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Abstract: Adenosine is a cellular metabolite with diverse derivatives that possesses a wide range
of physiological roles. We investigated the molecular mechanisms of adenosine and cordycepin for
their promoting effects in wound-healing process. The mitochondrial energy metabolism and cell
proliferation markers, cAMP responsive element binding protein 1 (CREB1) and Ki67, were enhanced
by adenosine and cordycepin in cultured dermal fibroblasts. Adenosine and cordycepin stimulated
adenosine receptor signaling via elevated cAMP. The phosphorylation of mitogen-activated protein
kinase kinase (MEK) 1/2, mammalian target of rapamycin (mTOR) and glycogen synthase kinase
3 beta (Gsk3b) and Wnt target genes such as bone morphogenetic protein (BMP) 2/4 and lymphoid
enhancer binding factor (Lef) 1 were activated. The enhanced gene expression by adenosine and
cordycepin was abrogated by adenosine A2A and A2B receptor inhibitors, ZM241385 and PSH603, and
protein kinase A (PKA) inhibitor H89, indicating the involvement of adenosine receptor A2A, A2B and
PKA. As a result of Wnt/β-catenin pathway activation, the secretion of growth factors such as insulin-
like growth factor (IGF)-1 and transforming growth factor beta (TGFβ) 3 was increased, previously
reported to facilitate the wound healing process. In addition, in vitro fibroblast migration was also
increased, demonstrating their possible roles in facilitating the wound healing process. In conclusion,
our data strongly demonstrate that adenosine and cordycepin stimulate the Wnt/β-catenin signaling
through the activation of adenosine receptor, possibly promoting the tissue remodeling process and
suggest their therapeutic potential for treating skin wounds.
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1. Introduction

Skin, the outermost organ of the body, not only protects the host against the environ-
mental stresses such as toxins, UV lights, and microorganisms but also prevents dehydra-
tion of the organism. The wound injury causes loss of skin integrity and functions. The
restoration of tissue integrity and homeostasis is fundamental for the survival of organisms.
The repair of skin wounds is complex and dynamic processes involving diverse cellular
responses and surrounding micro-environmental interactions. This wound healing process
could be classified into three stages; homeostasis and inflammation, proliferation, and
remodeling [1]. During each stage, complex networks of multiple cytokines and mediators
facilitate cellular communication between fibroblast and other tissue components [2].

Adenosine, a ubiquitous purine nucleoside produced by dephosphorylation of AMP,
has essential roles in modulating tissue homeostasis [3]. Especially, extracellular accu-
mulation of adenosine in response to metabolic stress and/or cell damage [4] has been
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implicated in tissue protection and repair; increasing oxygen/energy supply, countering
inflammation, and enhancing angiogenesis [5,6]. The extracellular adenosine directly
activates four subtypes of adenosine receptor, A1, A2A, A2B, and A3 [7].

The activation of adenosine receptor plays regulatory roles throughout the body, in
virtually all organ systems. In the central nervous system, adenosine modulates neurotrans-
mitter release, synaptic plasticity, and neuroprotection [8,9]. In the cardiovascular system,
vasoconstriction and vasodilation are also affected by adenosine receptor activation [10,11].
In the skin, extracellular adenosine is correlated with the promotion of wound healing
process. In a mouse model, the activation of adenosine A2A receptor accelerated the wound
healing process by stimulating angiogenesis [12] and by affecting fibroblast and epithelial
cells [13,14].

Cordyceps militaris, a medicinal mushroom, is widely used as a traditional herbal
medicine in East Asia. The main active constituent of C. militaris fruiting bodies is cordy-
cepin, which was firstly extracted from C. militaris [15]. Cordycepin (3′-deoxyadenosine) is
a natural derivative of adenosine and was reported to possess diverse pharmacological
activities, including anti-oxidation [16], anti-inflammation [17,18], and neuroprotection [19].
In addition, cordycepin prevented cell senescence and senescence-associated secretory
phenotype in vitro through modulating the AMPK activity [20].

Because of the structural similarity with adenosine, cordycepin likely behaves as
an agonist or an antagonist for target pathways of adenosine, especially for adenosine
receptors. Cordycepin was reported to activate adenosine A2A receptor for spontaneous
alteration behavior in hippocampus [21] and induce apoptosis by activating adenosine A3
receptor in bladder cancer cells [22]. However, studies on the specificity, selectivity, and
sensitivity of cordycepin for adenosine receptor subtypes in skin cells such as fibroblasts
and keratinocytes are limited.

In this study, we investigated the effects of adenosine and its natural derivative,
cordycepin, in cultured human dermal fibroblasts. We examined the expression pattern of
adenosine receptor subtypes in fibroblasts and their activation by adenosine and cordycepin
treatment. The treatment of adenosine and cordycepin increased the mRNA expression
levels of CREB1 and Myc and induced elevation of intracellular cAMP concentration. In
addition, mitochondrial energy metabolism was markedly enhanced. As a consequence of
adenosine receptor activation by adenosine and cordycepin treatment, the Wnt/β-catenin
pathway was found to be stimulated in WRHEK293A reporter cell line and the mRNA
expression of Wnt target genes such as BMP2/4 and LEF1 was increased in cultured fibrob-
lasts. We have also found that the phosphorylation of cell signal transduction elements
such as mTOR and Gsk3b were increased by adenosine and cordycepin stimulation. Fur-
thermore, both adenosine and cordycepin enhanced the cell migration rate of fibroblast
cells in cell scratch assays and stimulated the secretion of growth factors, such as IGF-1 and
TGFβ3, reported to be important in the wound healing process. Our data demonstrate that
adenosine and cordycepin stimulate Wnt/β-catenin pathway through adenosine receptor
activation, potentially promoting the tissue remodeling process in wound recovery and
suggest that GSK3b plays a crucial role in interconnecting the adenosine receptor and Wnt
signaling pathways.

2. Results
2.1. Adenosine Receptor A2B Is a Dominant Subtype in Human Dermal Fibroblasts

The cordycepin and 5′-N-Ethylcarboxamidoadenosine (NECA) are derivatives of
adenosine, a key nucleoside modulating the diverse physiological processes (Figure 1a).
Adenosine exerts its biological effects through four G protein-coupled adenosine receptor
subtypes, A1, A2A, A2B, and A3 [23]. The selectivity of adenosine and NECA to each
adenosine receptors was previously reported [7,24]. Before investigating the effects of
adenosine and its derivatives on fibroblast, we analyzed the mRNA expression levels of
adenosine receptor subtypes, ADORA1, ADORA2A, ADORA2B, and ADORA3 in cultured
human dermal fibroblasts. It was revealed that the adenosine receptor A2B showed the
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highest expression level among subtypes, approximately 13-fold higher than ADORA1A
and ADORA2A. On the contrary, the mRNA expression of the A3 subtype was not detected
in cultured human fibroblast (Figure 1b). Therefore, it could be presumed that most
of the physiological responses triggered by adenosine and its derivatives in cultured
human dermal fibroblasts are mediated through the activation of the adenosine receptor
A2B subtype.

Figure 1. Chemical structures of adenosine, cordycepin, and NECA and the mRNA expression profile of adenosine receptor
subtypes. (a) Chemical structures. (b) The expression of four adenosine receptor subtypes, A1 (ADORA1), A2A (ADORA2A),
A2B (ADORA2B), and A3 (ADORA3) was examined using quantitative RT-PCR analysis in cultured human dermal fibroblast.
Ct values for each receptor subtype were indicated.

2.2. Changes in mRNA Expression Profiles by Adenosine, Cordycepin, NECA, and Wnt3a in
Cultured Human Dermal Fibroblasts

The fibroblast plays a crucial role in the wound healing process [25] and this process
is strongly connected with cell development, cell cycle, and growth factor stimulation [26].
Fibroblast cells were treated with adenosine and its derivatives and the mRNA expression
levels of 132 genes with diverse functional categories were measured. Recombinant Wnt3a
was used as a positive control for Wnt/β-catenin signal activation (Figure 2a). Sixteen
genes showed up more than a two-fold increase with statistical significance (p < 0.05)
and were selected for further investigation, namely protein clustering analysis [27] and
pathway estimation following GO and KEGG analysis (Figure 2b). As a result, adenosine
and cordycepin were found to activate the pathways related to cellular metabolism and
developmental processes (Table 1). Among those processes, Hippo and Wnt signaling
pathways were highly predicted to be regulated by adenosine and its derivatives (Table 2).
These estimations, based on in-silico modeling, were highly matched with the activation of
Wnt signaling pathway by adenosine and cordycepin.
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Figure 2. The changes in mRNA expression profiles by adenosine analogues and recombinant wnt3a
in cultured human dermal fibroblasts. Cells were treated with adenosine, cordycepin, NECA, and
wnt3a for one day (early response) and two days (late response) and mRNA expression was examined
by RT-PCR. (a) Sixteen genes with more than a two-fold increase and statistical significance (p < 0.05)
was displayed, red and blue color mean increase and decrease in the mRNA expression, respectively,
(b) further investigated by protein cluster analysis.

Table 1. GO analysis for mRNA expression profile changes by adenosine analogues.

No. GO Pathway ID Pathway Description Gene Count p-Value

1 GO.0050678 Regulation of epithelial cell proliferation 15 5.09 × 10−18

2 GO.0051240 Positive regulation of multicellular organismal process 21 2.91 × 10−17

3 GO.0010604 Positive regulation of macromolecule metabolic process 24 3.60 × 10−16

4 GO.0010557 Positive regulation of macromolecule biosynthetic process 21 5.45 × 10−16

5 GO.0010628 Positive regulation of gene expression 21 9.98 × 10−16

6 GO.0048522 Positive regulation of cellular process 26 7.49 × 10−16

7 GO.0048468 Cell development 20 1.12 × 10−16

8 GO.0051094 Positive regulation of developmental process 18 1.28 × 10−14
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Table 2. KEGG analysis for mRNA expression profile changes by adenosine analogues.

No. KEGG Pathway ID Pathway Description Gene Count p-Value

1 4390 Hippo signaling pathway 16 3.40 × 10−26

2 4310 Wnt signaling pathway 11 3.34 × 10−16

3 4110 Cell cycle 9 6.62 × 10−13

4 4151 PI3K-Akt signaling pathway 11 3.93 × 10−12

5 4350 TGF-beta signaling pathway 7 1.02 × 10−10

2.3. Cordycepin as Well as Adenosine Activated Adenosine Receptor Signaling Pathway in
Cultured Human Dermal Fibroblasts

Activation of adenosine receptor induces diverse genes and pathways. We have
identified the adenosine receptor A2B subtype as a dominant in fibroblasts (Figure 1b), a
G-protein coupled receptor transducing signals in a cAMP dependent manner. The effects
of adenosine, cordycepin, and NECA on the intracellular cAMP level were investigated.
It was revealed that the cAMP level was increased by adenosine, NECA, and cordycepin
treatment within minutes (Figure 3a).

Figure 3. Cont.
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Figure 3. Adenosine and cordycepin activated adenosine receptor pathway in cultured human dermal fibroblast. Cells
were treated with adenosine, cordycepin, NECA, and CM extract. (a) After 4 h treatment, intracellular cAMP levels were
measured. NECA was used as a positive control for adenosine receptor activation. (b) Mitochondrial membrane potential
was measured after 4 h treatment with adenosine, cordycepin, and CM extract. (c) Representative photos of JC-1 staining.
JC-1 monomer form was seen as green and aggregate form as red by fluorescent microscopy. (d) The mRNA expression
levels of CREB1, GSK3B, MYC, Ki67, and CCND1 were measured after treatment with adenosine and cordycepin for one
day and two days. N.T, non-treated control; Significantly different compared with N.T (* p < 0.05, ** p < 0.01, *** p < 0.001).

One of the cAMP mediated pathways is energy metabolism [28]. The correlation
between cAMP level and enhancement of mitochondrial energy metabolism has been
well-established in previous reports [29–31]. Both adenosine and cordycepin enhanced the
mitochondrial membrane potential (∆Ψ) in cultured fibroblasts. We also have found that
the treatment of Cordyceps Militaris extract (CME) increased the mitochondrial membrane
potential in a concentration dependent manner (Figure 3b). CME was revealed to contain
adenosine and cordycepin as major constituents (Figure S1).

The effects of adenosine and cordycepin on genes associated with cAMP and cAMP
mediated pathways, such as CREB1 and Myc, were evaluated. The mRNA expression levels
of CREB1, Gsk3b, and Myc were increased by both adenosine and cordycepin treatment.
In addition, Ki67 and CCND1, the cell cycle progression markers, were increased in
concentration dependent manners, more prominent in two-day treatment (Figure 3d). Our
data demonstrate that both adenosine and cordycepin stimulate the adenosine receptor
pathway in fibroblasts, activating cAMP, cAMP responding genes, and mitochondrial
energy metabolism.

2.4. Adenosine, Cordycepin and NECA Stimulated Wnt Reporter Activity

The Wnt/β-catenin pathway is one of the critical signaling pathways for the tissue
regeneration process [32]. To figure out the possible involvement of adenosine (derivatives)
in the wound healing process, the effects of adenosine and its derivatives on the Wnt/β-
catenin pathway were investigated in a stable Wnt reporter cell line.

The treatment of adenosine increased luciferase activity in a concentration depen-
dent manner, indicating that adenosine acted as an agonist for Wnt signaling pathway.
NECA, one of the major adenosine receptor agonists, also increased the reporter activity.
Furthermore, cordycepin (3′-deoxyadenosine) stimulated Wnt/β-catenin signaling in a
concentration dependent manner (Figure 4). Accordingly, the stimulation of Wnt signaling
by CME treatment was likely caused by adenosine and cordycepin in CME (Figure 4). Our
data demonstrate that not only adenosine but also cordycepin and NECA, natural and
artificial derivatives of adenosine, stimulate the Wnt signaling pathway.
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Figure 4. Adenosine, cordycepin, and NECA stimulated Wnt reporter activity. The Wnt reporter WRHEK293A cells were
treated with adenosine, cordycepin, NECA, and CM extract and the luciferase activity was measured. N.T, non-treated
control; significantly different compared with N.T (* p < 0.05, ** p < 0.01, *** p < 0.001).

2.5. Adenosine and Cordycepin Activated Wnt/β-catenin Signaling Pathway in Cultured Human
Dermal Fibroblasts

As shown in Figure 2, the Wnt/β-catenin signaling related genes were activated by
adenosine and cordycepin. In this respect, the mRNA expression of the genes involved
in Wnt signaling pathway were further examined in fibroblasts treated with adenosine
and cordycepin for one and two days. As target genes of the Wnt signaling pathway, the
mRNA levels of BMP2 and BMP4 were elevated by both adenosine and cordycepin. The
expression of FZD3 and FZD5, the Wnt receptors, was also increased. The levels of Lef1
and CTNNB1, key transcription factors for the Wnt signaling pathway, were increased by
adenosine and cordycepin, more prominently when treated for two days (Figure 5). Our
data demonstrate that the activation of the adenosine receptor is closely associated with
Wnt/β-catenin signaling in cultured human dermal fibroblasts.

Figure 5. Adenosine and cordycepin activated Wnt/β-catenin signaling pathway in cultured human fibroblasts. The
expression levels of 6 Wnt/β-catenin pathway related genes (BMP2/4, FZD3/5, LEF1 and CTNNB1) were assessed in
fibroblasts treated with adenosine and cordycepin for one day and two days. Recombinant wnt3a was used as a positive
control. The data represent the means of six independent samples. N.T, non-treated control; significantly different compared
with N.T (* p < 0.05, ** p < 0.01, *** p < 0.001).
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To elucidate the underlying mechanism by which adenosine and cordycepin activate
the Wnt signaling pathway, the phosphorylation of MAP kinases was examined by dot
blot assay. It was found that the phosphorylation of MEK1/2, mTOR, and p70S6K was
significantly increased in adenosine and cordycepin treated groups (Figure 6a,b). In
particular, the phosphorylation of Ser9 site of GSK3b was markedly increased, implying
its possible role in Wnt signaling activation. The phosphorylation of Gsk3b on S9 site was
reported to inactivate the kinase activity, resulting in stimulation of the Wnt signaling
pathway. Therefore, we further confirmed the increased phosphorylation of Gsk3b on
Ser9 site by western blotting. We have found that adenosine and cordycepin significantly
increased the phosphorylation of Gsk3b S9 site in cultured fibroblasts, especially at early
time point of treatment (Figure 6c,d), suggesting that adenosine and cordycepin modulated
Gsk3b activity via phosphorylation.

Figure 6. Adenosine and cordycepin increased phosphorylation of Gsk3b on Ser9 in cultured human fibroblasts. (a,b) Cells
were treated with adenosine and cordycepin for one day. Whole cell lysates were analyzed by immunoblotting to determine
the phosphorylation levels of MAP kinases following manufacturer’s instruction. A total of 17 MAP kinases were analyzed.
Six kinases with significantly increased phosphorylation were displayed. (c) The levels of phospho-Gsk3b, Gsk3b were
further investigated by Western blotting after 4 h treatment with adenosine and cordycepin. (d) The ratio of p-Gsk3b/Gsk3b
was calculated. The data represent the means of six independent samples. N.T, non-treated control; significantly different
compared with N.T (* p < 0.05, ** p < 0.01, *** p < 0.001).

Our results demonstrate that adenosine and cordycepin activate both the adenosine
receptor and the Wnt/β-catenin signaling pathways in cultured human dermal fibroblasts.

2.6. PKA Mediated Gsk3b Inactivation Resulted in Wnt Activation

To investigate the more detailed correlation between the adenosine receptor and
the Wnt/β-catenin pathway, the cellular responses to adenosine and cordycepin were
examined with several inhibitors. PSH603 [24] and ZM241385 [33] were used for specific
inhibitors of the adenosine receptor A2B and A2A, respectively. The BMP4 and CREB1
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genes were activated by Wnt3a, adenosine, and cordycepin treatment in cultured fibroblasts
(Figures 3d and 5). The increased mRNA expression by adenosine and cordycepin treatment
was decreased in the presence of PSH603 or ZM241385. The treatment of adenosine receptor
inhibitors, however, did not downregulate the mRNA expression induced by recombinant
wnt3a treatment in cultured fibroblast (Figure 7a,b). In addition, H89, a PKA inhibitor,
reported to stimulate GSK3b activity [34], decreased the mRNA expression levels induced
by wnt3a, adenosine, and cordycepin (Figure 7). The results of the inhibitor study were
summarized in Table 3.

Figure 7. Activation of Wnt/β-catenin pathway by adenosine and cordycepin was abolished in the presence of adenosine
receptor antagonists and PKA inhibitor. The cells were treated with adenosine and cordycepin in the presence of various
inhibitors (ZM241385, PSB603 and H89) for 24 h, harvested, and the mRNA expression levels of BMP4 (a) and CREB1
(b) were measured by RT-PCR. The data represent the means of six independent samples. Significantly different compared
with each single adenosine, cordycepin and wnt3a treatment. (** p < 0.01, *** p < 0.001); Adenosine (3 mM); Cordycepin
(100 µM); Wnt3a (100 ng/mL); Z: ZM241385 (20 µM); P: PSB603 (10 µM); H: H89 (10 µM).

Table 3. Responses of the inhibitors to adenosine, cordycepin, and Wnt3a induction.

Inhibitor Name Target
Response to Ligands 1

Adenosine Cordycepin Wnt3a

ZM241385 A2A Receptor 4 O X
PSB603 A2B Receptor O O X

H89 PKA O O O
1 4: not certain; O: inhibited; X: not inhibited.

Our results strongly demonstrate that adenosine and cordycepin stimulate Wnt/β-
catenin pathway through the activation of the adenosine receptor and that the inhibitory
phosphorylation of Gsk3b by PKA plays a pivotal role in interconnecting the adenosine
receptor activation and Wnt signaling in cultured human dermal fibroblasts.

2.7. Adenosine and Cordycepin Promoted In Vitro Tissue Repair Process

The tissue repair process requires diverse growth factors for manipulating different
skin cell types. The changes in the secretion of growth factors by adenosine and cordycepin
were investigated in cultured fibroblasts to elucidate their putative roles in the wound
healing process. We have found that the mRNA levels of EGF, IGF-1, TGFB1/2, and
VEGFA were increased in concentration dependent manners (Figure 8a). The protein
levels of corresponding growth factors were also increased both in cell lysates and culture
media (Figure 8c). In particular, the secretion of TGFB3 was most significantly elevated.
Therefore, adenosine and cordycepin are expected to increase the supply of growth factors
in fibroblasts, critical for wound healing and the skin regeneration process [35].
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Figure 8. Cont.
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Figure 8. Adenosine and cordycepin increased the production of growth factors associated with the tissue repair process.
The mRNA and protein expression levels of growth factors were examined by RT-PCR and dot blot analysis, respectively.
(a) Human dermal fibroblast cells were treated with adenosine and cordycepin for one day and two days. Recombinant
wnt3a and vehicle medium served as positive and non-treated control, respectively. The mRNA expression levels of five
growth factor genes were measured. (b) The cells were treated with adenosine and cordycepin for 24 h, and then medium
was collected, assessed by dot blot analysis. Results of 15 growth factors were displayed. (c) The band intensities were
quantitated. Positive, biotin-conjugated IgG. The data represent the means of four independent samples. Significantly
different compared with N.T (* p < 0.05, ** p < 0.01, *** p < 0.001).

During the tissue repair process, the dynamics of wound-associated fibroblasts is
important for repopulating lost tissue and depositing new matrix, and also contribute to
wound closure through the fibroblasts’ contractility. The fibroblasts need to be migrated into
a newly formed wound bed [25]. To assess the capability of adenosine and cordycepin to
facilitate wound healing, monolayer cell scratch assays were performed. The cell migration
rates were found to be significantly increased by adenosine and cordycepin treatment
(Figure 9a). In addition, cellular β-tubulin and F-actin were visualized to examine the
rearrangement of cytoskeleton that indicate the dynamics of fibroblasts. We have found
that the F-actin was drastically increased by adenosine receptor agonists in fibroblasts
(Figure 9b), demonstrating that actin filament formation was accelerated by adenosine
and cordycepin. Taken together, our data suggest that adenosine and cordycepin could
possibly encourage the tissue remodeling process in human dermal fibroblast.
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Figure 9. Adenosine and cordycepin promote the in vitro tissue remodeling process and activation of the adenosine receptor
resulted in cytoskeletal rearrangement. In order to investigate the possible role of adenosine and cordycepin in the wound
healing process, the cell migration of fibroblasts was evaluated by cell scratch assay in the presence of adenosine, cordycepin,
and Wnt3a. (a) At day one and two, the cells were photo-documented. (b) The migration rates were analyzed. Wnt3a was
used as a positive control. (c) Rearrangement of cytoskeleton was visualized with β-tubulin (Red) and F-actin (Phalloidin,
Green). Nuclei were stained with DAPI (blue). NECA was used as a positive control for the adenosine receptor agonist. The
data represent the means of four independent samples. Significantly different compared with N.T (* p < 0.05, ** p < 0.01,
*** p < 0.001).

3. Discussion

In the present study, we have found that adenosine and cordycepin upregulated
the mRNA expression of genes associated with multicellular organismal process and cell
proliferation (Table 1), and enhanced cell metabolic processes with increased mitochondrial
membrane potential (∆Ψ) (Figure 3c,d). Tissue repair is a high energy consuming process.
In this context, the elevated energy metabolism through mitochondrial activation could
increase the energy supply needed for wound healing.

The Wnt/β-catenin signaling and Hippo signaling pathways are recognized as critical
for development of multi-cellular organisms and tissue regeneration in embryos and
adults [36]. In particular, the Wnt/β-catenin signaling pathway strongly contributes to
the regeneration of tissues and organs, repairing the internal and external damages in
adults [26]. In Figures 4, 5 and 7, the Wnt/β-catenin signaling pathway was stimulated by
adenosine and cordycepin treatment via adenosine receptor activation. Diverse phenotypes
have been reported as consequences of Wnt/β-catenin signal activation. For instances,
the activation of Wnt signaling induces mitochondrial activity in melanoma cells through
a PTEN dependent manner [37], contributes to secretion of various growth factors, and
encourages cell migration [38]. Our data coincide with previously reported articles in that
adenosine and cordycepin stimulated Wnt signaling through the activation of adenosine
receptor, increasing mitochondrial activity, growth factor secretion and cell migration in
cultured human dermal fibroblasts (Figures 3 and 8).
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We have found that the production and secretion of growth factors, such as EGF, IGF-1,
TGFβ1/2/3, PDGF and VEGF, were increased by adenosine and cordycepin treatment
(Figure 8). EGF and VEGF profoundly contribute to the tissue remodeling through modu-
lating the cell mobility [39]. IGF-1 and TGF β1/2/3 are also essential for the dynamics of
macrophage-fibroblast crosstalk in the tissue repair process [40]. In addition, the cooper-
ation between PDGF and IGF signaling synergistically promotes fibroblast proliferation
and facilitates wound healing without increased scarring [41]. As shown in Figure 8,
adenosine and cordycepin enhanced the production of PDGF and IGF. Our data suggest
that co-activation of these signaling pathways could help for the fine-tuning of fibroblasts
in the wound healing process.

The TGFβ signaling, when activated by Wnt/β-catenin signaling [42], plays a pivotal
role in tissue regeneration with or without scar [43]. In scarless fetal wound healing, the
level of TGFβ3 is critical [44]. The scar-free embryonic wounds showed a lower level
of TGFβ1 and a higher level of TGFβ3 compared with scar-forming, adult-like wounds
in rats [45]. Application of TGFβ3 also resulted in reduced scarring in a rodent wound
model [46]. Although some reports were suspicious about the anti-scarring effect of
TGFβ3 [47], TGFβ3 definitely affected wound tissue in reducing scar formation through
regulation of cell movement and inflammatory mediation [48]. In this study, the secre-
tion levels of TGFβ1 and TGFβ3 were increased by adenosine and cordycepin treatment
(Figure 8), showing more marked induction in TGFβ3. It has been reported that the ratio
of anti-fibrotic cytokine TGFβ3 to pro-fibrotic cytokine TGFβ1 was higher in fetal skin
compared to adult skin [43], which is thought to be one of the key features of scarless
wound healing in fetal skin. More precise studies concerning the effects of adenosine
and cordycepin on the expression of TGFβ1 and TGFβ3 are needed to elucidate whether
they are anti-fibrotic in the tissue remodeling process. Taken together, our data suggest a
therapeutic potential of adenosine and cordycepin for treating skin wounds, supplying
many growth factors such as TGFβs, VEGF, PDGF and IGF-1, possibly promoting scarless
skin repair.

Although we focused on dermal fibroblast cells in the present study, other cell types
including keratinocyte and endothelial cells play important roles in the wound healing
process and in particular, the Wnt/β-catenin signaling pathway also plays pivotal roles in
epidermal regeneration and angiogenesis. Apart from the direct effects of adenosine on
keratinocytes or endothelial cells which are unknown yet, several cytokines including EGF,
IGF-1, TGFB1/2, and VEGFA stimulated by adenosine might do exert paracrine effects on
these cells, for example, epidermal proliferation, wound reepithelization, and angiogenesis.
It is not clear, however, adenosine would exert similar effects in these cell types through
the same molecular mechanisms since we don’t have any evidences at this moment.

The adenosine A2A and A2B receptor signaling pathways were reported to be involved
in wound healing [49]. Our results demonstrate that the cellular signal triggered by the ac-
tivation of adenosine receptor stimulate the Wnt signaling. As shown in Figure 6, the MAP
kinases such as MEK1/2, mTOR and p70S6K were activated by adenosine and cordycepin.
In addition, the phosphorylation of Gsk3b, which causes the inactivation of Gsk3b, was
increased by adenosine receptor activation (Figure 6c). The phosphorylation of Gsk3b-S9
depends on PKA and PI3K/AKT/mTOR pathways [50] and the Gsk3b-S9 phosphorylation
inhibits Gsk3b activity, inhibiting the degradation of β-catenin and activating the Wnt
signaling [34]. In Figure 7, the mRNA expression levels of Wnt target genes (BMP4 and
CREB1), induced by adenosine and cordycepin treatment, were decreased in the presence
of ZM241385 and PSB603, adenosine receptor A2A and A2B inhibitors, respectively. A
PKA inhibitor, H89, on the other hand, downregulated the Wnt signaling induced by
adenosine and cordycepin treatment, strongly demonstrating the critical role of Gsk3b in
interconnecting the activation of Wnt/β-catenin and adenosine receptor pathways.

When adenosine is used as a therapeutics, there could be concerns about adverse
effects, especially systemic one since adenosine has profound effects on the heart. We
focused on the skin wounds which are mostly external body sites and are the target for
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topical application. Although the topically applied chemicals could enter the circulation,
topical application would be a good regimen to circumvent the systemic adverse effects.
Furthermore, the plasma half-life of adenosine was reported to be extremely short, less
than 10 s with intravenous administration. Taken together, it is not likely that the topically
applied adenosine or cordycepin elicits significant systemic adverse effects.

In this study, we have found that the adenosine and cordycepin stimulated Wnt/β-
catenin pathway through adenosine receptor activation. The stimulation of adenosine
receptor pathways was confirmed by elevated intracellular cAMP concentration (Figure 3a).
The metabolite ligands including adenosine are effective reporters of microenvironment
and are also good stimulators of regeneration mechanisms and high energy consuming
processes, such as development and tissue recovery. Furthermore, we have found that
not only adenosine but also cordycepin stimulated cell migration in an in vitro wound
healing model and promoted cytoskeleton rearrangement, demonstrating the enhanced
cell mobility of dermal fibroblasts (Figure 9).

Use of adenosine receptor agonists for the purpose of the skin wound healing has
been proposed [7]. Skin aging in the field of cosmetics will be another therapeutic target
for skin remodeling process since the dermal components are considered to be damaged
or wounded in skin aging. Therefore, the dermal extracellular matrix synthesis and re-
modeling, as in wound repair processes, would improve the aged skin. In this context,
cordycepin as well as adenosine, as adenosine receptor agonists, could be potential thera-
peutic candidates for treating skin wounds and also for aged skin as a cosmeceutical.

Our data strongly demonstrate that cordycepin, as well as adenosine, activated the
Wnt/β-catenin signaling pathway and promoted cell migration and growth factor pro-
duction through adenosine receptor activation. Inactivating the activity of Gsk3b via
phosphorylation on Ser9 site by PKA emerged as a key step in connecting the Wnt and
adenosine receptor pathways.

In conclusion, our findings provide evidences for the therapeutic potential of adeno-
sine and cordycepin, facilitating the tissue remodeling process through the activation of
adenosine receptors followed by Wnt signaling stimulation.

4. Materials and Methods
4.1. Human Dermal Fibroblast Culture

Human fibroblasts were obtained from The Department of Dermatology, Chungnam
National University School of Medicine (Deajeon, Korea). Cells were cultured in DMEM
(Thermofisher Scientific, Waltham, MA, USA) supplemented with 10% FBS (Thermofisher
Scientific, Waltham, MA, USA). Cells were maintained in humidified incubator at 37 ◦C,
5% CO2. Before adenosine and cordycepin (Sigma-Aldrich, St. Louis, MO, USA; Figure 1a)
treatment, serum limitation was done by replacing the medium with fresh DMEM supple-
mented with 1% FBS and culturing for 24 h to minimize the effects of serum and growth
supplements. Adenosine A2A receptor inhibitor ZM421385, Adenosine A2B inhibitor
PSB603, and PKA inhibitor H89 were purchased from Tocris Bioscience (Bristol, UK).

4.2. Wnt Reporter Assay

WRHEK293A cells (Amsbio, Abingdon, UK) were seeded in black 96 well plates
and cultured for 24 h. Cells were treated with various concentrations of chemicals and
incubated for another 24 h. Cells were then lysed by adding 50 µL of 1× Passive Lysis
Buffer (Promega, Madison, WI, USA) to each well and shaking for 10 min. The expression
of GFP (internal cell viability control) was assessed by measuring the fluorescence at
488/510 nm wavelength using VICTOR3 (PerkinElmer, Waltham, MA, USA). Then, 50 µL
of luciferase substrate solution (Promega, Madison, WI, USA) was added to each well and
the luciferase activity was measured using VICTOR3. Luminescence (TCF/LEF activity)
values were normalized to GFP (cell viability) values.
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4.3. Preparation of Cordyceps Militaris Extract

The dried Cordyceps Militaris, purchased from Humanherb (Daegu, Korea), were
extracted with distilled water (1:15) for 1 h at 121 ◦C, filtered through Whatman No. 4 filter
paper. The filtrate was concentrated by rotary evaporator under reduced pressure. The
extract was reconstituted in water.

4.4. Mitochondrial Membrane Potential

The viability of fibroblast was examined using JC-1 mitochondrial membrane poten-
tial assay (Abcam, Cambridge, UK) kits following the manufacturer’s protocols. Briefly,
after adenosine and cordycepin treated-fibroblasts were stained with 1 µM JC-1 solution,
fluorescence intensities from JC-1 aggregate and monomer forms were measured at 590 nm
(535 nm excitation) and 530 nm (475 nm excitation), respectively, with Wallac Victor3 1420
(PerkinElmer, Waltham, MA, USA). Mitochondrial membrane potential (∆Ψ) was visual-
ized by taking fluorescence images with EVOSTM FL Auto2 Imaging System (Thermofisher
Scientific, Waltham, MA, USA).

4.5. Intracellular cAMP Measurement

The intracellular cAMP levels in cultured human dermal fibroblasts were measured
using cAMP assay kit (Abcam, Cambridge, UK) following the manufacturer’s protocols.
Briefly, fibroblast cells were treated with adenosine and cordycepin for 2 min and harvested.
Absorbance at 450 nm was measured using microplate reader (BioTek, Winooski, VT, USA).
Background wavelength correction was done at 540 nm.

4.6. Quantitative Real-Time PCR

Adenosine, cordycepin, and NECA were treated for appropriate times. Non-treated
cells were served as negative control, while recombinant Wnt3a as a positive control
for Wnt/β-catenin signaling. Total RNA was extracted using Rneasy RNA extraction
kit (Qiagen Inc., Germantown, MD, USA). cDNA synthesis was performed using cDNA
synthesis kit (Phillkorea, Seoul, Korea) with ThermoCycler (R&D systems, Minneapolis,
MN, USA), according to the manufacturer’s protocol. cDNA samples obtained from control
and treated cells were subjected to real-time (RT) PCR analysis.

TaqMan probes for RT-PCR used in this study were as follows: GAPDH assay id
4352934E; CREB1 assay id Hs00231713_m1; GSK3B assay id Hs01047719_m1; MYC assay id
Hs00153408_m1, MKI67 assay id Hs04260396_g1; CCND1 assay id Hs00765553_m1; BMP2
assay id Hs00154192_m1; BMP4 assay id Hs03676628_s1; FZD3 assay id Hs00907280_m1;
FZD5 assay id Hs00258278_s1, LEF1 assay id Hs01547250_m1; CTNNB1 assay id Hs003550
45_m1; EGF assay id Hs01099990_m1; IGF-1 assay id Hs01547656_m1; TGFB1 assay id
Hs00998133_m1; TGFB2 assay id Hs00234244_m1; VEGFA assay id Hs00900055_m1.

TaqMan One-Step RT-PCR Master Mix Reagent (Life Technologies, Carlsbad, CA, USA)
was used. The PCR reactions were performed on ABI 7500 Real Time PCR system following
the manufacturer’s instruction. The resulting data were analyzed with ABI software.

4.7. Western Blot Analysis

Fibroblast cells (1 × 106 cells/dish) were seeded in 100 mm dishes and cultured for
24 h. Adenosine and cordycepin were treated for 4 h. The cells were then lysed and total
cellular proteins were prepared. Then, 50 µg protein samples were analyzed by Western
blotting with corresponding antibodies; GSK-3β (27C10) (1:1000, Cell Signaling Technology,
Danvers, MA, USA), Phospho-GSK-3β (Ser9) (Cell Signaling Technology) GAPDH (1:2000,
Santa Cruz, CA, USA). Western blot was analyzed by chemiluminescence detector iBright
FL1000 (Invitrogen, Waltham, MA, USA).

4.8. Protein Dot Blot Analysis for Growth Factors (Receptors) and MAP Kinase Phosphorylation

Human growth factor antibody array kit (Abcam, Cambridge, UK) and human MAP
kinase phosphorylation antibody array kit (Abcam, Cambridge, UK) were used to elucidate
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the changes in growth factor profiles and signal transduction pathways in cultured human
dermal fibroblasts. A total of 41 human growth factors and 17 human MAPK phospho-
rylation were analyzed. Briefly, cells were treated with 1.5, 3 mM of adenosine and 50,
100 µM of cordycepin for appropriate time and then collected for growth factor and MAPK
phosphorylation analysis. Cells treated with vehicle medium were used as non-treated
control. Conventional immunoblot process was performed following the manufacturer’s
protocol. The resulting blots were analyzed under identical condition using iBright FL1000
(Invitrogen, Waltham, MA, USA).

4.9. In-Vitro Scratch Wound Healing Assays

Fibroblast cells (2 × 105 cells) were seeded in Culture Insert-2 Well (ibidi GmbH,
Munich, Germany) and cultured for 24 h. After the culture inserts were removed, medium
was replaced with DMEM containing various concentrations of adenosine, cordycepin
and wnt3a and incubated for two days. Images with time intervals were obtained using
EVOSTM FL Auto2 Imaging System (Thermofisher Scientific, Waltham, MA, USA). Cell
migration rates were calculated using the image segmentation algorithm on Image J plugin,
described elsewhere [51].

4.10. Immunocytochemistry

Fibroblast cells (8 × 104 cells per well) were seeded in 24 well plates and cultured
overnight. After PBS wash, cells were fixed with 4% paraformaldehyde at room temper-
ature for 10 min. Cells were then permeabilized with PBS containing 0.1% triton x-100
and blocked with PBS containing 5% FBS and 1% BSA. After consecutive incubation with
primary antibodies (1:200 dilution, Abcam, Cambridge, UK) at 4 ◦C for 12 h and alexa
488 nm or alexa 594 nm conjugated secondary antibodies (1:1000 dilution, Thermofisher
Scientific, Waltham, MA, USA) at room temperature for 1 h, nuclei were stained with
DAPI (1:2000 dilution, Thermofisher Scientific, Waltham, MA, USA) in the dark for 10 min.
High resolution fluorescence images were taken using EVOSTM FL Auto2 Imaging System
(Thermofisher Scientific, Waltham, MA, USA).

4.11. Statistical Analysis

All experimental data were presented as the mean ± standard deviation (S.D.) of
at least three independent experiments. Experimental results were analyzed using the
SigmaPlot 8.0 (Systat Software Inc., Chicago, IL, USA). The statistical significance of dif-
ference was determined by Student’s t-test. The value of p < 0.05 was considered statisti-
cally significant.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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