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The overarching goal was to resolve a major barrier to real-life prosthesis usability—the
rapid degradation of prosthesis control systems, which require frequent recalibrations.
Specifically, we sought to develop and test a motor decoder that provides (1) highly
accurate, real-time movement response, and (2) unprecedented adaptability to dynamic
changes in the amputee’s biological state, thereby supporting long-term integrity of
control performance with few recalibrations. To achieve that, an adaptive motor decoder
was designed to auto-switch between algorithms in real-time. The decoder detects the
initial aggregate motoneuron spiking activity from the motor pool, then engages the
optimal parameter settings for decoding the motoneuron spiking activity in that particular
state. “Clear-box” testing of decoder performance under varied physiological conditions
and post-amputation complications was conducted by comparing the movement
output of a simulated prosthetic hand as driven by the decoded signal vs. as driven by
the actual signal. Pearson’s correlation coefficient and Normalized Root Mean Square
Error were used to quantify the accuracy of the decoder’s output. Our results show
that the decoder algorithm extracted the features of the intended movement and
drove the simulated prosthetic hand accurately with real-time performance (<10 ms)
(Pearson’s correlation coefficient >0.98 to >0.99 and Normalized Root Mean Square
Error <13–5%). Further, the decoder robustly decoded the spiking activity of multi-
speed inputs, inputs generated from reversed motoneuron recruitment, and inputs
reflecting substantial biological heterogeneity of motoneuron properties, also in real-
time. As the amputee’s neuromodulatory state changes throughout the day and the
electrical properties and ratio of slower vs. faster motoneurons shift over time post-
amputation, the motor decoder presented here adapts to such changes in real-time
and is thus expected to greatly enhance and extend the usability of prostheses.

Keywords: neural decoder, motor decoder, prosthetic hand, motor control, motoneuron modeling

INTRODUCTION

State-of-the-art prosthetic limbs are capable of sophisticated, multi-degree-of-freedom movements
that mimic many physiological motions. However, we still lack advanced control algorithms to
drive those prostheses at their full potential so that they function like an amputee’s natural limb
(Biddiss and Chau, 2007). Current efforts are aimed at development of more robust control
schemes that can access and decode sufficiently detailed information from the patient’s remaining
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motor system to fully exploit the advanced capabilities of
state-of-the-art prostheses. While motor decoders need to be
accurate in estimating the amputee’s motor intent, they also need
to be fast to support real-time operation for natural and seamless
control (Cordella et al., 2016).

Two types of biological signals have been commonly used
to control prosthetic limbs: electromyographic (EMG) and
neural (i.e., electroneurogram, ENG) signals. In both signals, the
spiking activity of spinal motoneurons (MNs) is extracted—via
threshold-crossings detection methods—which motor decoders
decrypt to generate a command signal to the prosthesis that is
proportional to the amputee’s motor intent (Warren et al., 2016).
The spiking activity of MNs contains highly detailed information
on the graded activation of individual muscles (i.e., speed and
direction of the intended movement) and is therefore a faithful
representation of the amputee’s motor intent.

One of the greatest barriers to prosthesis usability is the
rapid degradation of their control systems’ performance over
time, when used in real life by amputees (Dantas et al.,
2019). Thus, the user is burdened by inaccurate responses to
intended movements or frequent recalibration sessions, or often
both. Performance degradation occurs primarily because motor
decoders are usually developed with a limited range of MN
firing activities during the training phase, and because control
systems are calibrated to the amputee’s current condition at
the time of calibration. Yet MNs exhibit a broader variety of
firing behaviors that result from different recruitment profiles
of MNs, such as orderly (i.e., in which MNs are recruited from
smallest to largest), mixed, or reverse recruitment, which all
have been seen in animals and humans (for review, see Cope
and Brian, 1995; Heckman and Enoka, 2012; Bawa et al., 2014).
Also, the amputee’s neuromodulatory state (neuronal excitability
level) changes throughout the day; thus the training data do not
represent all possible neural states of firing activity (Dantas et al.,
2019). Therefore, these factors lead to ongoing fluctuations in
MNs’ firing activity, which degrade control performance over a
few hours to days, requiring frequent calibration of the motor
decoder to update its parameter values.

Another, more long-term problem is that post-amputation
MNs frequently undergo changes in their electrical properties,
changes in the proportions of MN types, and neurodegeneration
(Titmus and Faber, 1990), leading to higher heterogeneity in
the electrical properties of remaining MNs. These changes
are ongoing well past the primary injury, and would require
decoder recalibration after a longer period (months). However,
in this case, the decoder might need to function with a highly
variable spiking signal from MNs, and with only one or two
MN types available. As a result, novel decoding algorithms are
currently under development and testing to overcome these
limitations (Dantas et al., 2019). A motor decoder that can
auto-adapt to the more rapid dynamic changes to support
long-term integrity of control systems, and also provide highly
accurate, real-time movement response, would represent a
major advance in prosthesis technology and amputee quality
of life. Another highly desirable advance would be a decoder
that only requires occasional re-training/calibration sessions to
accommodate signal and MN type changes emerging after injury.

Accordingly, the first major goal of this work was to develop
an adaptive MN activity-based decoder that can auto-switch
between algorithms in real-time. This allows the decoder to adapt
to signal changes by engaging the optimal parameter settings for
decoding the MN spiking activity from the firing motor pool.
Such a characteristic would reduce the need for frequent decoder
calibration. The second major goal was to test the robustness
of our adaptive decoder against a variety of complications that
emerge after amputation. For instance, we assessed the decoder’s
performance in response to post-amputation changes in the ratio
of remaining MN types (slower vs. faster), signal variability
resulting from increased biological heterogeneity in the MN pool,
and variation in MN recruitment pattern (orderly vs. reverse
recruitment), which all directly impact MN spiking activity
(Titmus and Faber, 1990).

To support development and validation of this decoder
as well as its testing under post-amputation conditions, we
employed a multi-scale, high-fidelity computational model which
represents the spinal MN pool in high detail. This model
includes dendritic trees with full 3D anatomical detail, different
cell types, and the ionic mechanisms that modulate neuronal
excitability (Allen and Elbasiouny, 2018). This model, developed
in our prior work, is based on detailed neurophysiological data
and is validated to simulate MN pool firing behaviors and
recruitment patterns with an unprecedented level of accuracy.
To test its real-time performance in prosthetic hand control,
the decoder was used to drive the MuJoCo Physics Simulator’s
Luke hand prosthetic model (Todorov et al., 2012; Kumar and
Todorov, 2015); then the resulting movement was compared to
the movement generated by the original (pre-decoder) neural
signal. The difference between the two movements was used
to assess the decoder accuracy (Figure 1A). In this way,
these “clear box” simulations allowed: (1) full control of all
parameters in the testing environment, (2) full knowledge of
the decoder‘s input and output signals, and (3) testing of the
decoder with neural signals generated from different activation
speeds, from specific cell types, from different MN recruitment
patterns, and under conditions of biological heterogeneity in
MN cellular properties. Accordingly, this approach enabled
us to quantify the decoder’s performance with an exquisite
level of accuracy and provide a rigorous proof of concept
and performance under varied conditions expected to arise
after amputation.

Our results show that an adaptive decoder algorithm based on
the MN pool spiking rate operated with a high level of accuracy
[Pearson’s correlation coefficient > 0.99 and Normalized Root
Mean Square Error (NRMSE) ∼5%] and in real-time (decoding
time < 10 ms), while adapting to a wide range of physiological
conditions. Although calibrated to spiking activity resulting from
fixed-speed inputs of orderly recruited MNs, the decoder robustly
decoded the spiking activity of multi-speed inputs, inputs
generated from reversed MN recruitment, and inputs involving
substantially greater biological heterogeneity of MN properties
(Pearson’s correlation coefficient > 0.98 and NRMSE <13%).
Accordingly, these results support the feasibility of the present
adaptive decoder for prosthetic control and for adapting to
expected post-amputation changes.
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FIGURE 1 | Overview of decoder development and testing paradigm. (A) Block diagram illustrating the steps involved in the decoder development and testing. An
excitatory synaptic input is simulated in the MU pool model (shown in B), which generates action potentials in recruited MNs. Action potential spikes from individual
MNs (MU pool spikes) serve as the input to the motor decoder. The decoder algorithm decodes the synaptic input and drives the MuJoCo prosthetic hand to move.
The error between the decoded and actual hand position of the MuJoCo hand is calculated to assess the decoder performance. (B) Schematic diagram of the
motor unit pool model published in Allen and Elbasiouny (2018) used to develop the decoder algorithm. The MU pool model consists of anatomically accurate,
information of S- (blue), FR- (purple), and FF-MNs (red) with axon and soma sizes and 3D dendritic reconstructions, firing characteristics and type proportions as
seen in the MG cat MN pool.

MATERIALS AND METHODS

Computational Model
The 51-MN homogeneous pool model described in Allen and
Elbasiouny (2018) was activated via synaptic inputs (Figure 1B)
at a rate of 4 nA/s to a peak level of effective synaptic current of
10 nA, after which the level of activation was reduced at a rate
of −4 nA/s until the measured input at the somas returned to 0
nA (Figure 2A). This input profile is of sufficient magnitude to
recruit 100% of S and FR-type MNs and 80% of FF-type MNs,
which constitutes 90% recruitment of the full pool (activation
level = 90%). The aggregate spiking (Figure 2B, gray) as well
as spiking of each cell-type population (Figure 2B, red, purple,
and blue traces) were recorded during the simulations. The
firing rate of the aggregate pool spiking activity was calculated
by the decoder (Figure 2C); then the decoder’s performance in
decoding the pool spiking activity was assessed by comparing
MuJoCo’s movement driven by the actual input vs. the decoded
input (Figure 2E, black vs. gray trace). The difference between
the two movements were calculated as the instantaneous error
(Figure 2F). Part of this work appeared in Montgomery (2018).

Collection and Processing of Spiking
Data
The synaptic conductances inserted along the dendrites of MNs
in the MU pool model were adjusted to simulate an input
stimulus to the pool, and the somatic membrane potential of

each MN was recorded. Action potential (AP) spikes of MNs
were identified, counted, and averaged via scrolling 50 ms bins
with 10 ms update intervals (i.e., the first 40 ms of the new
bin is comprised of the last 40 ms of the previous bin). In that
way, the 10ms update interval in each bin contains the most
recent pool spiking data. This scrolling average feature provided
the smoothing effects of a 50 ms bin average, but with only
a 10 ms latency.

Brown’s Linear Exponential Smoothing
Brown’s method (Hansun, 2016) for exponential smoothing was
applied to reduce the variation in spike count between successive
time bins. The smoothed spike count yt is modeled by a linear
regression equation as the sum of intercept b0 and slope b1 which
are estimates of the spike count’s level and trend, respectively.

yt = b0 + b1 (1)

Estimates of b0 and b1 are calculated by maintaining two
exponentially smoothed parameters x′t and x′′t .

b0 = 2x′t − x′′t (2)

b1 =
α

(1− α)
(x′t − x′′t ) (3)

The first exponentially smoothed parameter x′t is a weighted
sum of the present spike count xt and the previous bin’s
smoothed parameter x′t−1. The second exponentially smoothed
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FIGURE 2 | Decoder development and performance. (A) Profile of the excitatory synaptic input command to the pool model to activate the motor pool. The input
increases and decreases at 4 nA/s to a peak level of 10 nA. (B) Spikes of type S (blue), FR (purple), and FF (red) MNs are combined to form the aggregate motor
pool spikes (gray). The spikes highlight the recruitment order and self-sustained firing characteristics of S and FR cell types, relative to the FF type. (C) Smoothed
aggregate firing rate of the motor pool. (D) Comparison of decoded vs. actual synaptic inputs. (E) Profiles of MuJoCo’s hand position when driven by the actual
synaptic input (black) vs. the decoded input (gray). (F) The instantaneous error in MuJoCo’s hand position, calculated as the difference between MuJoCo’s hand
position angles when driven by the actual vs. the decoded inputs (same color code as in D).

parameter x′′t is the weighted sum of the present first
exponentially smoothed parameter x′t and the previous bin’s
second exponentially smoothed parameter x′′t−1.

x′t = αxt + (1− α) x′t−1 (4)

x"t = αx′t + (1− α) x′′t−1 (5)

These parameters’ recursive origins allow the single weighting
parameter (α = 0.08) to apply an exponentially decreasing weight
to past spike count observations. This results in a smoothed
value that is the weighted average of the most recent spike count
bin and many previous spike count bins while avoiding the
computational expense of maintaining a vector of saved previous
spike count observations. The smoothed spike count and fixed
bin size of 50 ms are then used to convert the spiking activity to a
firing rate value in Hertz.

Decoder Calibration and Auto-Switching
Spinal MNs respond to a linear synaptic activation with
frequency-current (FI) relationships of two firing phases of
different gains (i.e., secondary and tertiary firing phases/gains).
These different phases and gains result from the graded activation
of persistent inward currents (PICs), with partial PIC activation
and low firing gain during the secondary firing phase, but full PIC
activation and high firing gain during the tertiary firing phase
(Lee et al., 2003). Accordingly, the decoder was developed to
account for this non-linearity in the MN spiking behavior and
to expect the MU pool’s firing gain to change in two phases in
response to synaptic input activation. Thus, synaptic input to the
pool was estimated according to the following equation:

Synaptic Input (nA) = RTE+
yt −MFR

g
(6)

g =
1 Firing Rate

1 Synaptic Input
(7)
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in which g is the gain of the linear FI relationship, RTE is the
recruitment threshold excitation or the minimum synaptic input
needed for the onset of firing, MFR is the minimum firing rate
at onset of firing, and yt is the current smoothed firing rate (see
section “Brown’s Linear Exponential Smoothing”).

Equation (6) was based on the work of Fuglevand et al.
(1993) but modified to solve for the synaptic input of the motor
pool. These parameters (RTE, MFR, and g) are estimated during
calibration by assessing the aggregate firing output response of
the pool to a triangular ramp input (Figure 2C). The decoder
selects the most optimal RTE, MFR, and g from these calibrated
values based on the firing rate of the most recent time bin. The
decoder uses the rate of change of the smoothed firing rate (y′t) to
switch between the settings and engage the most optimal values
of RTE, MFR, and g. A high rate of change corresponds to the
secondary firing phase and fast activation, while a low rate of
change corresponds to tertiary firing and slower activation.

The decoder was calibrated using current ramp activation
rates of 2, 4, and 6 nA/s. Each firing phase is calibrated
with a particular portion of the firing response. The secondary
phase parameters are set relative to the onset and initial
acceleration in pool firing, corresponding to aggregate firing
occurring from 1,500 to 2,000 ms in Figure 2C. The region
of the firing response where this acceleration is seen to
decrease while the activation rate of the ramp remains
constant is treated as the pool’s transition to tertiary firing.
Calibration of the tertiary phase is then set using the firing
response from this transition region to the peak level of
firing/activation, aggregate firing occurring from 2,000 to 3,500
ms in Figure 2C.

Decoder Testing and Performance
Assessment
The decoder’s performance was tested and assessed by comparing
the resultant movement of the MuJoCo Physics Simulator’s
Luke hand prosthetic model (Todorov et al., 2012; Kumar and
Todorov, 2015) when driven by the actual input to the pool vs.
driven by the decoder’s output (Figure 2E). A conversion scheme
was established to relate the input magnitude in nano-amperes
(nA) to the prosthetic model’s finger position angle (degrees).
The peak synaptic input of 10 nA corresponds to 60◦ of finger
flexion, with all other values from zero to the peak maintaining
a linear relationship, given the linearity of the input stimulus.
In order to obtain the movement which would result from the
actual input, the true value of synaptically injected current for
the given time instance of simulation was used to drive MuJoCo
directly, and the resulting position was recorded. This vector
then serves as the reference for comparison of any subsequent
decoding efforts of firing output in response to the particular
synaptic input profile.

The decoder’s performance was assessed using two primary
metrics:

(1) Pearson’s linear correlation coefficient (Pearson’s CC,
Lee Rodgers and Nicewander, 1988; Artemiadis and
Kyriakopoulos, 2007): The Pearson’s CC was used to
measure the correlation between MuJoCo’s hand positions

when driven by the actual vs. decoded inputs. Pearson’s CC
was measured by the following equation:

CC =

∑N
k =1 (zk − z̄) (ẑk − ẑ)√∑N

k =1 (zk − z̄)2 ∑N
k =1

(
ẑk − ẑ

)2
(8)

where zk and z̄ are the instantaneous and mean
MuJoCo’s hand positions when driven by the actual input,
respectively, and ẑk and ẑ are the instantaneous and mean
MuJoCo’s hand positions when driven by the decoded
input, respectively.

(2) Normalized Root Mean Square Error (NRMSE, Sheiner
and Beal, 1981; Artemiadis and Kyriakopoulos, 2007): The
NRMSE, expressed as a percentage, was used to measure
the error between MuJoCo’s hand positions when driven
by actual vs. decoded inputs, and was measured by the
following equations:

RMSE =

√√√√ 1
N

N∑
k=1

(ẑk − zk)2 (9)

NRMSE (%) =
RMSE

max(zk)−min(zk)
(10)

(3) Root Mean Square Error (RMSE): While NRMSE is widely
used to assess decoders performance, it shows the RMSE
error value normalized to the difference between min and
max values, not its absolute value. To provide the actual
error value, we also report the RMSE value (calculated in
Equation 9) for each condition.

Together, the Pearson’s CC, NRMSE, and RMSE metrics
provide a comprehensive assessment of the quality of the
decoder’s estimates. The datasets presented in this study are
available as Supplementary Material.

RESULTS

Development Stage and Computational
Platform
Our first goal was to develop a motor unit firing activity-
based decoder capable of translating neural signals (decoder
input) in real-time into an accurate motor command (decoder
output/prosthesis input). To this end, we employed a multi-
scale, high-fidelity motor unit (MU) pool model developed
by Allen and Elbasiouny (2018) as a computational platform
to aid in decoder development (see section “Discussion” for
details). This model incorporates the nonlinearities involved in
ion channel activation and the generation of MN spikes from
synaptic inputs.

Figure 1A shows a block diagram that illustrates the general
steps involved in the motor decoder algorithm development and
testing, while Figure 1B shows detail of the MU computational
model used to generate the MU pool spikes. The MU pool model
includes cellular models of S, FR, and FF motoneuron (MN) types
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whose electrical and membrane properties have been optimized
and rigorously verified to simulate the firing behaviors of spinal
MNs (Allen and Elbasiouny, 2018). Synaptic conductances on the
dendrites of each MN in the pool model were varied linearly
in order to provide a triangular synaptic input to each cell
(Figures 1B, 2A). When activated, cells fire action potentials
along their myelinated axons; then potentials combine from all
cells to form a train of pool spikes (Figure 2B) from which the
instantaneous pool firing rate is calculated (Figure 2C). This train
of pool spikes served as the input to the motor decoder shown in
Figure 1A.

Decoder Development, Calibration, and
Testing
The objective of the motor decoder algorithm is to estimate
the magnitude of the synaptic input (i.e., excitation level) to
the MNs from the train of pool spikes (decoder input). This
estimated excitation level (decoder output) was used to drive
the opening and closing movements of the simulated MuJoCo
prosthetic hand (i.e., prosthesis input) (Todorov et al., 2012;
Kumar and Todorov, 2015). The train of pool spikes (Figure 2B)
was smoothed (see section “Materials and Methods” for detail)
and input into the decoder.

When tested in response to a triangular synaptic input, the
motor decoder demonstrated high performance in estimating
the excitation level to the MU pool as shown in Figures 2D–F
(compare the black to gray traces in Figures 2D–F). Specifically,
the decoded synaptic input matched closely the actual synaptic

input with NRMSE of 3.97%, RMSE of 0.3971, and Pearson’s
CC of 0.9948 (Figure 2D). To assess the functional performance
of the motor decoder, we also compared MuJoCo’s hand
movement when driven by the decoded synaptic current vs.
when driven by the actual synaptic input (Figure 2E). MuJoCo’s
hand position was very comparable when driven by decoded
vs. actual synaptic inputs (compare black to gray traces in
Figure 2E), with NRMSE of 3.58%, RMSE of 2.14, and Pearson’s
CC of 0.9972. Because the profile of the decoded synaptic
input current is similar to that of MuJoCo’s movement, we
will only present MuJoCo’s hand position in the rest of the
figures. The instantaneous error in MuJoCo’s hand movement,
assessed as the difference between MuJoCo’s decoded and actual
hand positions, was insignificant (Figure 2F). Collectively, these
results show that a motor decoder algorithm that is based on
the motor pool firing activity is capable of driving accurate
prosthetic hand movement.

Cell Type Testing
Given that transition in MU types (S-to-FR, FR-to-FF, etc.), and
therefore shift in their ratios, is seen in different muscles after
amputation (Titmus and Faber, 1990), we examined whether
the firing activity of one cell type is a better predictor of the
pool excitation level than other cell types. To achieve that,
we compared the motor decoder’s performance in driving the
MuJoCo hand when calibrated to the firing activity of each
cell type separately, but tested on the aggregate pool firing
activity (Figure 3). For instance, an S-type-calibrated decoder

FIGURE 3 | Performance of cell-type calibrated decoders in response to a triangular ramp with rate of rise and fall of 4 nA/s. S-type calibrated decoder tested on the
firing of S MNs only (A) and on aggregate pool firing (D). FR-type calibrated decoder tested on the firing of FR MNs only (B) and on aggregate pool firing (E). FF-type
calibrated decoder tested on the firing of FF MNs only (C) and on aggregate pool firing (F).
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TABLE 1 | Cell-type neural decoders’ performance measures.

Calibration
condition

Test condition MuJoCo’s hand position

NRMSE RMSE Pearson’s CC

S-type S-type firing 9.90% 6.0597 0.967337

Pool firing 16.53% 19.635 0.983047

FR-type FR-type firing 5.12% 3.0733 0.993292

Pool firing 6.43% 7.7266 0.993930

FF-type FF-type firing 5.47% 3.2006 0.989249

Pool firing 29.29% 14.454 0.993241

estimated the synaptic input of S cells reasonably (see Table 1
for NRMSE, RMSE, and Pearson’s CC) but with some degree of
underestimation (Figure 3A). Because S-MNs have high input
resistance and strong PICs, they experience a greater initial
increase in firing gain at recruitment (i.e., the secondary range).
However, once their PICs have saturated, S-MNs fire at lower
firing gain (i.e., the tertiary range), which underestimates the
magnitude of synaptic input later on and leads to reduced
MuJoCo hand movement throughout the rest of the ascending
and all of the descending phases (Figure 3A). However, when
tested on the aggregate pool firing activity, the S-type calibrated
decoder significantly overestimated the synaptic input of the
pool, indicated by exaggerated MuJoCo hand movement relative
to actual synaptic input (Figure 3D), with high NRMSE and
RMSE values (Table 1). This overestimation is due to the decoder
parameters, which have been calibrated to the S-MNs’ low firing
activity, causing the decoder to expect modest increases in firing
activity to continued synaptic input increases. Given that the
firing rate of the pool firing activity is higher than that of
S-MNs, this leads to overestimation of the decoded synaptic
input (Figure 3D).

The opposite was true for an FF-type calibrated decoder,
which estimated the synaptic input of FF-MNs well (Figure 3C,
see Table 1 for NRMSE, RMSE, and Pearson’s CC values), but
severely underestimated the synaptic input of the pool, indicated
by reduced MuJoCo hand movement relative to actual synaptic
input (Figure 3F). This underestimation is due to the decoder
parameters, which have been calibrated to the FF-MNs’ high
firing activity, causing the decoder to expect high firing activity
to continued synaptic input increases. Given that the rate of
the pool firing activity is lower than that of FF-MNs, this leads
to underestimation of the decoded synaptic input (Figure 3F).
Because of their intermediate firing activity, an FR-type calibrated
decoder demonstrated the best performance (with the smallest
NRMSE and RMSE values and highest Pearson’s CC values
among the other cell types, Table 1), estimating the synaptic
input of FR-MNs as well as the excitation level to the MN pool
reasonably (Figures 3B,E). In sum, these results show that the
firing activity of FR-MNs is a better predictor of the magnitude
of synaptic input to the MN pool than are S- or FF-MNs. These
results are expected to be informative to decoder recalibration to
accommodate neurodegeneration and/or shifts in available MN
types that occur after the primary injury.

Single-Speed Motor Decoder
Decoders need to be able to drive a prosthesis at different
speeds, so we next examined whether a motor decoder algorithm
calibrated to synaptic input of a single speed would function
with equal accuracy at other speeds. We therefore tested the
single-speed motor decoder presented above (calibrated to the
pool’s aggregate firing activity at activation speed of 4 nA/s) with
synaptic inputs of two other activation speeds: 1 nA/s (a slow
activation speed, close-to-open hand movement of 12 s) and 7
nA/s (a fast activation speed, close-to-open hand movement of
1 s) (Figure 4A). When the MU pool model was activated at
1 nA/s, the firing of the most excitable S-MNs started earlier,
by ∼400 ms, at a lower input level than when activated at the
calibration speed of 4 nA/s. The early recruitment of MNs is due
to the higher effectiveness of slow synaptic inputs in activating
the dendritic PICs, leading to earlier cell recruitment. This change
in firing onset resulted in earlier MuJoCo movement onset than
that evoked by the actual input (Figure 4B). Other than that, the
decoder’s performance was excellent for the rest of the ascending
and descending phases (Figure 4B), as indicated by the small
error in MuJoCo movement (Figure 4D). The NRMSE, RMSE,
and Pearson’s CC values are shown in Table 2.

When the MU pool model was activated with a faster input
of 7 nA/s, opposing effects were observed. First, the onset of
pool firing occurred at a recruitment threshold higher than that
seen for the calibration speed, leading to delayed MuJoCo hand
movement, by∼200 ms as compared to that evoked by the actual
input (Figure 4C). The delayed recruitment of MNs was due
to the lower effectiveness of fast synaptic inputs in activating
the dendritic PICs, which have slow dynamics, leading to later
cell recruitment. Second, the weak PIC activation by the fast
synaptic input caused low pool firing activity that persisted for
some time and resulted in underestimation of the magnitude
of decoded synaptic input during the first half of the ascending
phase (Figure 4C). After full PIC activation, the motor decoder
algorithm estimated the synaptic input reasonably with much less
error (Figure 4E, NRMSE, RMSE, and Pearson’s CC values are
listed in Table 2). In sum, these results demonstrate that the good
performance of a single-speed motor decoder algorithm at the
calibration speed does not extend well to other speeds.

Adaptive 2-Speed Motor Decoder
In an effort to achieve optimal motor decoder performance
throughout the activation speed range, we first expanded the
single-speed motor decoder described above into an adaptive
2-speed motor decoder. This decoder automatically switches in
real-time between two parameter settings, each calibrated to a
single speed, depending on the detected pool activation speed
(Figure 5). The activation speed range of the prosthetic hand
(1–7 nA/s) was thus split into two sub-ranges covered by two
decoder settings: One calibrated to an intermediate speed of
2 nA/s to cover the < 3.5 nA/s sub-range (Figures 5A–C),
and another calibrated to an intermediate speed of 6 nA/s to
cover the > 3.5 nA/s sub-range (Figures 5D–F). In this way,
each decoder settings covers a small speed range around its
calibration speed.
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FIGURE 4 | Multi speed testing of a single-speed decoder (calibrated to an intermediate speed input of 4 nA/s). (A) Inputs of slow (1 nA/s), medium (4 nA/s), and
fast (7 nA/s) speeds used in decoder calibration and testing. The decoder was calibrated to the medium speed but tested on the slow (B) and fast (C) speeds.
Performance of the medium-speed calibrated decoder when tested with slow (B) and fast (C) inputs, illustrated by a comparison of MuJoCo’s hand position when
driven by the actual (black) vs. decoded (gray) inputs. The instantaneous error in MuJoCo’s hand position when the medium-speed calibrated decoder was tested
with slow (D) and fast (E) Inputs.

Although some errors still resulted (NRMSE, RMSE, and
Pearson’s CC values are shown in Table 2), the adaptive 2-speed
decoder showed much more accurate decoding performance than
the single-speed decoder. Specifically, the 2 nA/s (i.e., the low-
speed settings) decoded the low-end speed of 1 nA well with low
error (Figure 5A and Table 2), whereas it showed higher error in
decoding the high-end speed of 3.5 nA (Figure 5C and Table 2).
Conversely, the 6 nA/s (i.e., the high-speed settings) decoded the
high-end speed of 7 nA well (Figure 5F and Table 2), whereas
it showed higher error in decoding the low-end speed of 3.5 nA
(Figure 5D and Table 2). Collectively, these results indicate that
our motor decoder algorithm does not perform well when tested
with activation speeds > 1 nA/s away from its calibration speeds.

Adaptive 3-Speed Motor Decoder
Based on the results above, we further expanded our motor
decoder framework to split the activation speed range of the
prosthetic hand into three sub-ranges, each decoded by a
single algorithm setting calibrated to a single speed (Figure 6).
In this version, a low-speed setting algorithm calibrated to
an intermediate speed of 2 nA/s covered the activation sub-
range between 1 and 3 nA/s (Figure 6A). A middle-speed
setting algorithm calibrated to an intermediate speed of 4
nA/s covered the activation sub-range between 3 and 5 nA/s
(Figure 6B). Finally, a high-speed setting algorithm calibrated
to an intermediate speed of 6 nA/s covered the activation sub-
range between 5 and 7 nA/s (Figure 6C). In this way, each

decoder setting covers an activation speed no more than 1
nA/s away from its calibration speed on either end. As above,
the decoder automatically detected the pool activation speed
and switched in real-time to the optimal parameter settings.
Results of the adaptive 3-speed decoder showed greatly improved
decoding performance at all testing speeds (see Table 2 for
the NRMSE, RMSE, and Pearson’s CC values at each speed),
as compared to the single-speed and 2-speed motor decoders
presented above. Notably, the auto-switching among the pre-
calibrated settings was highly efficient and the adaptive 3-speed
decoder had decoding time of 8.94 ms. This time indicates that all
computations are able to take place within the decoder’s inherent
latency period—which is 10 ms—supporting real-time operation.

Variable-Speed Input Testing
To further examine the developed decoder with inputs that
reflect a more practical prosthetic use, we tested the adaptive
3-speed decoder with a variable input of changing activation
speed (Figure 7). This mimicked a situation in which the
amputee changes the activation speed midway while opening and
closing the prosthetic hand. Under these conditions, the adaptive
decoder should auto-switch in real time as it detects the changing
activation speed. Figure 7A shows a variable synaptic input that
was used to activate the MU pool model. The synaptic input
started increasing during the hand opening phase at low speed
(2 nA/s) then switched midway to a higher speed (6 nA/s). It then
decreased speed back to 2 nA/s during the hand closing phase,
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TABLE 2 | Summary of performance measures for the different types of
neural decoders.

Decoder type Calibration
speeds

Test
speeds

MuJoCo’s hand position

NRMSE RMSE Pearson’s CC

Single-speed
decoder

4 nA 1 nA 4.67% 2.4662 0.9917

4 nA 3.58% 2.1402 0.9973

7 nA 8.74% 5.1711 0.9731

Two-speed
decoder

2 nA 1 nA 4.61% 2.7656 0.9962

2 nA 5.28% 3.1583 0.9945

3.5 nA 7.01% 4.1752 0.9838

6 nA 3.5 nA 5.89% 3.5202 0.9782

6 nA 3.72% 2.2115 0.9928

7 nA 5.30% 2.9196 0.9925

Three-speed
decoder

2 nA 1 nA 4.61% 2.7737 0.9962

2 nA 5.28% 3.1497 0.9944

3 nA 6.30% 3.6940 0.9898

4 nA 3 nA 3.99% 2.3683 0.9960

4 nA 3.58% 2.1402 0.9973

5 nA 4.70% 2.8061 0.9936

6 nA 5 nA 4.42% 2.6846 0.9878

6 nA 3.72% 2.2162 0.9928

7 nA 5.31% 5.2556 0.9925

Orderly
recruitment

2—6 nA
(adaptive)

5.58% 3.3591 0.9951

Reverse
recruitment

2–6 nA
(adaptive)

13.24% 9.4953 0.9854

resulting in a dual-speed ramp (Figure 7A). Figure 7B shows the
rate of change in pool firing rate that was used to estimate the
activation speed (i.e., from the 1FR value) and its direction (i.e.,
+ve for increasing input and -ve for decreasing inputs). Although
the variable input made a big jump in speed (from the lowest to
the highest activation sub-ranges skipping the intermediate sub-
range), the decoder still auto-switched dynamically and correctly
estimated the activation speed in real-time. Note that the decoder
was able to decode the variable speed input accurately on both
the ascending and descending phases of input and replicated the
dual-speed ramp (Figure 7C, NRMSE of 5.58%, RMSE of 3.3591,
and Pearson’s CC of 0.9951) with small instantaneous error in
MuJoCo position (Figure 7D). The highest error in MuJoCo
hand movement did not exceed 10◦. Additionally, as shown
in Supplementary Video 1, the prosthetic hand changed its
speed smoothly while opening and closing. In conclusion, these
results show that the adaptive 3-speed decoder is capable of auto-
switching and decoding dynamic inputs of varying activation
speeds accurately in real-time.

Biological Heterogeneity Testing
Biological heterogeneity in the electrical properties of individual
MNs expands the recruitment range of MNs within each sub-
type, which causes high variability in the aggregate pool spikes
(Allen and Elbasiouny, 2018). Therefore, to further test the

robustness of the adaptive 3-speed decoder in decoding neural
activity with high firing variability, we used a heterogeneous
MU pool model developed by Allen and Elbasiouny (2018) to
generate MN firing activity in response to an increasing and
decreasing ramp input. This heterogeneous MU pool model
has a larger MN pool (153 MNs, as opposed to 51 MNs
in the standard MU pool used in decoder development and
calibration) and largely mimics the variability in MN cellular
properties observed experimentally (Figure 8A). Such biological
variability has a strong impact on the firing behaviors of MU
pools (Allen and Elbasiouny, 2018), and would be expected
to be encountered in human subjects. The adaptive 3-speed
decoder was then tested with spike trains from the heterogeneous
pool and MuJoCo’s hand movement was recorded. Figure 8B
shows that the adaptive 3-speed decoder was able to decode
the neural activity of the heterogeneous MU pool model
reasonably (NRMSE of 6.55%, RMSE of 3.903, and Pearson’s
CC of 0.9964) despite the large variability in pool spikes and
firing rates. Most of the error was observed at the onset and
offset of pool firing due to the expanded recruitment and de-
recruitment ranges. The error decreased as a greater percentage
of cells activated, and the overall direction and degree of
hand movement were well predicted. Accordingly, these results
demonstrate that this adaptive decoder could decode neural
activity with firing variability much higher than what the decoder
has been calibrated to.

Reverse Recruitment Testing
Because different recruitment orders of MNs underlie different
movements (for review, see Cope and Brian, 1995; Heckman and
Enoka, 2012; Bawa et al., 2014), we examined the performance
of the adaptive 3-speed decoder, which was developed and
calibrated in simulations of orderly recruited MNs, in a situation
of reversed recruitment. Reverse recruitment was produced by
activating the MN pool model with a non-uniform synaptic
input of higher magnitude to FF-type cells > FR-type > S-
type cells (Figure 9A), which activated FF, then FR, then S
MNs (Figure 9B). The decoder’s performance in driving the
MuJoCo prosthetic hand is shown in Figure 9C. MuJoCo’s
hand movement in response to the decoded input was initially
very close to that of the actual input before it shifted upwards
and leveled out throughout the rest of movement. This shift
results from the later recruitment of S-MNs and the activation
of their PICs, leading to high firing activity which sends the
decoder into higher speed parameters to generate this shift.
Despite that shift, the adaptive decoder was able to predict
the slope and direction of the intended movement accurately
and drove the MuJoCo prosthetic hand reasonably well and
similar to the actual input (NRMSE of 13.24%, RMSE of 9.4953,
and Pearson’s CC of 0.9854). Therefore, these results show
that the developed adaptive decoder is versatile, in that it
could decode the firing activity of MNs recruited in different
orders (i.e., orderly or reversely recruited). This decoder’s robust
performance in scenarios of realistic biological variability (3.8,
above) and in non-orderly MN recruitment is expected to
support accurate control in context of rapid fluctuations in the
amputee’s physiological state.
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FIGURE 5 | Testing of the adaptive 2-speed decoder across a range of activation speeds. All panels include comparison of MuJoCo’s hand position when driven by
the actual (black) vs. decoded (gray) inputs. Decoder calibrated to 2 nA/s input tested on a 1 nA/s (A), 2 nA/s (B), and 3.5 nA/s (C) inputs. Decoder calibrated to 6
nA/s input tested on a 3.5 nA/s (D), 6 nA/s (E), and 7 nA/s (F) inputs.

FIGURE 6 | Testing of the adaptive 3-speed decoder across a range of activation speeds. All figures include comparison of MuJoCo’s hand position when driven by
the actual (black) vs. decoded (gray) inputs. (A) Decoder calibrated to 2 nA/s input tested on a 1 nA/s (low-end speed, left panel), 2 nA/s (calibration speed, middle
panel), and 3 nA/s (high-end speed, right panel) inputs. (B) Decoder calibrated to 4 nA/s input tested on a 3 nA/s (low-end speed, left panel), 4 nA/s (calibration
speed, middle panel), and 5 nA/s (high-end speed, right panel) inputs. (C) Decoder calibrated to 6 nA/s input tested on a 5 nA/s (low-end speed, left panel), 6 nA/s
(calibration speed, middle panel), and 7 nA/s (high-end speed, right panel) inputs.
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FIGURE 7 | Testing of the adaptive 3-speed decoder using a variable input of changing activation speed. (A) Profile of the synaptic input to the pool model. The
input increases at 2 nA/s for 2,000 ms, then increases by 6 nA/s for 1,000 ms to reach a peak activation of 10 nA. The input decreases at the same rates to return to
zero. (B) The rate of change in pool firing rate. This measure is used to control the auto-switching among speed settings in the adaptive decoder. (C) Comparison of
MuJoCo’s hand position when driven by the actual (black) vs. decoded (gray) inputs. (D) Instantaneous error in MuJoCo’s hand position when driven by the adaptive
3-speed decoder.

FIGURE 8 | Testing of the adaptive 3-speed decoder with the firing output of a heterogeneous MN pool. (A) Comparison of physiological activation characteristics to
activation characteristics of heterogeneous MN pool (figure adapted from Allen and Elbasiouny, 2018, with permission). (B) Performance of the adaptive 3-speed
decoder in driving the MuJoCo prosthetic hand in response to the output of heterogeneous MU pool.

DISCUSSION

This study sought to address, first, a major barrier to the
real-life use of prostheses by amputees: the degradation of
control systems’ accuracy over time, thus necessitating frequent
recalibrations. Also important were the goals of improving

the accuracy of detail on intended movements and real-time
responsiveness. We thus developed, optimized, and tested an
adaptive motor decoder algorithm that decoded the spiking
activity of MNs to drive a prosthetic hand with real-time
performance. As opposed to traditional approaches in which a
standard algorithm (e.g., Kalman filter, deep learning decoders,
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FIGURE 9 | Testing of the adaptive 3-speed decoder with the firing output of a reversely recruited MN pool. (A) The synaptic input to MNs in the pool model.
A non-uniform input activated S-MNs to a peak value of 3.75 nA (blue), FR-MNs to a peak value of 10 nA (purple), and FF-MNs to a peak value of 16.25 nA (red).
(B) Recruitment order of MNs in the pool. The non-uniform input recruited MNs opposite to the size principle: FF-MNs first, followed by FR, then S-MNs.
(C) Comparison of MuJoCo’s hand position when driven by the actual input (black) vs. the input decoded from the aggregate firing of reverse recruitment pool (gray).

etc.) is employed to learn the spiking data, the development
and optimization of this decoder algorithm were guided
and informed by the neurophysiological properties of spinal
MNs. Furthermore, its testing was conducted in a robust
simulation environment that incorporated the nonlinearities
of MN spiking dynamics and recruitment. This approach,
therefore, allowed rigorous testing of the decoder’s performance
under varied biological conditions (e.g., variable-speed inputs
and reverse recruitment) as well as post-amputation conditions
(e.g., increased biological heterogeneity and changes in cell-type
availability). Our results show that a decoder algorithm based
on the MN pool spiking rate could be effective in extracting
the features of the intended movement and then driving a
prosthetic hand with real-time performance (decoding time < 10
ms). Although calibrated by spiking activity resulting from
fixed-speed inputs of orderly recruited MNs, the decoder was
able to robustly decode the spiking activity of multi-speed
inputs, inputs generated from reversed MN recruitment, and
inputs reflecting substantial biological heterogeneity of MN
properties. This represents proof of concept that this decoder

can support long-term fidelity of control system performance
with fewer recalibrations, thus enhancing the usability of
prostheses for amputees.

Current Work vs. Earlier MN Decoders
The spiking activity of neurons is mediated via nonlinear
voltage-gated and time-dependent ion channels (Hodgkin and
Huxley, 1952a,b; Hodgkin et al., 1952). Because of their
different activation/inactivation dynamics (i.e., persistent vs.
transient currents) and cellular location (i.e., somatic vs. dendritic
channels), the activation of these ion channels by synaptic inputs
leads to nonlinear changes in the firing activity of MNs (e.g.,
firing bistability and self-sustained firing behaviors) (Lee and
Heckman, 1998, 2000). Accordingly, the relationship between the
synaptic input and the MN firing output is not always perfectly
linear. While a decoder algorithm based on MN firing activity for
prosthetic control has been previously developed and validated
using human data (Li et al., 2012, 2013), this algorithm did not
consider the nonlinearities in the firing properties of MNs. To
capture the nonlinearities in the spiking behavior of MNs and
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account for them in the decoding process here (i.e., deal with MN
firing switching between secondary and tertiary firing behaviors),
we employed a neurophysiologically detailed computational
model that offered a framework to support the development,
optimization, and assessment of the present decoder, which
is not feasible in experimental or clinical investigations. The
simulations showed that a decoder that captures the initial firing
rate as well as estimates the relative change in firing gain between
the secondary and tertiary spiking phases could decode the
excitation level to MNs accurately. Importantly, these parameters
could be easily and accurately estimated from pool or cellular
spiking in humans (Farina et al., 2017; Afsharipour et al., 2020;
Hassan et al., 2020).

While decoding MN spiking activity for estimating the
synaptic input (as a measure of motor intent) or for estimating
grip force have been recently examined in animals (Thompson
et al., 2018) and humans (Farina et al., 2017; Twardowski
et al., 2019; Afsharipour et al., 2020; Hassan et al., 2020), only
one decoder in the literature has shown real-time performance
for prosthetic control (decoding time < 10 ms, Twardowski
et al., 2019). When compared to conventional amplitude-
based myoelectric decoders, MN firing activity-based decoders
provide more responsive, smooth, and proportional control,
supporting the high performance in Twardowski et al. (2019)
and even higher performance observed in our results (see
Pearson’s CC, RMSE, and NRMSE, next section). However,
the decoder developed in Twardowski et al. (2019) is not
adaptive, nor tested under conditions of post-amputation
complications. Thus, the motor decoder developed in the
present study is novel in its adaptability to the changes in
motoneuronal spiking activity as well as its adaptability to post-
amputation complications. The computational framework used
here (clear-box testing with a realistic model of the motor
pool) could assist advancement of neural decoders beyond
their training datasets by testing and resolving decoder errors
resulting from issues of biological heterogeneity and reverse
recruitment, which confound consistent performance. This, in
turn, could assist development of more responsive decoders
which produce motor outputs that more closely reproduce
nuanced physiological control.

Decoder Characteristics
Our results show that our decoder algorithm is accurate,
with Pearson’s CC > 0.99 and small NRMSE < 6.3% and
RMSE < 3.69). These performance measures exceed those of the
Twardowski et al. (2019) decoder. Our results also show that
our decoder is computationally efficient in extracting the features
of the intended movement and driving a prosthetic hand (i.e.,
real-time performance with decoding time ∼9 ms). Importantly,
the decoder algorithm used the rate of change in spiking rate
to estimate the activation speed of the input, then used that
information, in real-time, to auto-switch and engage the optimal
decoding parameters to decode inputs. This characteristic allows
the decoding of a wide range of hand movement speeds (i.e.,
prosthetic hand opening/closing time ranging between 1 and
12 s) and would be expected to minimize the amputee’s need
for frequent decoder calibrations during the day. While the

prosthetic hand’s activation speed range was divided in the
present study into only three sub-ranges, with each having its
own parameter settings, more sub-ranges could be defined and
would enhance the decoding accuracy substantially. Additionally,
decoding time is expected to substantially improve when run on
a dedicated microprocessor in the prosthesis hardware, as the
speed testing reported here was conducted on a shared processor
of a standard computer.

To rigorously test the developed decoder, we leveraged the
“clear-box” advantage of the simulated environment by closely
quantifying the decoder’s accuracy under varied conditions
likely to be encountered in biological situations, such as the
variable-speed input testing, the biological heterogeneity testing,
the reverse MN recruitment testing, and the cell-type testing.
The variable-speed input evaluation tested the decoder for
situations when the activation speed, and consequently the
prosthetic hand speed, would be changed in real-time during
the movement. Although only calibrated with fixed-speed inputs,
but not with variable inputs, the adaptive decoder was able to
decode the change in input speed successfully, due to its auto-
switching capability. This supports the decoder’s potential in
supporting multi-speed movements with speeds varying within
its calibration range.

MNs experience changes in their electrical properties, leading
to transitions in their types and changes in their ratios of
types following peripheral injury and amputation (Titmus and
Faber, 1990). This transition process is ongoing, which means
a prosthesis decoder must accommodate these changes in MN
pool heterogeneity, as well as the higher variability in the pool
spiking activity. The heterogeneity tests we conducted in this
study, which reflected such variance in MN electrical properties,
showed that the decoder, which was not trained with a similar
dataset, was still able to decode the MN spiking activity well
(NRMSE < 6.55%, RMSE < 3.91, and Pearson’s CC > 0.99).
These results indicate that the decoder’s expected performance
would continue over the course of these ongoing injury-induced
changes in the amputee’s MN pool. As these changes accrue over
many months after amputation, the results we present constitute
proof of concept that this decoder could significantly reduce the
need for recalibration.

The reverse recruitment evaluation tested the decoder’s
ability to decode MN spikes generated from a reversed
recruitment order (i.e., FF-MNs firing first, followed by FR and
eventually S-MNs), despite the decoder being calibrated with
only spiking activity resulting from orderly recruited MNs (i.e.,
S-MNs firing first, followed by FR and eventually FF-MNs—
the size principle; Henneman, 1957). Importantly, the decoder
successfully decoded the spiking activity of MNs reversely
recruited (NRMSE < 13.24%, RMSE < 9.4953, and Pearson’s
CC > 0.98). Furthermore, this accuracy could be substantially
improved if the decoder were also calibrated with such spiking
activity. Because cortical inputs to spinal motoneurons have been
shown to favor reverse MN recruitment (Powers et al., 1993;
Westcott et al., 1995; Binder et al., 1998), and because mixed
and reversed recruitment of MNs have been observed in animals
and humans (for review, see Cope and Brian, 1995; Heckman
and Enoka, 2012; Bawa et al., 2014), the ability of the decoder
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to accurately decode the spiking activity resulting from different
MN recruitment orders is an important feature.

After amputation, spiking data from remaining motor
nerves might be limited to, or dominated by, a given MN
cell type. Therefore, we also tested the effect of cell type
on the decoder’s performance in decoding the pool spiking.
Spiking activity of FR-MNs was the most representative of
the full pool activity, probably because of its intermediate
properties. This information should guide the selection of
spiking data during the calibration process, if the patient’s
available MN types can be identified. Altogether, these
results support the robustness of the developed decoder in
decoding MN spiking activities in a variety of biological
situations and thus support the feasibility of this decoder for
prosthetic control.

Study Approach: Strength vs. Limitations
Given that the goal of the present study is to examine the proof
of concept of the developed adaptive decoder’s operation and
its adaptability to dynamic changes in the amputee’s biological
state, our study employed advanced computer simulations to
simulate the movement of a prosthetic hand using a “clean”
drive approach, which simulates the data with no noise. While
the computer simulations allowed testing many scenarios known
to emerge after amputation and the “clean” drive approach
allowed assessing the basic potential of the developed adaptive
decoder, this approach is still limited and ultimately requires
human testing. However, this “clean” drive approach is necessary
at this proof-of-concept stage because if the decoder fails in
a clean testing environment, it would undoubtedly fail with
realistic data, and there would be no point in moving forward
with further decoder development and human testing. Results
of the present study supports the decoder potential. Given
the present results, the next step in our investigation will be
human testing to test this decoder’s performance under more
realistic conditions.

CONCLUSION

In conclusion, motor decoders based on the spiking activity of
MNs are capable of decoding the firing activity of the MN pool
accurately, dynamically, and in real time (<10 ms). The present
work supports the proof of concept of such decoders maintaining
accurate performance under a number of biological conditions
expected to be encountered after amputation. This, in turn,
supports the feasibility of this decoder for enabling long-term
stability of prosthetic control performance.
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Supplementary Video 1 | A video recording showing the movement of the
MuJoCo prosthetic hand (upper panel) when driven by the adaptive 3-speed
decoder in response to a variable input of changing activation speed and
direction. The lower panel shows the decoded input (purple) as compared to the
actual input (green).

REFERENCES
Afsharipour, B., Manzur, N., Duchcherer, J., Fenrich, K. K., Thompson, C. K.,

Negro, F., et al. (2020). Estimation of self-sustained activity produced by
persistent inward currents using firing rate profiles of multiple motor units in
humans. J. Neurophysiol. 124, 63–85.

Allen, J. M., and Elbasiouny, S. M. (2018). The effects of model composition
design choices on high-fidelity simulations of motoneuron recruitment

and firing behaviors. J. Neural. Eng. 15:036024. doi: 10.1088/1741-2552/
aa9db5

Artemiadis, P. K., and Kyriakopoulos, K. J. (2007). “EMG-based teleoperation
of a robot arm using low-dimensional representation,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007.
IROS 2007 (New York, NY: IEEE), 489–495.

Bawa, P. N., Jones, K. E., and Stein, R. B. (2014). Assessment of size ordered
recruitment. Front. Hum. Neurosci. 8:532.

Frontiers in Neuroscience | www.frontiersin.org 14 April 2021 | Volume 15 | Article 590775

https://figshare.com/s/e81e92ec3ba50a8dc83a
https://www.frontiersin.org/articles/10.3389/fnins.2021.590775/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2021.590775/full#supplementary-material
https://doi.org/10.1088/1741-2552/aa9db5
https://doi.org/10.1088/1741-2552/aa9db5
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-590775 March 31, 2021 Time: 13:57 # 15

Montgomery et al. Motor Decoder for Prosthetic Control

Biddiss, E., and Chau, T. (2007). Upper-limb prosthetics: critical factors in device
abandonment. Am. J. Phys. Med. Rehabil. 86, 977–987. doi: 10.1097/phm.
0b013e3181587f6c

Binder, M. D., Robinson, F. R., and Powers, R. K. (1998). Distribution of effective
synaptic currents in cat triceps surae motoneurons. VI. Contralateral pyramidal
tract. J. Neurophysiol. 80, 241–248. doi: 10.1152/jn.1998.80.1.241

Cope, T. C., and Brian, B. D. (1995). “Are there important exceptions to the
size principle of α-motoneurone recruitment?,” in Alpha and Gamma Motor
Systems, eds A. Taylor, M. H. Gladden, and R. Durbaba (Berlin: Springer),
71–78. doi: 10.1007/978-1-4615-1935-5_15

Cordella, F., Ciancio, A. L., Sacchetti, R., Davalli, A., Cutti, A. G., Guglielmelli, E.,
et al. (2016). Literature review on needs of upper limb prosthesis users. Front.
Neurosci. 10:209.

Dantas, H., Warren, D. J., Wendelken, S. M., Davis, T. S., Clark, G. A., and
Mathews, V. J. (2019). Deep learning movement intent decoders trained with
dataset aggregation for prosthetic limb control. IEEE Trans. Biomed. Eng. 66,
3192–3203. doi: 10.1109/tbme.2019.2901882

Farina, D., Vujaklija, I., Sartori, M., Kapelner, T., Negro, F., Jiang, N., et al. (2017).
Man/machine interface based on the discharge timings of spinal motor neurons
after targeted muscle reinnervation. Nat. Biomed. Eng. 1:0025.

Fuglevand, A. J., Winter, D. A., and Patla, A. E. (1993). Models of recruitment and
rate coding organization in motor-unit pools. J. Neurophysiol. 70, 2470–2488.
doi: 10.1152/jn.1993.70.6.2470

Hansun, S. (2016). A new approach of brown’s double exponential smoothing
method in time series analysis. Balk. J. Electr. Comput. Eng. 4, 75–78.

Hassan, A., Thompson, C. K., Negro, F., Cummings, M., Powers, R. K., Heckman,
C. J., et al. (2020). Impact of parameter selection on estimates of motoneuron
excitability using paired motor unit analysis. J. Neural. Eng. 17:016063. doi:
10.1088/1741-2552/ab5eda

Heckman, C. J., and Enoka, R. M. (2012). Motor unit. Compr Physiol. 2, 2629–2682.
Henneman, E. (1957). Relation between size of neurons and their susceptibility to

discharge. Science 126, 1345–1347. doi: 10.1126/science.126.3287.1345
Hodgkin, A. L., and Huxley, A. F. (1952a). The components of membrane

conductance in the giant axon of Loligo. J. Physiol. 116, 473–496. doi: 10.1113/
jphysiol.1952.sp004718

Hodgkin, A. L., and Huxley, A. F. (1952b). Currents carried by sodium and
potassium ions through the membrane of the giant axon of Loligo. J. Physiol.
116, 449–472. doi: 10.1113/jphysiol.1952.sp004717

Hodgkin, A. L., Huxley, A. F., and Katz, B. (1952). Measurement of current-voltage
relations in the membrane of the giant axon of Loligo. J. Physiol. 116, 424–448.
doi: 10.1113/jphysiol.1952.sp004716

Kumar, V., and Todorov, E. (2015). “MuJoCo HAPTIX: a virtual reality system for
hand manipulation,” in Proceedings of the 2015 IEEE-RAS 15th International
Conference onHumanoid Robots (Humanoids) (New York, NY: IEEE), 657–663.

Lee, R. H., and Heckman, C. J. (1998). Bistability in spinal motoneurons in vivo:
systematic variations in rhythmic firing patterns. J. Neurophysiol. 80, 572–582.
doi: 10.1152/jn.1998.80.2.572

Lee, R. H., and Heckman, C. J. (2000). Adjustable amplification of synaptic input
in the dendrites of spinal motoneurons in vivo. J. Neurosci. 20, 6734–6740.
doi: 10.1523/jneurosci.20-17-06734.2000

Lee, R. H., Kuo, J. J., Jiang, M. C., and Heckman, C. J. (2003). Influence
of active dendritic currents on input-output processing in spinal
motoneurons in vivo. J. Neurophysiol. 89, 27–39. doi: 10.1152/jn.00137.
2002

Lee Rodgers, J., and Nicewander, W. A. (1988). Thirteen ways to look at the
correlation coefficient. Am. Statist. 42, 59–66. doi: 10.2307/2685263

Li, Y., Smith, L. H., Hargrove, L. J., Weber, D. J., and Loeb, G. E. (2012). Estimation
of excitatory drive from sparse motoneuron sampling. Conf. Proc. IEEE Eng.
Med. Biol. Soc. 2012, 3628–3631.

Li, Y., Smith, L. H., Hargrove, L. J., Weber, D. J., and Loeb, G. E. (2013). Sparse
optimal motor estimation (SOME) for extracting commands for prosthetic
limbs. IEEE Trans. Neural. Syst. Rehabil. Eng. 21, 104–111. doi: 10.1109/tnsre.
2012.2218286

Montgomery, A. E. (2018). Novel Auto-Calibrating Neural Motor Decoder for
Robust Prosthetic Control. MSc thesis, Wright State University, Dayton, OH.

Powers, R. K., Robinson, F. R., Konodi, M. A., and Binder, M. D. (1993).
Distribution of rubrospinal synaptic input to cat triceps surae motoneurons.
J. Neurophysiol. 70, 1460–1468. doi: 10.1152/jn.1993.70.4.1460

Sheiner, L. B., and Beal, S. L. (1981). Some suggestions for measuring predictive
performance. J Pharmacok. Pharmacodyn. 9, 503–512. doi: 10.1007/bf01060893

Thompson, C. K., Negro, F., Johnson, M. D., Holmes, M. R., Mcpherson, L. M.,
Powers, R. K., et al. (2018). Robust and accurate decoding of motoneuron
behaviour and prediction of the resulting force output. J. Physiol. 596, 2643–
2659. doi: 10.1113/jp276153

Titmus, M. J., and Faber, D. S. (1990). Axotomy-induced alterations in the
electrophysiological characteristics of neurons. Prog. Neurobiol. 35, 1–51. doi:
10.1016/0301-0082(90)90039-j

Todorov, E., Erez, T., and Tassa, Y. (2012). “MuJoCo: a physics engine for model-
based control,” in Proceedings of the 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (New York, NY: IEEE), 5026–5033.

Twardowski, M. D., Roy, S. H., Li, Z., Contessa, P., De Luca, G., and Kline, J. C.
(2019). Motor unit drive: a neural interface for real-time upper limb prosthetic
control. J. Neural. Eng. 16:016012. doi: 10.1088/1741-2552/aaeb0f

Warren, D. J., Kellis, S., Nieveen, J. G., Wendelken, S. M., Dantas, H., Davis, T. S.,
et al. (2016). Recording and decoding for neural prostheses. Proc. IEEE 104,
374–391.

Westcott, S. L., Powers, R. K., Robinson, F. R., and Binder, M. D. (1995).
Distribution of vestibulospinal synaptic input to cat triceps surae motoneurons.
Exp. Brain Res. 107, 1–8.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Montgomery, Allen and Elbasiouny. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 April 2021 | Volume 15 | Article 590775

https://doi.org/10.1097/phm.0b013e3181587f6c
https://doi.org/10.1097/phm.0b013e3181587f6c
https://doi.org/10.1152/jn.1998.80.1.241
https://doi.org/10.1007/978-1-4615-1935-5_15
https://doi.org/10.1109/tbme.2019.2901882
https://doi.org/10.1152/jn.1993.70.6.2470
https://doi.org/10.1088/1741-2552/ab5eda
https://doi.org/10.1088/1741-2552/ab5eda
https://doi.org/10.1126/science.126.3287.1345
https://doi.org/10.1113/jphysiol.1952.sp004718
https://doi.org/10.1113/jphysiol.1952.sp004718
https://doi.org/10.1113/jphysiol.1952.sp004717
https://doi.org/10.1113/jphysiol.1952.sp004716
https://doi.org/10.1152/jn.1998.80.2.572
https://doi.org/10.1523/jneurosci.20-17-06734.2000
https://doi.org/10.1152/jn.00137.2002
https://doi.org/10.1152/jn.00137.2002
https://doi.org/10.2307/2685263
https://doi.org/10.1109/tnsre.2012.2218286
https://doi.org/10.1109/tnsre.2012.2218286
https://doi.org/10.1152/jn.1993.70.4.1460
https://doi.org/10.1007/bf01060893
https://doi.org/10.1113/jp276153
https://doi.org/10.1016/0301-0082(90)90039-j
https://doi.org/10.1016/0301-0082(90)90039-j
https://doi.org/10.1088/1741-2552/aaeb0f
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Adaptive Neural Decoder for Prosthetic Hand Control
	Introduction
	Materials and Methods
	Computational Model
	Collection and Processing of Spiking Data
	Brown's Linear Exponential Smoothing
	Decoder Calibration and Auto-Switching
	Decoder Testing and Performance Assessment

	Results
	Development Stage and Computational Platform
	Decoder Development, Calibration, and Testing
	Cell Type Testing
	Single-Speed Motor Decoder
	Adaptive 2-Speed Motor Decoder
	Adaptive 3-Speed Motor Decoder
	Variable-Speed Input Testing
	Biological Heterogeneity Testing
	Reverse Recruitment Testing

	Discussion
	Current Work vs. Earlier MN Decoders
	Decoder Characteristics
	Study Approach: Strength vs. Limitations

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


