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Abstract

Coal dust is the main pollutant in coal mining areas. Such pollutants easily diffuse and are

difficult to monitor, which increases the cost of environmental pollution control. Remote

sensing technology can be used to dynamically monitor mining areas at a low cost, and

thus, this is a common means of mining area management. According to the spectral char-

acteristics of various ground objects in remote sensing images, a variety of remote sensing

indexes can be constructed to extract the required information. In this study, the Wucaiwan

open-pit coal mine was selected as the study area, and the Enhanced Coal Dust Index

(ECDI) was established to extract the coal dust pollution information for the mining area. A

new mining area pollution monitoring method was developed, which can provide technical

support for environmental treatment and mining planning in Zhundong. The results of this

study revealed the following: (1) Compared with the normalized difference coal index, the

ECDI can expand the difference between the spectral information about the coal dust and

the surrounding features, so it has a significant recognition ability for coal dust information.

(2) From 2010 to 2021, the coal dust pollution in the study area initially increased and then

decreased. With the continued exploitation of the coal mines in the study area, the coal dust

pollution area increased from 14.77 km2 in 2010 to 69.49 km2 in 2014. After 2014, the local

government issued various environmental pollution control policies, which had remarkable

results. The coal dust pollution area decreased to 36.85 km2 and 17.85 km2 in 2018 and

2021, respectively. (3) There was a great deal of pollution around mines and roads, around

which the pollution was more serious. Various factors, such as wind, coal type, and the min-

ing, processing, and transportation modes, affect the distribution of the coal dust pollution.
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1 Introduction

Coal dust refers to all of the forms of fine mineral particles produced during coal mining, pro-

cessing, production, and transportation. Coal dust pollution is hazardous to human health.

Various respiratory diseases, such as pneumoconiosis, are developed when miners inhale a

large amount of coal dust during coal mining [1–4]. An explosion or fire is likely to occur

when the concentration of coal dust particles reaches a critical value in the air [5–7]. Coal dust

also has a large impact on the environment. For example, if coal dust falls on plant leaves, it

will block the pores and inhibit photosynthesis and respiration, which will endanger the health

of vegetation in the long run [8, 9]. When coal dust penetrates the soil, it can change the physi-

cal and chemical properties of the soil and impair plant growth and development [10, 11].

Accordingly, the environmental protection department has placed a high priority on coal

mine dust, which is the major cause of air pollution in mining areas. Numerous studies have

been carried out on the pollution status and diffusion law of coal dust all over the world. Cur-

rently, field measurements [12], numerical simulations [13], and hyperspectral remote sensing

[14] are the main research methods used to do this.

The field measurement method involves evaluation of the dust pollution during the mining

process in conjunction with the air pollution index measured during coal mining and the

meteorological data for the same period. However, it is not feasible to carry out field measure-

ments in mining areas due to the limitations imposed by natural and man-made conditions

[15, 16]. The numerical simulation method entails using a diffusion model to fit the relation-

ship between the dust diffusion and meteorological factors. The diffusion movement of dust is

difficult to predict and is easily affected by various factors, such as temperature, humidity, and

wind. The numerical simulation method can intuitively determine the degrees of influence of

the various factors on the dust diffusion. However, this method requires the collection of a

large amount of monitoring data and is time-consuming [17–19]. Hyperspectral remote sens-

ing uses hyperspectral images to monitor ground objects in the coal dust pollution area and

analyzes the coal dust diffusion law using a combination of dynamic monitoring and field

measurements. This method has a good monitoring effect from the point to surface scales [20,

21], but it has a low ability for spatial intuitive interpretation of coal dust pollution. The afore-

mentioned mechanism focuses on the hazard assessment of coal dust pollution and ignores

the expression of the spatial information.

In this study, the coal dust pollution in the Wucaiwan mining area in Xinjiang was taken as

the research object, the Enhanced Coal Dust Index (ECDI) based on the spectral characteristics

of the coal dust was constructed, and the degree of coal dust pollution was inverted using the

dimidiate pixel model. The spatial and temporal distributions and causes of the coal dust pol-

lution in the study area were analyzed, and treatment measures were suggested to provide

technical support for local ecological environment protection and coal dust pollution monitor-

ing and treatment.

2 Materials and methods

2.1 Study area

The northwestern arid area is one of the important ethnic minority areas in China. Its eco-

nomic development is relatively backward. The development of mineral resources is the main

economic growth mode in this area [22]. The Wucaiwan mining area is an important part of

the Zhundong coalfield, which is the largest packaged coalfield in China [23]. There are

approximately 390 billion tons of coal underground, accounting for approximately one-fifth of

the total coal resources in Xinjiang [24]. In recent years, many enterprises have invested in the
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local coal industry. With the mining development, the coal dust pollution has become increas-

ingly serious. In addition, serious soil erosion has also occurred in this area. If the environmen-

tal impact and ecological damage caused by the coal dust pollution are not studied and

mediated, it will inevitably have serious consequences [25]. Therefore, the Wucaiwan open-pit

mining area was selected as the study area.

The Wucaiwan open-pit coal mine area is located in Jimusar County in the eastern part of

the Junggar Basin (44˚42’–44˚57’ N, 89˚5’–89˚16’ E), Xinjiang Province, the People’s Republic

of China (Fig 1) [23]. The coal bearing area is 901.05 km2 [26]. There are five large open-pit

coal mines distributed in an L-shape in the mining area, with crisscrossing roads and conve-

nient transportation [27]. There is no large fault structure and less seismic activity in the

depression [28]. The terrain is flat and open, with an elevation of 300–600 m. The land has

very sparse vegetation, with no woodlands or farmland. The area is situated in the hinterland

Fig 1. Map showing the location of the study area.

https://doi.org/10.1371/journal.pone.0266517.g001

PLOS ONE Identification and monitoring of coal dust pollution

PLOS ONE | https://doi.org/10.1371/journal.pone.0266517 April 8, 2022 3 / 18

https://doi.org/10.1371/journal.pone.0266517.g001
https://doi.org/10.1371/journal.pone.0266517


of Eurasia, i.e., far from the ocean, and the climate is a typical extreme drought continental cli-

mate. It is hot and dry during the summer and cold in the winter. Based on the data provided

by the Jimusar meteorology station, the annual average temperature is 7˚C, the precipitation is

113.5 mm, the evaporation capacity is 2050 mm, and the annual average number of sunshine

hours is 2950 h. Northwest and southeast winds prevail in the mining area all year round, and

the maximum wind speed can exceed 40 m/s. There is no surface runoff throughout the year

in this area [29, 30].

2.2 Data

According to a previous study [31], the Zhundong coal power and coal chemical industry park

was constructed and began operation in 2010. In 2014, relevant policies on environmental gov-

ernance of mining areas were announced, and the first environmental monitoring station was

constructed. The Zhundong area was chosen as the national modern coal chemical industrial

demonstration area in 2018, and thus, 2010, 2014, and 2018 correspond to the three important

stages of the development of the mining area. The latest situation can be obtained from remote

sensing images acquired in 2021, which has important practical significance for this study.

Landsat5 Thematic Mapper (TM) and Landsat8 Operational Land Imager (OLI) data are

remote sensing images with a spatial resolution of 30 m and a temporal resolution of 16 days

[32]. Their running time period includes the time period we analyzed in this study, and a series

of Landsat satellite images have achieved global coverage. They have a great deal of band infor-

mation and can be used to calculate a variety of remote sensing indexes. Therefore, in this

study, a Landsat5 image taken in 2010 and Landsat8 images taken in 2014, 2018, and 2021

were selected for use in this study. The Landsat images were downloaded from the EROS Cen-

ter (http://eros.usgs.gov/#).

The Gaofen-2 satellite (GF-2) is the first civil optical remote sensing satellite with spatial a

resolution of better than 1 m independently developed in China. A GF-2 image with a high

spatial resolution provides good verification data, which are often used to verify the accuracy

of the dynamic monitoring of Landsat satellite images via visual interpretation [33]. Therefore,

GF-2 images taken in 2018 were used as auxiliary reference data for the verification in this

study. The GF-2 data covering the study area were acquired from the China Centre for

Resources Satellite Data and Application (CRESDA). Basic information about each image is

presented in Table 1.

2.3 Data preprocessing

Given that the series of Landsat images was topographically and geometrically corrected before

uploading, the preprocessing in this study only included radiometric calibration, atmospheric

correction, and clipping of the study area. All of the subsequent analyses were conducted

within the clipped images.

Table 1. Specifications of the satellite data used in this study.

Acquisition date Satellite Path Row Cloud cover/%

2010.08.13 Landsat5-TM 142 29 0.01

2014.06.05 Landsat8-OLI 142 29 0.81

2018.09.04 Landsat8-OLI 142 29 1.34

2021.06.08 Landsat8-OLI 142 29 7.69

2018.09.11 GF-2 81 124 0.00

https://doi.org/10.1371/journal.pone.0266517.t001
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2.4 Calculating the normalized difference coal index and ECDI

In this study, the coal dust pollution in the Wucaiwan mining area was investigated. Hence,

the coal dust information needed to be gathered. A previous study [34] has shown that the

near-infrared band (0.845–0.885 μm, NIR) can be used to estimate biomass and identify moist

soils, which can be used to distinguish minerals such as coal mines. The main function of short

wave infrared band 1 (1.560–1.660 μm, SWIR1) is to identify roads, bare soil, water, and vege-

tation and to identify underlying buildings and structures polluted by coal dust. Shortwave

infrared band 2 (2.100–2.300 μm, SWIR2) is mainly used to identify bare land and coal mines

and to identify vegetation and moist soil. Therefore, an identification index for coal dust pollu-

tion can be constructed using band operations to determine the range of the coal dust pollu-

tion in the mining area.

According to the spectral profile of coal, Ma [35] selected the NIR and SWIR1 bands to

establish the Normalized Difference Coal Index (NDCI), which may reflect the distribution of

the coal dust pollution to a certain extent. The NDCI is calculated as follows:

NDCI ¼ ðBandSWIR1 � BandNIRÞ=ðBandSWIR1 þ BandNIRÞ: ð1Þ

The test results show that although the NDCI results for the study area can identify the coal

dust-contaminated areas to a certain extent, some non-coal dust-covered areas are also identi-

fied as coal dust-contaminated areas. The reason for this is that the surrounding ground

objects (rocks and soil) interfere with the sensor when receiving the reflection information

about the coal, resulting in inaccurate classification results. The SWIR2 band can effectively

and accurately identify rocks and minerals, and thus, a new coal dust index was constructed

based on the SWIR2 band data. Referring to the method of constructing a remote sensing

index used by other scholars [36], the equation for calculating the ECDI was obtained through

experiments, and is as follows:

ECDI ¼ ðBandSWIR1 � BandNIR þ BandSWIR2Þ=ðBandSWIR1 þ BandNIR � BandSWIR2Þ: ð2Þ

2.5 Image binarization

To highlight the areas polluted by coal dust in the study area, it was necessary to binarize the

ECDI image. Image binarization is the process of setting the gray values of the pixels in the

image to 0 or 255 by selecting an appropriate threshold, that is, the entire image exhibits an

obvious black-and-white effect. The obtained binarized image can still reflect the overall and

local characteristics of the image [37].

Based on the statistical data for the ECDI image and visual interpretation results (S1–S4

Texts), 0.4 was determined to be the appropriate threshold to divide the ECDI image. The area

with ECDI values of greater than 0.4 was considered to be polluted by coal dust, and the pixels

became black (gray value of 0). The area with ECDI values less than 0.4 was considered to be

free of pollution, and the pixels became white (gray value of 255). In this way, the amount of

image data was reduced to obtain the scope of the coal dust pollution.

2.6 Dimidiate pixel model

As is well known, the Normalized Difference Vegetation Index (NDVI) is a vegetation index

that reflects vegetation growth, while the ECDI is an index that reflects the accumulation of

surface coal dust. The NDCI and ECDI are constructed in a similar way; therefore, the dimidi-

ate pixel model of vegetation coverage can be used to estimate the degree of coal dust pollution

in the mining area. If each pixel of the image is regarded as a mixed pixel of coal dust and bare
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soil, the following formula can be obtained [38]:

S ¼ SC þ SS ð3Þ

where S is the information contained in each pixel, SC is the information about the coal dust,

and SS is the information about the other parts.

For a single pixel, the coal dust coverage of the pixel is defined as the proportion of the coal

dust coverage area, which is expressed as FCD. Then, the proportion of the area covered by

bare soil is 1- FCD. Scoal represents that the entire pixel is covered by coal dust, and Ssoil repre-

sents that the entire pixel is covered by bare soil [40]. Then, the calculation formulas of SC and

SS can be obtained:

SC ¼ FCD � Scoal ð4Þ

SS ¼ ð1 � FCDÞ � Ssoil ð5Þ

Substitute Equations (4) and (5) into Equation (3), the coal dust coverage can be calculated

as follows [40]:

FCD ¼ ðS � SsoilÞ=ðScoal � SsoilÞ ð6Þ

By replacing S with ECDI in Equation (6), we obtain Equation (7):

FCD ¼ ðECDI � ECDIsoilÞ=ðECDIcoal � ECDIsoilÞ ð7Þ

ECDIsoil is the ECDI value of the bare soil portion of the ECDI image, and ECDIcoal is the

ECDI value of the coal dust pollution portion.

Based on the statistical analysis results for the ECDI (S1–S4 Texts), after many experiments,

ECDIsoil and ECDIcoal values of 0.6 and 0.4, respectively, were substituted into Equation (7).

The band math tool was used to calculate the dimidiate pixel model images of the ECDI.

2.7 Ordinary kriging

Kriging is the basis of geostatistics and is an important tool for exploring the spatial correlation

between geographical phenomena. Among the various kriging methods, the ordinary kriging

method is the most widely used. It is an interpolation method that uses the original known

data for regionalized variables and the structural features of variance functions to make linear

unbiased optimal estimates of the values in unknown regions [39].

To objectively analyze the accuracy of the ECDI in identifying coal dust, 198 points were

randomly selected in the study area using the Create Random Point tool in ArcGIS 10.2 (S1

File). Ordinary kriging interpolation was performed on the ECDI values of the random points

and cross-validation was carried out.

3 Results

3.1 Comparison of NDCI and ECDI

3.1.1 Comparison of NDCI and ECDI images. The NDCI and ECDI images of the study

area were calculated using the above-described steps. To more clearly compare the effects of

the two indexes in coal dust information extraction, two images were opened using the ENVI

5.3 software, and the rainbow ribbon in the color change table was used to represent the NDCI

and ECDI images (Fig 2).

By comparing the color differences between the ECDI and NDCI images (Fig 2), it was

found that in the NDCI image, red and green are widely distributed over a large area, and the
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other colors account for smaller areas. The area of the color gradient and transition is small. In

the ECDI image, the red areas are mainly concentrated near the five pits, the green areas are

relatively small, and the gradients and transitions of the various colors are more even.

3.1.2 GF-2 images verify the coal dust pollution recognition effect of the ECDI. The

recognition ability of the above image operation results in the easily confused area of the local

underlying surface needs to be further verified. GF-2 images taken in 2018 were used to verify

the coal dust monitoring effects of the NDCI and ECDI. Since buildings and rocks are easily

confused with coal dust information, the same areas containing buildings, rocks, and Pit 1 in

the three images are selected for comparison (black box in Fig 2). The comparison results are

shown in Fig 3.

As can be seen from Fig 3, the coal dust pollution area around Pit 1 in the NDCI and ECDI

images is shown in red, and the spatial distribution of coal dust in the ECDI image is basically

consistent with the GF-2 image, indicating that the ECDI can accurately identify the scope and

location of the coal dust pollution. In addition, the rocks and buildings are shown in green and

blue in the ECDI data and red and yellow in the NDCI data. It can be seen that the NDCI

Fig 2. Comparison of the NDCI and ECDI images.

https://doi.org/10.1371/journal.pone.0266517.g002
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cannot distinguish between buildings, rocks, and coal dust, while the ECDI can greatly reduce

the wrong identification of rocks as coal dust.

3.1.3 Comparison of spectral profiles of coal dust, rocks, and buildings. To explore the

reasons why the ECDI can distinguish between coal dust, rocks, and building, the ENVI5.3

software was used to draw the spectral profiles of these three types of ground objects (Fig 4).

Fig 4 shows that the spectral profiles of coal dust and rocks are relatively smooth, and their

reflectance changes steadily within 0.43–2.2 μm. The spectral profile of the buildings fluctuates

greatly, and the reflectance varies greatly within different bands. In the coastal (0.433–

0.453 μm) and visible (0.45–0.68 μm) bands, the spectral profile of the rocks is similar to those

of the buildings and coal dust, and the difference in their reflectance values is small. However,

in the NIR, SWIR1, and SWIR2 bands, the reflectance values of the three types of ground

objects vary greatly. The reflectance of the buildings increases to approximately 40%, while

that of the rocks is close to 20%, and that of the coal dust is still less than 10%. Therefore, the

ECDI created by these three bands expands the difference in the spectral information of the

Fig 3. Comparison of GF-2, NDCI, and ECDI images containing coal dust, rocks, and buildings.

https://doi.org/10.1371/journal.pone.0266517.g003
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coal dust and surrounding ground objects, reduces the influence of foreign matter in the same

spectrum, and has a stronger coal dust identification ability than the NDCI.

3.1.4 Comparison of value ranges of the NDCI and ECDI. To further illustrate the

advantages of the ECDI in coal dust information extraction, after normalizing the two indexes,

the NDCI and ECDI values of each pixel in the study area were counted using the data statisti-

cal analysis tool in the ENVI 5.3 software (S3 and S5 Texts), and their pixel numbers were cal-

culated to obtain Fig 5.

Fig 5 shows that the NDCI values were mainly 0.1–0.2, but the ECDI values were mainly

0.2–0.5. The ECDI histogram approximately obeys a normal distribution. Thus, the ECDI

image is more in line with the actual situation on the ground and is suitable for remote sensing

monitoring of coal dust pollution.

Fig 4. Spectral profiles of coal dust, rocks, and buildings.

https://doi.org/10.1371/journal.pone.0266517.g004

Fig 5. Value ranges of the NDCI and ECDI.

https://doi.org/10.1371/journal.pone.0266517.g005
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3.2 Cross-validation

The ordinary kriging interpolation results for the ECDI are shown in Fig 6,

As can be seen from Fig 6, the results of the ordinary kriging interpolation are basically the

same as the original ECDI image, indicating that the interpolation results are reasonable and

the model selection is appropriate.

The results of the cross-validation show that the Root Mean Square (RMS) of the ordinary

Kriging interpolation results is 0.066, the Mean Standardized (MS) value is 0.020, the

Fig 6. Kriging interpolation image for the ECDI.

https://doi.org/10.1371/journal.pone.0266517.g006
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Standardized Root Mean Square (SRMS) is 0.852, and the Average Standard Error (ASE) is

0.086. The values of each index in the verification results basically meet the requirements of

the optimal model, indicating that the results of the ordinary kriging interpolation are reliable,

and the ECDI has a good recognition effect for coal dust.

3.3 Dynamic analysis of coal dust pollution in 2010–2021

The ECDI binary images of the study area acquired in 2010, 2014, 2018, and 2021 were

obtained using the band math function in the ENVI 5.3 software (Fig 7). These four images

were statistically analyzed, and the number of coal dust pixels counted was multiplied by the

spatial resolution (30 m) to obtain the area and proportion of the coal dust pollution in the

mining area in each year (Table 2). The total area of the study area was 380.95 km2. Then, a

line chart (Fig 8) of the change in the pollution area was drawn according to the results pre-

sented in Table 2. Based on Figs 7 and 8 and Table 2, the changes in the coal dust pollution in

the mining area from 2010 to 2021 were analyzed.

Fig 7 shows that the spatial and temporal variations in the coal dust pollution in the study

area included the following three stages.

In the first stage (2010–2014), the coal dust pollution area around Pit 4 was the largest in

2010, and the pollution on the road next to Pit 4 was serious. In 2014, the coal dust pollution

areas around Pits 1, 2, 3, and 5 significantly increased compared with those in 2010, and this

pollution was basically distributed downwind of the pits. It was also observed on the road lead-

ing to the areas outside of Pits 1 and 2.

Fig 7. Binary images of the ECDI in 2010, 2014, 2018, and 2021.

https://doi.org/10.1371/journal.pone.0266517.g007

Table 2. Statistics of coal dust pollution area.

Year 2010 2014 2018 2021

Area ratio of coal dust pollution (%) 3.88 18.24 9.67 4.69

Pollution area (km2) 14.77 69.49 36.85 17.85

Area ratio of no pollution (%) 96.12 81.76 90.33 95.31

No pollution area (km2) 366.18 311.46 344.10 363.10

https://doi.org/10.1371/journal.pone.0266517.t002
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In the second stage (2014–2018), in 2018, the coal dust pollution areas around Pits 1, 2, 3,

and 5 significantly decreased compared with those in 2014, and the pollution around Pit 4

remained basically unchanged. However, there was pollution on the road near Pit 1. It can be

seen that some measures had been taken to control the coal dust pollution, and the environ-

mental quality of the mining area had been improved.

In the third stage (2018–2021), compared with those in 2018, the coal dust pollution areas

around the five mining pits in the study area were significantly lower in 2021, especially

around Pits 1–4. Most of the coal dust pollution was concentrated in each mine, and there was

almost no coal dust on the road, but Pits 1 and 2 were still more polluted than the other mines.

According to Table 2 and Fig 8, overall, the coal dust pollution area in the mining area initially

increased and then decreased. Specifically, the coal dust pollution area in the study area has

increased from 14.77 km2 in 2010 to 69.49 km2 in 2014. After 2014, environmental treatment began

in the mining area, and remarkable results were achieved. By 2018, the pollution area had been

reduced to 36.85 km2. By 2021, the pollution area had decreased from 36.85 km2 to 17.85 km2.

3.4 Distribution of coal dust pollution

After obtaining the dimidiate pixel model image of the ECDI, the appropriate color ribbon

was selected in ArcGIS10.2 software to stretch and render these images so that the color depth

represented the degree of the coal dust pollution (Fig 9).

The dark color band in Fig 9 represents the most serious part of coal dust pollution, which

is distributed around several pits and roads. The degree of coal dust pollution gradually

decreases as the color band changes from deep to light. This shows that the closer to the pits

and roads, the higher the degree of coal dust pollution.

4 Discussion

4.1 Distribution and causes of coal dust pollution

The natural causes of coal dust pollution are as follows. (1) When a coal mine is not developed,

the coal is deeply buried underground, and coal dust pollution is rarely formed on the surface.

Fig 8. Changes in the coal dust pollution from 2010 to 2021.

https://doi.org/10.1371/journal.pone.0266517.g008
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Most coal dust pollution on the surface of an open-pit coal mine is produced during the min-

ing, transportation, and processing. (2) Fig 9 demonstrates that the coal dust pollution was

located to the south of the pits and around them, which may be related to the prevailing north-

west wind. (3) The type of coal itself also affects the area polluted by coal dust. Different coals

produce various amounts of coal dust, and the size of the coal dust particles also varies. When

the coal dust particles are small, the effect of gravity is smaller, and thus, they float in the air.

When the coal dust particles are large, the effect of gravity is larger, and the air cannot carry

the mass of the coal dust particles. Accordingly, the coal dust will settle and gather on the

underlying surface and is detected by remote sensing satellites.

The anthropogenic causes are as follows: (1) Due to the increase in the mining intensity of

each pit, the frequency of coal trucks traveling to and from the mining area increases, and the

coal dust diffuses during transportation, resulting in a large area of coal dust pollution around

the pit and on the road. (2) Coal dust diffusion occurs during the coal mining process. For

example, coal dust will diffuse during blasting and excavation in a coal mine, forming a large

area and deep pollution around the pit. (3) After the coal is transported to the coal storage

plant for storage, the moisture decreases, intensifying the flying and diffusion of coal dust in

the air. (4) Coal dust pollution will also occur when processing the coal due to the equipment

design, operation, and other problems. For example, a fast conveyor belt speed and improper

operation of the equipment by the management personnel. (5) Dust removal and avoidance

measures in mining areas, along transportation routes, and in coal processing plants are not

enough and are not strictly managed, and the coal dust is not cleaned up in time, resulting in

pollution.

4.2 Control measures for coal dust pollution

Recommended measures to control coal dust pollution are as follows:

1. The method of mining whilst recovering [40] should be adopted. Mining coal whilst restor-

ing the ecological environment and treatment during coal mining should be carried out by

layered stripping and staggered backfilling according to the surrounding environment and

geological conditions of the open-pit coal mine.

Fig 9. Dimidiate pixel model images of the ECDI in 2010, 2014, 2018, and 2021.

https://doi.org/10.1371/journal.pone.0266517.g009
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2. Dust prevention and suppression should be carried out. Several studies [41] have shown

that wetting the raw coal during storage can inhibit the diffusion of coal dust. A dust

remover or water mist dust removal system should be installed in the coal storage plant,

and a dust prevention and suppression wall and green plant belt should be established in

the mining area to prevent coal dust pollution in the mining area, on the roads, and in the

coal processing plants. Therefore, appropriate dust prevention and avoidance facilities

should be established according to the local economic situation, geographical conditions,

and distribution of the mining area, and effective coal dust pollution control policies should

be implemented to reduce coal dust pollution.

3. Coal mine processing equipment should be improved. The sealing device should be effi-

ciently operated, the accumulated coal dust should be removed in a timely manner, and sec-

ondary diffusion of coal dust should be prevented. Regarding the mining, transportation,

and processing of the coal, management training for workers should be strengthened. Fur-

thermore, the mining equipment should be inspected and maintained regularly to eliminate

potential safety hazards.

From 2010 to 2021, the coal dust pollution area in the Wucaiwan mining area initially

increased and then decreased because the local management department implemented effec-

tive coal dust pollution control methods and issued relevant policies and measures for ecologi-

cal protection in the mining area. According to the statistics in the China Environmental

Yearbook, since 2012, the Zhundong Development Zone has invested 6.1 billion yuan in envi-

ronmental protection. Among them, the cumulative investment in planning was more than 10

million yuan, that in environmental infrastructure construction was 1.38 billion yuan, that in

improving the environmental protection capacity was 5.74 million yuan, and that in ecological

construction was 170 million yuan. One 21.8-million-ton solid waste landfill, one

180000-tons/year hazardous waste treatment center, one 5000-m3/day sewage treatment plant,

and one 130000-m3 landfill have been built. A total of 4.7 billion yuan has been invested in the

comprehensive improvement of the enterprise environment. All of the open-pit coal mining

enterprises have hardened 120 km of roads and have built 46 closed silos and 40.6 km of closed

coal conveying corridors. By 2021, nine production and construction coal mines in the devel-

opment zone had planted trees and had created afforestation areas of more than 4.53 km2,

effectively conserving water and soil. The use of 5G technology has made mine construction

more green and intelligent, and the dust raising phenomenon of the open-pit coal mine has

been effectively controlled. However, environmental protection should continue. We should

continue the restoration of the ecological environment in the mining area, strengthen the con-

struction of green mines, implement pollution prevention and control plans, and strengthen

enterprise supervision to lay a solid foundation for economic development and ecological pro-

tection in this region.

5 Conclusions

The conclusions of our study are as follows:

1. The ECDI can identify and extract coal dust information better, reduce the interference of

bare soil and other ground objects, and achieve macroscopic monitoring of coal dust pollu-

tion in the mining area to a certain extent compared with the NDCI. However, large-scale

monitoring can only be carried out in the image revisit cycle due to the influence of the spa-

tial and temporal resolutions, and the monitoring fluency and resulting description are

insufficient. The ECDIsoil and ECDIcoal values need to be repeatedly revised through experi-

ments in the process of using the dimidiate pixel model, which has a certain influence on
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the results. Currently, the results are only used as a reference for the spatial distribution of

the degree of coal dust pollution, and the verification of its real concentration values needs

to be studied further. In the future, more underlying surface factor parameters will be

obtained through surface sampling to make a breakthrough in the study of the coal dust

pollution diffusion mechanism.

2. The coal dust pollution in the mining area covered only 14.77 km2 in 2010. After the large-

scale development of the coal mine, it increased to 69.49 km2 by 2014. After environmental

treatment, the polluted area was reduced to 36.85 km2 in 2018, and in 2021, the pollution

area was only 17.85 km2.

3. Compared with other areas, there was a great deal of coal dust pollution around the mines

and on the roads, and the pollution was more serious closer to the mines and roads. Dust

prevention measures need to be taken during coal transportation to reduce pollution. Vari-

ous factors, such as wind, coal type, and the mining, processing, and transportation modes,

affect the distribution of the coal dust pollution.
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