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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

nfections are continuing to increase globally, and clinicians at hos-

itals are currently preparing lists of US Food and Drug Adminis-

ration (FDA)-approved therapies as options for the treatment of

ARS-CoV-2. For several years, we have been investigating anti-

oronavirus therapies directed at feline infectious peritonitis (FIP)

 1 , 2 ], a disease caused by a coronavirus with a nearly 100% mor-

ality in felines. Feline enteric coronavirus (FEC), commonly found

n many asymptomatic felines, mutates into the virulent and lethal

IP coronavirus [3] . We believe that our experimental observations

or the treatment of FIP may be relevant and translational for re-

ent in vitro results of SARS-CoV-2 [4] in the absence of extensive

aboratory and human clinical trials. A FIP coronavirus protease in-

ibitor (GC376) was successful in the treatment of a subset of fe-

ines with FIP; however, in cases where there was neurological in-

olvement, the protease inhibitor was unable to prevent progres-

ion of central nervous system (CNS) disease, resulting in neuro-

ogical FIP and subsequent euthanasia [5] . The polymerase inhibitor

S-441524 has already demonstrated significant activity in a feline

linical trial against FIP [1] , but the treatment of neurological in-

olvement has yet to be demonstrated. Remdesivir, which is a pro-

rug of GS-441524, shows great promise for the treatment of SARS-

oV-2 [6] but is not currently approved by the FDA and is only

vailable in an intravenous formulation. There is an urgent need for

nti-SARS-CoV-2 therapies that are already FDA-approved, orally

ioavailable, appropriate for organs that express the SARS-CoV-
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 target angiotensin-converting enzyme 2 (ACE2), and may also

omplement or synergise with remdesivir upon approval. Whilst

he detailed experimental results will be communicated elsewhere

unpublished data from BGM Laboratory), we believe our observa-

ions could support clinicians regarding treatment options in addi-

ion to supportive care. 

Severe acute respiratory syndrome coronavirus 1 (SARS-CoV-

) and SARS-CoV-2 both target ACE2 as the receptor [7] , which

s expressed in the lungs, heart, gastrointestinal tract and CNS

8] in humans. SARS-CoV-1 is known to penetrate the CNS through

he olfactory nerve and olfactory bulb route [9] , similar to other

oronaviruses [10] . Patients with coronavirus disease 2019 (COVID-

9), the disease caused by SARS-CoV-2, often experience anosmia

loss of smell), suggesting that this route may also occur follow-

ng SARS-CoV-2 infection. Almost all Betacoronaviruses penetrate

he CNS [10] , and SARS-CoV-1 and SARS-CoV-2 share the same

CE2 receptor. It is also reasonable to believe that the massive in-

ection of the brainstem in experimental animals following SARS-

oV-1 nasal exposure [9] may also occur with SARS-CoV-2, which

ould contribute to sudden respiratory failure as observed with

ome patients [10] . It is not clear whether SARS-CoV-2 CNS pen-

tration may also occur in patients with recent damage to the

lood–brain barrier (BBB) following a stroke or other brain insult.

s we have shown in felines, the implications of CNS penetration

mphasise the need for a multipronged organ-appropriate strat-

gy that will suppress SARS-CoV-2 both in the periphery and the

rain. 

We have found that nelfinavir and amodiaquine have anti-FIP

ctivity in vitro that is comparable with chloroquine, and superior

o ribavirin, penciclovir, favipiravir and nafamostat against SARS-
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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CoV-2 [4] . Amodiaquine, like chloroquine and hydroxychloroquine,

is a CNS-penetrating 4-aminoquinoline antimalarial drug that in-

hibits the formation of hemozoin in the parasite, but it has been

withdrawn from the US market although it is still available in other

countries. Amodiaquine is known to possess some antiviral activ-

ity, and derivatives have been explored for inhibition of Ebola virus

infection [11] . Pharmacogenomics has revealed that the presence

of the CYP450 2C8 ∗2 allele is an important contributor to amodi-

aquine toxicity [12] . Appropriate monitoring parameters include

complete blood counts with differential and liver function tests, as

serious adverse events are agranulocytosis and hepatotoxicity with

mild adverse events being nausea, emesis and pruritus. Amodi-

aquine/artesunate is available for the treatment of malaria; it is

cost effective and accessible outside of the USA. This is the third

observation of a 4-aminoquinoline having activity against a coron-

avirus and compliments clinical observations from China [ 13 , 14 ].

Second, the 4-aminoquinolines are well known to penetrate the

BBB and have been investigated for broad-spectrum antiviral activ-

ity against a variety of viral infections, including Zika [15] , Dengue

[16] and Ebola [17] viruses. It also may have utility for those pa-

tients suffering from SARS-CoV-2 in the brainstem. The antiviral

mechanisms of action of chloroquine may include altering endoso-

mal RNA release [15] , altering autophagy-dependent viral replica-

tion [15] and inhibiting ACE2 glycosylation [18] . 

Nelfinavir is an older anti-human immunodeficiency virus (HIV)

protease inhibitor capable of inhibiting HIV-1 and, to a lesser ex-

tent, HIV-2 proteases [19] , but is no longer the first treatment of

choice. However, it has a spectrum of activity that includes both

SARS-CoV-1 [20] and FIP coronavirus [21] , is orally bioavailable,

and can achieve a plasma concentration of 7.3 mg/L at a dose

of 30 0 0 mg twice daily [22] . Other protease inhibitors, including

the combination of lopinavir and ritonavir, were utilised for the

treatment of SARS-CoV-1 [23] and have been used in Singapore

[24] and China [25] for the treatment of SARS-CoV-2. However,

there have been challenges associated with toxicity at the pre-

scribed doses [24] as well as efficacy as monotherapy [25] . The

hypothesis for using older antiretroviral agents with higher toxic-

ity but a potentially broader antiviral spectrum of activity is not

novel. However, the experimental observation of nelfinavir sup-

pressing FIP coronavirus [21] provides additional data to consider

nelfinavir as an option for SARS-CoV-2. Appropriate monitoring pa-

rameters for nelfinavir include echocardiogram for QT interval pro-

longation and torsades de pointes as well as diarrhoea, fatigue (10–

20%), lipodystrophy and hyperglycaemia. 

In summary, these observations of in vitro activity against FIP

coronavirus are not a substitute for clinical data and trials but

may provide further guidance for off-label therapeutic strategies.

The mutation of FEC into FIP coronavirus may provide a paradigm

for considering the relationship between different strains of SARS-

CoV-2. Nelfinavir, chloroquine and hydroxychloroquine are FDA-

approved, orally bioavailable and commercially available and have

at least in vitro data against either SARS-CoV-1 or SARS-CoV-2. Nel-

finavir may be an alternative to lopinavir/ritonavir. Amodiaquine,

hydroxychloroquine and chloroquine all possess CNS penetration

ability. Amodiaquine may be an alternative to chloroquine in ter-

ritories where it is available. These agents can offer clinicians an-

other therapeutic strategy beyond supportive care as monotherapy

or in combination. 
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