical cardiovascular
diseases in 4 ethnic groups enrolled from six geographic
regions in the United States [29]. Institutional Review
Boards at each of the six MESA centers where partici-
pants were seen for clinical exams reviewed and
approved the conduct of the MESA study including
genetics research. The sample of 6,814 individuals was
drawn such that it contains roughly equal proportions of
men and women, all of whom were free of clinically
recognized cardiovascular disease at enrollment. Race
was self-reported, about 23% of the subjects enrolled in
the study self-identified as AA, 11% as CA, 38% as EA
and 28% as HA. An intensive evaluation was conducted
at baseline, where information regarding height, weight,
waist circumference, smoking history, alcohol intake,
education level, physical activity, medication, hyperten-
sion, heart rate, diabetes, and cholesterol level were col-
lected, among other variables. Data on LV mass and LV
ejection fraction were obtained via magnetic resonance
imaging (MRI) from MESA participants who consented
to the cardiac MRI scan. The LV ejection fraction was
calculated by dividing the individual stroke volume by
the end-diastolic volume. LV mass was adjusted for body
surface area calculated using the formula provided by
Wang et al. [21,30]. As will be seen in the results section,
these two measures are differently distributed in the four

Figure 7 Effect of misclassification error in SRE in a multi-ethnic sample. Not all misclassification errors have the same cost. The SRE
Chinese American cluster is so well defined in the MESA data that misclassification errors involving them appear to be more costly in terms of
the type I error rate.
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ethnic groups. We will use these ethnic differences in our
simulations to create confounding situations that we will
seek to control for with three measures of individual
ancestry that we describe below.
As part of a MESA genotyping project, ninety-six AIMs

were initially genotyped on more than 2,848 participants.
These AIMs were selected from an Illumina proprietary
SNP database, and were selected to maximize the differ-
ence in allele frequencies between the following pairs of
ancestral populations: African vs. Chinese, African vs.
European and Chinese vs. European.
Utilizing a plasmode generation approach, we developed

a resampling procedure, which generates datasets where
the null hypothesis of no association holds between each
marker and the phenotypes of interest. A plasmode is
similar to a simulated dataset; however, a plasmode dataset
uses genotypic and phenotypic information observed in a
study to construct pseudo-phenotypes so that the ‘truth’ of
the data generating process is known [13,14]. In this case,
the relationship among the covariates remained intact
while adding the permutated residual to the outcome vari-
able ensured that all tests are conducted under the null
hypothesis of no association between the genetic marker
and the phenotype of interest. Therefore, we are sure that
any observed significant association constitutes a type I
error. Finally, we ran a series of simulation studies whose
objectives are to better understand our findings and to
determine whether they could be further generalized.
These simulations are described in the simulation section.
In the remainder of the next section, we discuss the

clustering method that was used to group MESA partici-
pants based on their observed genotypes, present the
statistical approach retained for testing for association
between each AIM and the 2 phenotypes of interest,
and described the simulation procedures in detail.

Classification scheme
We used the ‘cluster’ and ‘tree’ procedures in the SAS
software (version 9.1) to create 4 clusters based on the
principal components computed from the 96 AIMs. We
applied Ward’s minimum variance method and the
K-means clustering algorithms to identified clusters of
individuals who similar ancestry proportions. To assess
the agreement between self-reported ancestry and these
clusters, we used Cohen’s weighted kappa [31]. Bhapkar’s
test [32] was applied to test for marginal homogeneity,
and log-linear models to test for quasi-symmetry of the
data shown in Table 1. This is done to attest the degree,
direction and cause (chance or real) of agreement
between SRE and the 4 clustered created from the GBS.

Genetic association tests
We examined all the available AIMs for association with
both body surface-adjusted (BSA) LV mass, and LV

ejection fraction using 3 different control variables: SRE,
ancestry proportion estimates computed using STRUC-
TURE and genetic background measures computed
using principal component analysis. That is, we imple-
mented multivariate linear regression, including (1) SRE
as a categorical variable, (2) the proportion of African,
Chinese and European ancestry estimated using
STRUCTURE, or the first 4 principal components com-
puted using the AIMs data as covariates. We also
included gender, income, education level, smoking his-
tory, alcohol use, systolic blood pressure, diastolic blood
pressure, body mass index, and waist circumference as
covariates in each model. Both analyses are conducted
using generalized linear models. They also both
fall under the structured association test (SAT) frame-
work, which consists in testing for genetic association
controlling for a genetic based measure of ancestral
background [33]. The SAT approach is commonly used
to correct for population stratification and admixture in
genetic association tests. Recently published papers have
shown that SAT approaches may fail to provide nominal
type I errors for various reasons, including measurement
error in the estimation of the confounding effect [34,35]
and cases where the estimated confounder captures an
insufficient fraction of phenotypic variation [36]. How-
ever, we restricted our attention to older and better-
known SAT approaches [33,37-40]. As a preliminary
analysis, we tested the null hypothesis of no association
between the selected AIM and the phenotype of interest
adjusting for the control variables mentioned above.
Unlike in simulation-based work (see next section) the
true association of the AIMs with LV mass is not
known, and type I error rates for these tests could not
be directly evaluated. However, marked differences
between the statistical significance observed with each
control variable may provide valuable insight regarding
their performance. We devised a resampling procedure
that guarantees that the methods are being compared
under the null hypothesis. Details about this simulation
procedure can be found in the next section. Finally, we
ran two completely in silico analyses, which are also
described in the next section, to mimic candidate gene
association tests controlling for both SRE and a genetic
based measure of ancestral background in order to gain
a better understanding of the results observed in the
initial test and the plasmode analysis.

Simulation studies
The first set of simulations is a resampling procedure that
guarantees that the control variables are being compared
under the null hypothesis of no association between each
marker and the phenotype of interest. The second set of
simulations seeks to expand upon the results observed
under the first set of simulations by identifying the
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conditions under which accounting for ethnicity (either
true or self-reported) is likely to provide appropriate type I
error control and evaluating the effect of misclassification
errors of SRE in genetic association studies.
Resampling procedure
Let N denote the number of subjects in the dataset. Let
a denote the nominal type 1 error rate. Let Y denote
the phenotype. Let K denote the number of AIMs. Let
X denote the genotype at the marker being considered.
Our resampling procedure is as follows:
Simulation 1
For iter = 1 to iterations {

For i = 1 to K {(for each marker)
Regress Y on X plus all relevant covariates except
the confounding variables. When the looping vari-
able i takes the value s (1≤=s≤K), X will correspond
to the sth marker. This regression is fitted using the
generalized linear model.
For j = 1 to N {(for each observation)

compute ˆ ˆe Y Yj j j= − , where Ŷ j is the predicted

value for the jth person.
}

Sort the ê j ’s

Compute a new pseudo-phenotype Y Y ej j j= + [ ]
ˆ ˆ ,

where [j] denotes the new order after sorting the
residuals.
For m = 1 to K {(for each marker)

If (m ≠ i) {
Regress Y on X plus the same relevant cov-

ariates and each confounding variable.
Compute the Wald test p-value for the
regression coefficient of X. Denote the result-
ing p-value as pm.
}

}

Compute T
K

I pi
iter

m

m i

K

≡
−

<
≠

∑1
1

( ) .

}

Compute T
K

Titer i
iter

i

K
≡

=
∑1

1

Titer is then an estimate of the type I error rate for the
current iteration. Results for 10,000 iterations are sum-
marized in Table 3 for LV mass and Table 4 for LV
ejection fraction.

Description of the second set of simulation procedures
As can be seen in Tables 3 and 4, SRE appears to per-
form as well as the other GBMAs. The second set of

simulations is designed to further elucidate why SRE,
despite its much-publicized shortcomings of not being
able to adequately control for confounding due to popu-
lation stratification and admixture, seems to provide the
correct type I error rate in this dataset.
First, we considered the case where the confounder is

univariate. This could arise when the study sample com-
prised admixed individuals born from intermating
between exactly two ancestral populations. We evaluated
how the performance of SRE as a control variable
depends on the distribution of ancestry proportions in
the sample. Specifically, we wanted to see how the con-
tinuity and the size of the gap in a discontinuous ances-
try proportion distribution would affect the performance
of SRE. Note that a continuous distribution would have
a gap of zero. The gap for a discontinuous distribution
is defined as the range of the discontinuity region. For
example, admixture is an ongoing process. A sample of
admixed individuals can comprise individuals who are at
different stage of the admixture process. Therefore, it is
possible to recruit a sample that can be divided into 2
subsets of individuals: one with very high level of
European ancestry and the other with very low level
European ancestry. If the minimum European ancestry
in the first subset is 0.8 and the maximum European
ancestry in the second subset is 0.2 then gap value
would simply be (0.8-0.2) = 0.6. We also looked at the
effect of various misclassification rates in these associa-
tion tests.
Simulation 2 (univariate ancestry proportion distribution
(K = 2))
Let N = 2000 be the total number of individuals
For gap = 0.05 to 0.5 by 0.05{

Draw individual ancestry proportion x from

1
2

0 1
2

1 1U f U f, ,( ) + −( ) , where f gap= −( )1
2

1

Set true ethnicity to 1 if x Î[0,f] and 2 otherwise.
Let m represent the misclassification rate.
For m = 0.025 to 0.15 by 0.025{

Draw the random variable s from a Bernoulli
(m).
If (s = 0) then SRE = true ethnicity
else change the true ethnicity so that a misclassi-
fication occurs.

}

Compute p xp x ps
adx

s N s= + −( )1 21 where ps1 and

ps2 represent the allele frequency of the sth marker
in each ancestral population respectively, 1N is vec-

tor of ones, and ps
adx denotes the vector of allele

frequencies in the admixed population for the sth

marker. We consider 2 markers G1 and G2. Draw G1
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from Binomial (2, padx
1 ) and G2 from Binomial (2,

padx
2 ). That is, we use the simulated ancestry pro-

portion and the allele frequencies in the 2 ancestral
populations to generate the genotypic probability for
each individual under Hardy Weinberg equilibrium.
Note that G1 and G2 are independent conditional on
the individual ancestry. We will use G1 to generate
the trait and G2 to test for genetic association.
Compute y = a0 + a1G1 + e where e ~ N (0, s2).
## Note that we set a1 and s such that the effect
size is equal to 0.5 in Figure 3a and 1 in Figure 3b.
## Note that conditional on the individual ancestry,
the random variable Y is also independent of G2.
Fit the following 3 linear regressions:
1. y = b0 + b1x + b1G2 + e
2. y = b0 + b1ethn + b2G2 + e
3. y = b0 + b1sre + b2G2 + e
Test whether b2 is statistically significant than 0 at
the 0.05 level in each case.
## A statistically significant association observed
between Y and G2 will constitute a type I error.

}
Repeat the experiment 10,000 times for each config-

uration of the gap value and the misclassification rate
and count the proportion of times that the parameter b2
is statistically significant for each control variable. These
proportions for the ancestry proportion and SRE regres-
sions are shown in Figure 3. However, we do show the
effect of various misclassification rates for 3 gap values
(0.05, 0.3 and 0.5) in Table 5.
2))",1,0,2,0,0pc,0pc,0pc,0pc>Simulation 3 (multivariate
ancestry proportion distribution (K > 2))
We wanted to determine how SRE, when used as a con-
trol variable against population stratification, would per-
form in a multivariate setting. That is, when the number
of number of ancestral populations is greater than 2.
This simulation procedure resembles the previous one,
except that the individual ancestry proportions are
drawn from a Dirichlet distribution. We used a different
set of parameters for each ethnic group in order to cre-
ate the conditions needed for confounding to occur.
The parameter used to generate the Dirichlet distribu-
tion can be represented by a 4 × 4 matrix, where the
rows represent the expected individual ancestry propor-
tions in each ethnic group, and for a fixed row, the col-
umns represents the expected individual ancestry
proportion from each ancestral population.
1) Let N = 2000 individuals divided equally into 4 sub-

sets such that nk = 500 for k = 1,2,3,4 is the sample size
in each ethnic group.
2) Let the SRE for an individual in the kth subgroup be k.

3) We considered 4 cases; the parameters used for the
Dirichlet distribution in each case are chosen as follows:
(a) Proportions that are very close to ancestry propor-

tion estimates obtained with STRUCTURE in the MESA
sample;
(b) Values near a 4 × 4 identity matrix with diagonal

elements equal to 0.97 and off diagonal elements equal
to 0.01;
(c) Values very close to what would be observed in

equally admixed individuals, that is all proportions are
set 0.25;
(d) Different ancestry proportions where the contribu-

tion of one specific ancestral population is clearly
greater in each admixed population. That is the diagonal
elements are set to 0.55 and off diagonal elements at
0.15 and made sure that the row and column sums are
equal to 1.
4) Let P1 = (0.1, 0.5, 0.3, 0.9) and P2 = (0.05, 0.25, 0.50,

0.75) be the frequency of the reference allele of the markers
G1 and G2 respectively in each ancestral population. These
frequencies were chosen arbitrarily with the only constraint
being that they vary greatly between the 4 ancestral popu-
lations. Confounding will occur if the distribution of the
trait is also different in the 4 ancestral populations.
5) The allele frequencies of G1 and G2 in the admixed

population ( padx
1 , padx

2 ) are computed as the weighted

averages of the allele frequencies given in (4), where the
weights are the simulated ancestry proportions drawn
for the Dirichlet distribution.
6) Draw G1 and G2 according to these averages.
7) The outcome variable Y is simulated from a normal

distribution where the parameters are based on the dis-
tribution of the LV ejection fraction observed each eth-
nic group observed in the MESA study. That is, we used
the mean in each group as the intercept in the model
described in the next step. We then compute the pooled

variance and set   


1 2 3 2
= = = such that each

component has an effect size of 0.5, where s2 represents
the pooled variance.
8) The remaining steps are similar to those taken in simu-

lation 2. That is, we fitted the following linear regressions:

1. y = b0 + b1x1 + b2x2 + b3x3 + b4G2 + e. The vari-
ables x1, x2 and x3 are the first 3 components of the
individual ancestry proportion vector drawn from
the Dirichlet distribution.
2. y = a0 + a1SRE + a2G2 + e. The variable SRE has
4 levels, which are defined in step 2. Therefore, a1 is
a vector with 4 components.

We then tested whether b4 and a2 are statistically differ-
ent than 0 at the 0.05 level in each model, and repeated

Divers et al. BMC Genetics 2011, 12:28
http://www.biomedcentral.com/1471-2156/12/28

Page 12 of 14



each experiment 10,000 times. The results of this simula-
tion procedure can be seen in Figure 4. As can be seen in
this figure, when the sample contained admixed indivi-
duals with more than 2 ancestral populations, SRE per-
formed rather well as a control variable. This suggests that
it is not the variations in the ancestry proportions them-
selves that cause the type I error inflation.
To better understand when the use of SRE as a control

variable may fail, we devised a situation where it may be
unclear which ethnicity to assign to individuals whose
ancestry proportions take specific values. To facilitate the
graphical representation of each scenario, we focused on
the case where there are exactly 3 ancestral populations.
In this case, an individual’s ancestry proportion can be
represented by a vector with 3 components, adx1, adx2

and adx3 such that adxi
i

=
=
∑ 1

1

3
. Therefore, without loss

of generality, we can restrict our attention to a bivariate
distribution by focusing only on the first two components
of this vector. As can be seen in Figure 5, the choice of
gap values on both the x-axis and y-axis and in addition
to the constraint that adx1 + adx2 ≤ 1, define 3 or 4 spe-
cific regions. Figure 5a shows 4 valid regions, and if one
decides to assign ethnicity according to the maximum
value of the vector (adx1, adx2, adx3), it is not exactly
clear what the correct ethnicity assignment should be for
the individuals whose ancestry proportions fall in region
IV. There is no such ambiguity in Figure 5b.
The simulation steps are similar to those described

in simulation 2, except that there are now two gap
values: one for adx1 and one for adx2. The ancestry
proportions are each drawn independently from a uni-
form distribution, which has been rescaled such that
the proportions add up to 1. We then excluded the
ancestry proportions that fell in the regions defined by
the gaps. In Figure 5a, we excluded values of adx1 and
adx2 that fall between 0.1 and 0.3. The range of
excluded values went from 0.1 to 0.5 in 5b. As in all
previous cases, we considered 2 markers G1 and G2.
We used G1 to simulate the trait, and G2 to test for
association with the simulated trait. All significant
association is seen as type I error. We use the vector
(0.4, 0.2, 0.6) as the allele frequency in the 3 ancestral
populations for G1 and (0.2, 0.4, 0.6) for G2. We also
considered various effect sizes for evaluating the con-
tribution of admixture in the confounding pathway.
We also changed the allele frequencies vector to
account for the fact that k, the number of ancestral
populations, is now 3 instead of 4. The remaining
simulation steps are again similar to those described in
simulation 3. The results of this simulation analysis
can be seen on Figure 6, where the vector (a,b) repre-
sents the coefficient associated with the variables adx1
and adx2 in the model. The error term in all models is

drawn from a normal distribution with 0 and variance
1 such that the effect size associated with adx1 and
adx2 are equal to a and b respectively.
Simulation 4 (effect of misclassification error on SRE when
K = 4)
As can be seen in Figure 7 when the number of ances-
tral population is greater than 2, it is misclassification
errors, as opposed to the actual distribution of the
ancestry proportions that dictate the performance of
SRE as a control variable. We ran a final simulation
study to evaluate the effect of misclassification errors on
a multi-ethnic sample like the MESA. The simulations
steps are very similar to those taken in simulation 3.
1) Let nk = 500 for k = 1,2,3,4 be the sample size in

each ethnic group.
2) Let the true ethnicity of any individual in the kth

subgroup be k.
3) Draw xk from Dir(ak) where ak is based on the

ancestry proportions observed in the MESA study.
These proportions are displayed in Figure 2.
That is, (0.09, 0.02, 0.84, 0.05) for the African-

Americans, (0.89, 0.02, 0.02, 0.07) for the European-
Americans, (0.24, 0.05, 0.14, 0.57) for the
Hispanic-Americans and (0.01, 0.97, 0.01, 0.01) for
the Chinese-Americans.
To evaluate the effect of misclassification errors on

the performance of SRE as a control variable, the true
ethnicity of a fraction m of individuals in each subgroup
is changed to create misclassification in the SRE vari-
able. This fraction is assigned to one of the 3 remaining
subgroups uniformly. This is done for each subgroup
separately.
4) We let m vary from 0.05 to 0.15 by 0.025.
5) The remaining simulations steps are similar to

those taken in simulation 3, and are not repeated here.
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