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Abstract

Counting the number of species, items, or genes that are shared between two groups, sets,

or communities is a simple calculation when sampling is complete. However, when only par-

tial samples are available, quantifying the overlap between two communities becomes an

estimation problem. Furthermore, to calculate normalized measures of β-diversity, such as

the Jaccard and Sorenson-Dice indices, one must also estimate the total sizes of the com-

munities being compared. Previous efforts to address these problems have assumed knowl-

edge of total community sizes and then used Bayesian methods to produce unbiased

estimates with quantified uncertainty. Here, we address communities of unknown size and

show that this produces systematically better estimates—both in terms of central estimates

and quantification of uncertainty in those estimates. We further show how to use species,

item, or gene count data to refine estimates of community size in a Bayesian joint model of

community size and overlap.

Author summary

When two sets of species, genes, or items have been completely enumerated, quantifying

the overlap between the sets is as simple as comparing their contents. However, in many

applications, only random samples from the two sets are available, forcing the problem of

overlap quantification into the realm of inference. Using a Bayesian inference approach,

this paper shows how one can use random samples from two sets to simultaneously esti-

mate the total size of each set, as well as the overlap between them. Rather than learning

from the presence and absence of each species, gene, or item alone, as in prior work, this

method utilizes the total number of samples drawn from each set to aid in the inference

process. By drawing on this additional information, overlap estimates are more confident

and accurate. These methods not only allow inference from existing data, but also enable

prospective sample size calculations via simulation.
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This is a PLOS Computational Biology Methods paper.

Introduction

Quantifying the overlap between two groups, sets, or communities is a problem in many fields

including genetics, ecology, and computer science. When the two communities are fully

known, one can simply count the size of their intersection. However, when populations are

only partially observed, due to a subsampling or stochastic sampling process, the community

overlap problem becomes one of inference.

In ecology, the relationship between the diversity in one community and another is called

β-diversity [1], an idea which has led to the creation of numerous indices and coefficients

which seek to quantify it. For example, the canonical Jaccard index [2] and the Sorenson-Dice

coefficient [3, 4] have the appealing properties that (i) they are based only on the number of

shared species, s, and the numbers of species in each community, Ra and Rb, and they take the

values zero, when two communities are entirely unrelated, and one, when the communities

are identical. However, these coefficients, as well as alternatives [5], have been shown to be

biased when community sampling is incomplete [6, 7]. Furthermore, they provide no measure

of statistical uncertainty because they provide only point estimates.

To address these issues, improvements in the quantification of β-diversity have been made

in various ways. One direction of development recognizes that the measurement of β-diversity

from the presence and absence of species fundamentally relies on counting the species shared

by the two communities in the context of the numbers of species in each community sepa-

rately, thus cataloguing the myriad ways in which these three integers might be reasonably

combined, depending on the circumstances [5]. Another set of developments has been to

work with species abundance data instead of binary presence-absence measurements [8]. A

third set of developments has been to place observations of both abundance and presence-

absence in the context of a probabilistic sampling process [6, 7], allowing for the appropriate

quantification of uncertainty through confidence intervals or credible intervals.

One key feature of the β-diversity measures that quantify uncertainty is that the assump-

tions of their underlying statistical models must be stated explicitly. This provides transpar-

ency and also reveals assumptions which may not hold in practice. In recent work, a Bayesian

approach to β-diversity estimation was introduced which provides unbiased estimates of the

overlap between two stochastically sampled communities, yet this approach assumes that the

two original community sizes are known a priori [7]. In practice, however, overall community

sizes may be unknown, or may vary widely, making this model and others like it misspecified

from the outset to an unknown degree. Thus, while incorporating appropriate uncertainty

into community overlap estimation is an improvement, doing so without recognizing uncer-

tainty or misspecification in each individual community’s size may nevertheless lead to biased,

overconfident, and unreliable inferences.

Here we address this problem by leveraging an additional and often available source of data

in presence-absence studies: the total number of independent samples taken from each com-

munity, i.e. the sampling depth or effort. Building on the same intuition as the estimation of

total species from a species accumulation curve [9], we introduce a model for β-diversity calcu-

lations which produces joint estimates of s, Ra, and Rb in a Bayesian statistical framework. Pos-

terior samples of these quantities offer solutions to issues identified above by providing

unbiased central estimates, the quantification of uncertainty via credible intervals, and the con-

struction of Bayesian versions of the canonical Jaccard and Sorenson-Dice coefficients (as well

as 20 others which are based on s, Ra, and Rb [5]).
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Although estimating pairwise similarity is a problem in many fields, here we present the

problem in the context of estimating the genetic similarity between pairs of malaria parasites

from the species Plasmodium falciparum—the most virulent of the human malaria parasites.

Because terminology varies by context, in the remainder of this manuscript we use the terms

community, set, and repertoire to refer to the same fundamental thing: the total number of

unique species, objects, or genes, respectively, in a group of interest. Our goal in all contexts

will be to estimate the number of shared species, objects, or genes, and to simultaneously esti-

mate the sizes of each of the two communities, sets, or repertoires being compared.

P. falciparum repertoire overlap problem

During the blood stage of malaria, P. falciparum parasites replicate inside erythrocytes, and

export a protein to the erythrocytic surface, called Plasmodium falciparum Erythrocyte Mem-

brane Protein 1 (PfEMP-1). There, the PfEMP-1 will allow the infected erythocyte to bind to

human endothelial cells, facilitating the sequestration of the infected erythrocyte away from

free circulation. Due to this important role, var genes have been widely studied and linked to

malaria’s virulence and duration of infection [10–14].

Rather than a single var gene (and thus a single PfEMP-1), each P. falciparum genome con-

tains a repertoire of hypervariable and mutually distinct var genes [15]. The var genes differ

within and between parasites, due to rapid recombination and reassortment [16, 17]. This vari-

ability in var genes, and thus in PfEMP-1, facilitates immune evasion while preserving the abil-

ity to bind to different types of endothelial receptors. Critically, the number of var genes found

in each parasite’s repertoire varies considerably [18]. For instance, the reference parasite 3D7

has been measured to have 58 var genes [15] while the DD2 and RAJ116 parasites have 48 and

39, respectively [19].

Studies of P. falciparum epidemiology and evolution have generated insights by comparing

the var repertoires between parasites through β-diversity calculations [20–27]. Theory suggests

that if a human population has been exposed to particular var genes, then repertoires contain-

ing those var genes will have lower fitness than repertoires that are entirely unrecognized by

local hosts, shaping the var population structure [23–25, 28–30]. Thus, these linked immuno-

logical, epidemiological, and evolutionary questions require careful consideration of the meth-

ods by which we estimate the extent to which var repertoires overlap. However, traditional

estimates of overlap between var repertoires suffer bias due to subsampling, mirroring similar

observations for β-diversity measures more broadly [6].

Due to the massive diversity and recombinant structure of var genes, var studies typically

use degenerate PCR primers to target a small “tag” sequence within a single var domain called

DBLα [31]. These DBLα tags are widely used to study the structure and function of var genes

[13, 20, 23, 31–36], but due to limited resources and/or time, DBLα PCR data are typically a

random subsample from each parasite’s var repertoire. These PCR-based subsampling proce-

dures therefore produce both presence-absence data for various var types, and counts reflect-

ing the number of times each present var was observed.

In this context, repertoire overlap is typically called pairwise type sharing [20] and is often

quantified by the the Sorenson-Dice coefficient:

cSDEmpirical ¼
nab

1

2
ðna þ nbÞ

ð1Þ

where na and nb are the number of unique var types sampled from parasites a and b, respec-

tively, and nab is the number of sampled types shared by both parasites (i.e., the empirical over-

lap). When repertoires are not fully sampled (as is overwhelmingly the case in existing studies
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[20–23, 25, 26]) the Sorensen-Dice coefficient underestimates the true overlap between reper-

toires. Problematically, this downward bias increases as na and nb decrease [6, 7], which pre-

vents direct comparisons between study sites with different sampling depths.

The methods introduced in this paper, while targeted more broadly at the development of

β-diversity quantification, are developed in the particular context of this P. falciparum reper-

toire overlap problem.

Methods

Setup

Our method for inferring overlap is based on two key observations. First, not all repertoires

are the same size but information about a repertoire’s size can be gleaned from the rate at

which more samples identify new repertoire elements [9]. Second, the observed overlap nab is

a realization of a stochastic sampling process which depends on not only the true overlap but

also the true repertoire sizes. These observations lead us to use a hierarchical Bayesian

approach (Fig 1).

In brief, we model the stochastic process that generates the observed presence-absence data

(na, nb, and nab) which can be derived from observed sample counts (i.e. observed abundances,

Ca, Cb), from two parasites with repertoire sizes Ra and Rb and overlap s. The core of this sto-

chastic sampling process is the assumption that sampling from each repertoire is done inde-

pendently, uniformly at random, and with replacement, corresponding to PCR of var gDNA

without substantial primer bias. From this model, we compute the joint posterior distribution

of the unknown parameters, s, Ra, and Rb. With this joint posterior distribution, p(s, Ra, Rb j

Ca, Cb), we can produce unbiased a posteriori point estimates of the repertoire sizes and over-

lap, and can quantify uncertainty in these point estimates via credible intervals.

In the detailed methods that follow, we describe our choice of priors over the three parame-

ters s, Ra, and Rb, derive the model likelihood, and review the steps required to make calcula-

tions efficient. An open-source implementaton of these methods is freely available (see Code

Availability statement).

Choice of prior distributions

Due to extensive sequencing and assembly efforts [18], the repertoire sizes for thousands of P.
falciparum parasites have been characterized, leading us to choose a data-informed prior dis-

tribution for repertoire sizes Ra and Rb. We assume an informative Poisson prior for Ra and

Rb, fit to the repertoire sizes from 2398 parasite isolates published by Otto et al. [18].

Ra;Rb � Poisson½55�:

For β-diversity studies outside of P. falciparum, alternative informative priors can be chosen.

Because the repertoire overlap s can take values between 0 and min{Ra, Rb}, we use an uninfor-

mative prior for repertoire overlap s,

s j Ra;Rb � Uniform ½0;min fRa;Rbg� :

Computing the joint posterior distribution p(s, Ra, Rb j Ca, Cb)

The posterior distribution of the parameters given the count data is a product of three terms

pðs;Ra;Rb j Ca;CbÞ ¼ pðs j na; nb; nab;Ra;RbÞ � pðRa j CaÞ � pðRb j CbÞ ; ð2Þ
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a calculation shown in detail in S1 Text. The rest of this section is devoted to computing each

of these terms, noting that that last two are mathematically identical, but derived from differ-

ent data.

To compute p(R j C), the distribution of repertoire size given count data for a fixed but arbi-

trary total sampling effort ma = mb = m, we first calculate the likelihood of observing count

data C given a repertoire size R, i.e., p(C j R). Knowing how to compute p(C j R), allows us to

Fig 1. Diagram of the model. Two repertoire sizes, Ra and Rb, are generated by their priors. The overlap between the

repertoires, s, is then generated by the prior on the overlap given the repertoire sizes. The repertoire sizes and overlap

define the two parasites, a and b, from which we sample. Sampling ma items with replacement from parasite a produces

count data Ca consisting of genes sampled from parasite a and counts per gene. Sampling mb items with replacement

from parasite b produces count data Cb consisting of genes sampled from parasite b and counts per gene.

https://doi.org/10.1371/journal.pcbi.1010451.g001
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calculate p(R j C) via Bayes’ rule

pðR j CÞ ¼
pðC j RÞ � pðRÞ

pðCÞ
¼

pðC j RÞ � pðRÞ
P

Ri
pðC j RiÞ � pðRiÞ

ð3Þ

where p(R) is the prior on repertoire size and the sum in the denominator should be computed

over the support of p(R). For the unbounded support of the Poisson prior used here, we restrict

the sum to only those terms above the numerical precision of the computer.

In S2 Text, we prove that

pðC j RÞ ¼
R!

ðR � nÞ! � f1! � f2! � � � fQ!
�

m!

c1! � c2! � � � cn!
�

1

Rm ð4Þ

where the ci are the number of times each of the n sampled var types were observed and the fi
are the multiplicities of the unique numbers in fcig

n
i¼1

. For instance, suppose the count data

consists of five unique var types with counts

fc1; c2; c3; c4; c5g ¼ f1; 1; 2; 2; 3g ð5Þ

then there are three (Q = 3) unique numbers amongst the ci: 1, 2, and 3. Further, 1’s multiplic-

ity in {1, 1, 2, 2, 3} is 2, 2’s is 2, and 3’s is 1 so (f1, f2, f3) = (2, 2, 1).

With the likelihood p(C j R) in hand, it is straightforward to calculate the posterior p(R j C)

via Eq (3). And, thus, we can calculate the second and third terms in Eq (2).

Conveniently, the remaining term of Eq (2) p(s j na, nb, nab, Ra, Rb) has been derived in the

literature [7], but only under the restriction that Ra = Rb = 60. We therefore rederive this quan-

tity for general but fixed Ra and Rb, summarizing the main steps here.

Using Bayes’ rule, we can write

pðs j na; nb; nab;Ra;RbÞ / pðnab j na; nb; s;Ra;RbÞ � pðs j Ra;RbÞ ð6Þ

where p(s j Ra, Rb) is a user-specified prior described above. The other term, p(nab j na, nb, s,
Ra, Rb), can be computed by considering the probability that two subsets of size na and nb will

have an intersection of size nab, given that they have been drawn uniformly from sets of total

size Ra and Rb whose intersection is size s. To do so, we use the hypergeometric distribution,

Hðs;R; nÞ, which is the distribution of the number of “special” objects drawn after n uniform

draws with replacement from a set of R objects, s of which are “special.” With this distribution

in mind, note that observing nab shared var genes can be thought of as a two-step process.

First, draw na var genes from parasite a’s Ra total in which s are special because they are

shared with parasite b. The number of shared vars drawn is a random variable

sa � Hðs;Ra; naÞ. Second, draw nb genes from parasite b’s Rb total in which sa are special

because they are shared by both parasites and were drawn from parasite a. The number of

shared vars captured after sampling from both parasites, nab, will be distributed according to

Hðsa;Rb; nbÞ ¼ HðHðs;Ra; naÞ;Rb; nbÞ.

To generate a particular empirical overlap nab, first step 1 must happen and then, indepen-

dently, step 2 must happen. We therefore multiply these two hypergeometric probabilities.

However, because these two steps may occur for any value of the intermediate variable sa, we
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sum over all possible values of sa

pðnab j na; nb; s;Ra;RbÞ ¼
Xs

sa¼0

pðsa j na;Ra; sÞ � pðnab j nb;Rb; saÞ ð7Þ

¼
Xs

sa¼0

pðHðs;Ra; naÞ ¼ saÞ � pðHðsa;Rb; nbÞ ¼ nabÞ ð8Þ

Plugging this into Eq (6) allows us to compute p(s j na, nb, nab, Ra, Rb).

Inference method summary

We now have all the pieces in place to compute p(s, Ra, Rb j Ca, Cb):

pðs;Ra;Rb j Ca;CbÞ / pðRaÞ � pðRbÞ � pðs j Ra;RbÞ

�
Xs

sa¼0

p ðHðs;Ra; naÞ ¼ saÞ � pðHðsa;Rb; nbÞ ¼ nabÞ

" #

�
Ra!

f a
1
! � f a

2
! � � � f aQa

!
�

ma!

ca
1
! � ca

2
! � � � caRa !

1

Ra

� �ma
" #

�
Rb!

f b
1
! � f b

2
! � � � f bQb

!
�

mb!

cb
1
! � cb

2
! � � � cbRb !

1

Rb

� �mb
" #

ð9Þ

where the first three terms are the user-specified priors. With this joint posterior distribution,

we can compute unbiased Bayesian estimates of s, Ra, and Rb as expectations over the poste-

rior:

bs ¼
X

s;Ra ;Rb

s � pðs;Ra;Rb j Ca;CbÞ ð10Þ

bRa ¼
X

s;Ra ;Rb

Ra � pðs;Ra;Rb j Ca;CbÞ ð11Þ

bRb ¼
X

s;Ra ;Rb

Rb � pðs;Ra;Rb j Ca;CbÞ ð12Þ

Moreover, and importantly, we can compute unbiased Bayesian estimates of any functional

combination of s, Ra, and Rb such as Bayesian versions of the Jaccard index [2], the Sorensen-

Dice coefficient [4], other coefficients based on s, Ra, and Rb [5], and the directional pairwise-

type-sharing measures of He et al. [29]. For all of these measures, in addition to the point esti-

mates, the ability to draw from the joint posterior distribution Eq (9) enables one to compute

credible intervals to quantify uncertainty.

Generation of simulated data

To facilitate numerical experiments in which we tested our inference method’s ability to

recover accurate estimates of s, Ra, and Rb, we generated synthetic data via simulation as fol-

lows. First, we selected a value of overlap s between 0 and 70, so that analyses could be stratified

according to overlap. Next, we drew repertoire sizes Ra and Rb independently from the prior

distribution, ensuring that Ra� s and Rb� s, redrawing as necessary. Next, we drew from the
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model (Fig 1) a set of ma and mb samples from repertoires of sizes Ra and Rb, respectively, with

specified overlap s, to generate count data histograms Ca and Cb. This procedure therefore sto-

chastically created synthetic count data for a specified overlap s and sampling depth ma = mb =

m, allowing us to test our method’s accuracy and uncertainty quantification under various

scenarios.

Results

Inference

We first investigated how increasing the total number of independent samples improves our

ability to correctly estimate the total size of a single repertoire (or generally, community), by

which we specifically mean the number of unique constituent genes (or generically, species or

objects). To do so, we conducted numerical experiments where we presumed a repertoire size

and then simulated samples from it to produce count data. An example of such an experiment

shows how posterior estimates approach the true repertoire size as sampling effort increases

(Fig 2). Here, because we focus on a single repertoire in isolation, we drop a and b subscripts

for the moment, referring to simply sampling effort m, repertoire size R, and count data C.

This experiment illustrates two related points. First, there is valuable information in know-

ing the total sampling effort m, even if some samples were duplicate observations of previously

observed genes, simply because those sample counts inform repertoire size estimates. Second,

increasing the sampling effort concentrates p(R j C) around the true repertoire size, concretely

linking sampling effort to estimation of not only repertoire size, but through decreased uncer-

tainty, eventual overlap estimates as well.

Fig 2. Repertoire size posterior estimates improve with increased sampling effort. For a single repertoire with true size R = 52,

the posterior distribution p(R j C) is plotted for different sampling efforts m (see legend). For each value of m, count data C were

generated by drawing m genes uniformly with replacement from a repertoire of 52 genes. As sampling effort increases, the posterior

p(R j C) concentrates around the true repertoire size 52. The m = 0 curve is the Poisson prior on repertoire size, p(R).

https://doi.org/10.1371/journal.pcbi.1010451.g002
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Next we examined whether thebs, bRa , and bRb estimates in Eqs (10)–(12) are accurate across

a range of sampling efforts m in two steps. First, we simulated the sampling process for various

values of s, Ra, and Rb to produce synthetic count data Ca and Cb with varying levels of overlap

between the observed samples. Then, we evaluated our ability to recover s, Ra, and Rb by apply-

ing Eqs (10)–(12) to the synthetic data.

We found that the overlap and repertoire estimates accurately reproduce the true parameter

values, provided that sampling effort is sufficiently large. Furthermore, as sampling effort

increases, estimates become increasingly accurate (Fig 3).

However, we also observed that when the sampling effort is small but repertoires are large

and highly overlapping (e.g. m = 50 and s> 50),bs underestimates the true values (Fig 3A).

This phenomenon is due to a more general property of Bayesian inference: when there are

fewer samples from which to infer, the prior distribution exerts a stronger effect on inferences.

Here, the Poisson prior over repertoire sizes assigns low probability to repertoire sizes as large

as 70 (p(Ra� 70) = 0.03), and thus, in the absence of a large sampling effort to overwhelm that

prior, the surprisingly large repertoire sizes and overlaps require substantially more samples to

establish. In real data from P. falciparum, repertoires (and thus repertoire overlaps) larger than

60 are rarely observed [18, 26], decreasing the potential impact of this issue for the study of

repertoire overlap between individual parasites (though not for the study of overlap between

infections containing multiple parasites; see Discussion.

Uncertainty

Bayesian methods also allow us to quantify uncertainty via credible intervals (CIs). To measure

how well our CIs capture the true parameter values, we computed 95% highest density poste-

rior intervals for parameter estimates in simulated data, where true values were known. As

expected, uncertainty decreased as sampling effort increased, and approximately 95% of the

95% CIs captured the true parameter values, as designed (Fig 4). For instance, for sampling

efforts of m = 50, m = 96, and m = 192, the proportions of the 95%bs CIs containing the true s

Fig 3. Accuracy of estimates across a range of true parameter values and sampling efforts. For each overlap value s between 0 and 70, we performed

three independent simulations to generate synthetic count data (Methods). Estimates of s (A,B,C) and Ra (D,E,F) from the resulting count data, using

our statistical model, are shown. Estimates are shown for sampling efforts ma = mb = m = 50, 96, 192 across left, middle, and right columns, respectively.

Dashed black lines represent perfect unbiased inference.

https://doi.org/10.1371/journal.pcbi.1010451.g003
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were 0.975, 0.975, and 0.965, respectively. For the same three sampling efforts, the proportions

of the 95% bRa CIs that contained the true repertoire size Ra were 0.920, 0.950, and 0.955,

respectively.

Improving β-diversity indices

Over 20 different indices of β diversity have been proposed which algebraically combine

empirical estimates of Ra, Rb, and s [5], including the well known Jaccard index and the Soren-

son-Dice coefficient. The Sorenson-Dice coefficient is defined as the ratio of repertoire overlap

to the average of the repertoires sizes,

SD ¼
s

1

2
ðRa þ RbÞ

:
ð13Þ

Typically, in the absence of more sophisticated estimates of Ra, Rb, and s, empirical values are

used,

cSDEmpirical ¼
nab

1

2
ðna þ nbÞ

ð14Þ

However, the joint posterior distribution Eq (9) over s, Ra, and Rb opens the door to a Bayesian

reformulation of the Sorenson-Dice coefficient as

cSDBayesian ¼
X

s;Ra ;Rb

s
1

2
ðRa þ RbÞ

� pðs;Ra;Rb j Ca;CbÞ ð15Þ

with similar generalizations for the Jaccard coefficient or other combinations of s, Ra, and Rb

Fig 4. Credible intervals quantify uncertainty in overlap estimates. For each overlap value s between 0 and 70, we performed one simulation to

generate synthetic count data (Methods). Estimates from the resulting count data, using our statistical model, of s (A,B,C), and error in Ra and Rb (D,E,

F) are shown. Estimates (dots) and 95% credible intervals (lines) are shown for sampling efforts m = 50, 96, 192 in left, middle, and right columns,

respectively.

https://doi.org/10.1371/journal.pcbi.1010451.g004
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[5]. This Bayesian Sorenson-Dice coefficient averages the values of the typical Sorenson-Dice

coefficient over joint posterior estimates of s, Ra, and Rb.

We investigated the performance of the Bayesian Sorenson-Dice coefficient cSDBayesian and

its empirical counterpart cSDEmpirical by once more simulating the sampling process under

known conditions and applying both formulas. As in our estimates of repertoire overlap, we

again found that Bayesian Sorenson-Dice estimates produce consistent and unbiased estimates

with correct quantification of uncertainty via credible intervals (Fig 5), except when sampling

effort is low (m = 50) while true repertoire overlap is extremely high (s> 50). Furthermore,

the Bayesian estimates track the true Sorenson-Dice values better than direct empirical esti-

mates across overlap values and sampling efforts; direct empirical estimates are biased more

and more downward as sampling effort decreases and as true overlap increases (Fig 5). While

this illustrates how the Bayesian framework herein may be used to improve classical and com-

monly used estimators via Eq (15), an identical approach may be used to compute Bayesian

Jaccard coefficients, or other algebraic combinations of s, Ra, and Rb [5].

Sample size calculations

Sample size calculations ask how many samples are needed to produce eventual estimates with

a pre-specified level of (or upper bound on) statistical uncertainty. Such questions, while criti-

cal in the ethical study of human subjects, are also important when budgeting for studies in

which additional samples require time, reagents, and funding.

To assist in sample size calculations, we used simulations to quantify the relationship

between increases in sampling effort and decreases in the typical width of the credible interval

around the repertoire overlap estimate estimatebs (Eq (10)). For many overlap-sampling effort

pairs, (s, m), we performed 300 independent replicates in which we generated synthetic data,

computed the posterior distribution for s, and calculated the width of the 95%bs CI.

We found that, as expected, increased sampling effort leads to decreased uncertainty across

all values of overlap s (Fig 6). However, we also found that overlap plays a role as well, with

larger overlap causing wider CIs. For instance, after m = 200 samples, a CI for overlap s = 70 is

typically of width 8, while a CI for overlap s = 30 is typically of width 4. After m = 300 samples

from each repertoire, median CI widths are 4 or lower for all overlap values. In short, it is eas-

ier to show with high confidence that two samples do not overlap than to show that they are

highly overlapping.

Fig 5. Bayesian vs empirical Sorensen-Dice estimates. For each overlap value s between 0 and 70, we performed one independent simulation to

generate synthetic count data (Methods) and estimated the Sorensen-Dice coefficient using estimates from our Bayesian framework as well as from the

raw empirical data. The error in the Bayesian Sorensen-Dice estimate, cSDB (Eq (15)), and accompanying 95% credible intervals are shown. The often-

used empirical Sorensen-Dice estimate, cSDE (Eq (14)), is also shown. The dashed black line at 0 represents the true Sorensen-Dice coefficient (Eq (13)).

https://doi.org/10.1371/journal.pcbi.1010451.g005
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Discussion

This manuscript presents a Bayesian solution to estimating the overlap between two commu-

nities, repertoires, or sets, when only subsamples are available. Importantly, because the total

community sizes bear on the inference of overlap, this method jointly estimates community

sizes and overlap from the quantitative accumulation of evidence, improving inferences. Sam-

ples from the joint posterior distribution can be used to quantify uncertainty via credible inter-

vals, or can be used in Bayesian versions of the Jaccard index, Sorenson-Dice coefficient, and

other algebraic combinations of set sizes and intersections. By showing how the inclusion of

total sampling effort can improve inferences, this study demonstrates the value of recording

and reporting not only presence-absence, but abundance as well—even when the true abun-

dances are uniformly equal, as in the study of P. falciparum’s var gene families.

In addition to the analysis of existing data, this approach can also be used prospectively to

perform sample size calculations. Importantly, context-specific sample sizes can be estimated

by including additional information in the Bayesian prior. For instance, in the context of

malaria’s var genes, it is known that parasites from South America tend to have smaller reper-

toires [37, 38] than samples from other regions [18]—information which can be expressed

through the prior distribution to influence (and in this case, decrease) sampling needs. Because

additional sampling has financial and complexity costs, this allows researchers to weigh accu-

racy requirements against laboratory costs in the contexts of a particular study.

Beyond the study of P. falciparum, the approach introduced in this work lands in between

two existing classes of β-diversity measures in the ecology literature. One class of methods

measures β-diversity in terms of species presence or absence [5], while the other further

Fig 6. Quantifying the decrease in uncertainty from increased sequencing. Constant s curves show the median 95% credible

interval (CI) width for the s estimate,bs, as a function of the sampling effort ma = mb = m. For each (s, m)-duplet, the median is

across 300 count data generation simulations. This plot illustrates the intuition that additional laboratory efforts (increasing m)

lead to higher accuracy (smaller CIs).

https://doi.org/10.1371/journal.pcbi.1010451.g006
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includes species abundance [6]. The present work uses abundance measurements (which we

call count data) in order to improve presence-absence-based β-diversity estimates, but does

not construct abundance-based similarity measures per se. By drawing inferences from both,

this work also aligns with past efforts which rely in principle on an idea that one may draw

inferences both from what is observed and what is not observed [6, 7].

The tradeoffs for improved inferences are twofold. First, our approach requires abun-

dance data (i.e., count data C) instead of presence/absence totals na, nb, and nab. This limits

the retrospective analysis of past work or meta-analyses to only those studies that meet a

greater data-sharing burden. However, we also note that, as proven in S2 Text, full count

data are not necessary: the posterior p(s, Ra, Rb j Ca, Cb) can still be computed exactly when

only the sampling efforts (ma and mb) and the presence/absence values (na, nb, and nab) are

known.

The second tradeoff for improved inference is that one must specify a prior distribution for

the total community sizes. In the case of the var gene repertoires of P. falciparum, data-

informed prior distributions can be created for both global [18] or local [38] estimates. In this

light, one may view past work on Bayesian methods for repertoire overlap [7, 24] as specifying

point priors at a particular fixed repertoire size. In general, the choice of an appropriate prior

is left to the user, which may require users to make explicit their prior beliefs about community

size.

There are limitations to our approach which relate to our assumptions about the sampling

process which generates the count data. Specifically, we have assumed throughout this work

that each time a new sample is generated, this sample is drawn independently and uniformly

from a population in which unique genes, species, or objects are identically represented. Thus,

unlike abundance based measures [6] which assume that some species are more likely to be

sampled than others, we assumed each species’ selection is equiprobable. In the sampling of

var gene sequences, for instance, methodological artifacts such as PCR primer bias may cause

non-uniform sampling. One avenue for future work could be to extend our rigorous probabi-

listic modeling to the non-uniform sampling regime.

Another limitation, particularly for the study of P. falciparum, is that bulk sequencing

methods may sample from multiple distinct parasite genomes when an individual’s multiplic-

ity of infection (MOI) is greater than one. Unfortunately, even if MOI is known, it is unclear

how one should alter the prior P(R) for samples from that individual, due to the fact that the

two or more parasite genomes within a single host may, themselves, be overlapping to an

unspecified degree. This may be possible to address with further assumptions and associated

priors in future work, but as a consequence, the methods presented here are valid for the analy-

sis of P. falciparum only when MOI equals one.
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