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Live-single-cell phenotypic cancer biomarkers-future role in
precision oncology?
Grannum R. Sant1, Kevin B. Knopf2 and David M. Albala3

The promise of precision and personalized medicine is rooted in accurate, highly sensitive, and specific disease biomarkers. This is
particularly true for cancer-a disease characterized by marked tumor heterogeneity and diverse molecular signatures. Although
thousands of biomarkers have been described, only a very small number have been successfully translated into clinical use.
Undoubtedly, there is need for rapid, quantitative, and more cost effective biomarkers for tumor diagnosis and prognosis, to allow
for better risk stratification and aid clinicians in making personalized treatment decisions. This is particularly true for cancers where
specific biomarkers are either not available (e.g., renal cell carcinoma) or where current biomarkers tend to classify individuals into
broad risk categories unable to accurately assess individual tumor aggressiveness and adverse pathology potential (e.g., prostate
cancer), thereby leading to problems of over-diagnosis and over-treatment of indolent cancer and under-treatment of aggressive
cancer. This perspective highlights an emerging class of cancer biomarkers-live-single-cell phenotypic biomarkers, as compared to
genomic biomarkers, and their potential application for cancer diagnosis, risk-stratification, and prognosis.
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INTRODUCTION
Successful and meaningful biomarkers can be applied to different
touch points in the diagnosis and treatment of disease. Broadly,
successful biomarkers can be classified into the following
categories: screening–is the patient at risk of a disease;
diagnostic–does the patient have a disease; prognostic–how
aggressive is the patient’s disease; theranostic/companion
diagnostic–which therapy or procedure will best cure or mitigate
morbidity and mortality of a patient’s disease; and monitoring–has
the disease been treated effectively, recurred or spread. Live cell
biomarkers are poised to be a powerful addition to available
biomarkers and can be assessed either via slice cultures,1 organoid
cultures,2 or single cell cultures.3 In the following we discuss the
application of live-single-cell phenotypic biomarkers across the
continuum of patient diagnosis and treatment.
Similar to cardiovascular, metabolic, neurological, and other

disease states, cancer is understood as being a complex disease
with dynamic genetic and environmental risk factors in need of
personalized biomarkers to triage disease susceptibility, occur-
rence, risk, treatment, and progression (Fig. 1). Cancer biomarkers
have been broadly classified as either genomic (DNA/RNA) or
phenotypic (morphology and protein expression). Classically,
biomarkers have been measured using fixed tissue, yielding static
biomarker results such as morphology, size, nuclear-cytoplasmic
ratio, and genomic sequence information.4, 5 Importantly, these
static biomarkers were observed in the context of formalin-fixed
tissue samples that do not lend themselves to live-cell single cell
analysis.5 Technological advances have improved the ability to
define cellular phenotypes, and this previous narrow definition of
phenotypic biomarkers to only include cell shape and proteins, is
now incomplete. Analyses of live single-cell behavior suggest that
dynamic biophysical cellular properties characterize both normal

and disease states and represent a powerful extension and
expansion of the concept of phenotypic biomarkers.6 Thus, a
working definition of phenotypic biomarkers may be expanded to
consider spatial and temporal considerations, including two
phenotypic biomarker sub-categories: molecular and cellular
(Fig. 1a) either measured via live-cell microscopy or fixed-cell
microscopy.
Molecular phenotypic biomarkers include biomolecular para-

meters like the expression, activity and subcellular localization of
proteins and mRNA. Cellular phenotypic biomarkers include
morphology, as well as live-cell biophysical parameters such as
cell motility, contractility, force generation, and cytoskeletal
dynamics. Molecular biomarkers assess discrete components of
multiple specific biochemical pathways whereas cellular biomar-
kers provide an integrated readout of several underlying
biochemical and biological processes. Figure 1b lists the main
phenotypic biomarkers that can be measured in body fluids
(blood/urine) or biopsy tissue derived material, to provide
information at either the tissue or single cell level. Fixed-cell
phenotypic biomarkers such as cell morphology and tissue
architecture are widely accepted as markers of disease, and will
not be discussed here. Below, we summarize select cellular and
molecular phenotypic biomarkers that have the potential to be
translated and adopted into personalized novel quantitative and
actionable cancer diagnostics and prognostics.

MOLECULAR PHENOTYPIC BIOMARKERS
Molecular phenotypic biomarkers as defined as the expression,
localization, dynamics, and modification state of DNA, RNA, and
proteins can be measured in fixed or living tissue at the bulk-
tissue level or single-cell level and can be derived from either
tissue or bodily fluids. Further, molecular phenotypic biomarkers
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can be observed via different modalities such as, but not limited
to, next generation sequencing, immuno-histochemistry (IHC),
live-cell imaging, and functional magnetic resonance imaging.
Each imaging modality, and related modalities employ different
probes with their own binding kinetics that dictate the sensitivity
and specificity of their respective temporal and spatial resolutions,
engendering different ideal applications such as screening,
diagnostics, prognostics, theranostics (or companion diagnostics),
and monitoring, as well as potentially predicating their success in
a given application.
With that, live-cell phenotypic biomarkers represent an un-

tapped wealth of biomarkers due to difficulty around keeping
biopsy tissue a live in vitro, as well as automated imaging and big-
data/high-content data analysis techniques.7, 8 Given recent
advances in our understanding of the tumor environment,
microfluidics, high-content screening coupled with machine vision
and big-data techniques (such as machine learning) it is
conceivable to postulate a paradigm shift in the way patient
tissue samples are analyzed9 with a transition of qualitatively
assessing static, fixed tissue towards a modality of quantitatively
analyzing live tissue. Further, the investigation of dynamic live-cell
phenotypic biomarkers either in native micro-extracellular envir-
onments or specifically engineered extra-cellular environments
may allow the level of interrogation, dissection and delineation of
complex disease signaling pathways towards major clinical and
therapeutic advances. As an example, probing cell-extracellular
matrix (ECM) interactions or the manner in which cells interpret
the adjacent microenvironment, is emerging as another ‘–omic’-
like strategy to assess disease.10

Specifically, integrins, the primary mechano-transducers
between cells and the ECM, recruit proteins to sites of cell–ECM
contacts known as focal adhesion complexes.11 Integrins and focal
adhesion proteins promote cellular growth and motility and are
implicated in the ontogeny of epithelial tumors including prostate
cancer.12 Focal adhesion protein complexes are coupled with the

forward (protrusive) and rearward (retrograde) movement of
actin.13 This interaction in turn regulates cell motility, growth, and
proliferation.14, 15 Thus, the number and size of focal adhesions
are indicative of malignancy and metastasis, and are emerging to
be informative as molecular phenotypic tumor biomarkers.16–18

Several studies have reported a strong association between cancer
progression and aberrant expression/activity of proteins involved
in cell-cell adhesion, such as Cadherins and Catenins.19, 20 Morgan
et al. report that abnormal expression of α and β Catenin, and
Claudin 7 could serve as biomarkers to distinguish localized from
metastatic prostate cancer.20 Broadly, as human cells transform
from being benign to malignant, they demonstrate an increasingly
disorganized cytoskeleton, decreased peripheral cellular actin and
changes in cell adhesion properties.18, 21, 22 The concentrations
and molecular architecture of various cytoskeletal components
determine the overall mechanical response of cancer cells and
therefore hold promise as phenotypic biomarkers.23

Beyond dynamic live-single cell molecular biomarkers, tradi-
tional (static) molecular phenotypic biomarkers have been
extensively utilized in research to study the effects of genetic
alterations and therapeutics in cancer cells. However, their clinical
applications have been limited with only a handful in current
clinical use.24, 25 Examples include circulating proteins in blood/
urine for human cancer screening, (e.g., serum PSA for prostate
cancer and CA 125 for ovarian cancer), functional proteins in fixed
tissue samples for diagnostic and prognostic purposes (e.g., Her2,
ER, and PR in breast cancer) and specific circulating proteins to
monitor response to treatment and disease progression (e.g., CEA,
CA125, CA27.29, PSA, and CA19-9).26 Dynamic molecular pheno-
typic biomarkers remain an untapped resource for cancer
diagnosis and risk stratification, as well as have the potential to
serve as biomarkers for screening, diagnosis, prognosis, assess-
ment of drug response and in companion diagnostics and disease
state monitoring (Fig. 1c). This observation may be due to the

Fig. 1 An overview of phenotypic biomarkers in cancer. a. Revised definition of phenotypic biomarkers: There are two sub-classes of
phenotypic biomarkers. Cellular phenotypic biomarkers include non-molecular characteristics of cells such as morphology, adhesion
dynamics, spreading dynamics, migration velocity, stiffness, and other biophysical parameters, which can be measured in live-cells. Molecular
phenotypic biomarkers include proteins (expression, 10 activity and subcellular localization) and mRNA localization, which can be measured
in fixed-tissue or cells. b. Sources of phenotypic biomarkers for clinical use: Patient biopsy samples can either be immunostained to evaluate
molecular phenotypic biomarkers or be used to harvest and culture live-cells to evaluate cellular phenotypic biomarkers. Each individual cell
can be further evaluated for molecular phenotypic biomarkers. Body fluids (blood/urine) are other sources of molecular phenotypic 15
biomarkers. c. Clinical applications of phenotypic biomarkers in cancer management: Phenotypic biomarkers are useful for screening (to
identify at-risk individuals); diagnosis (to definitively detect presence of disease); staging and prognosis (to risk stratify and predict disease
outcome); companion diagnostics (to predict response to drugs) and for monitoring disease (to evaluate therapeutic response and
recurrence). d. Past, present and future of precision medicine
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modality by which molecular biomarkers are currently being
measured.
Importantly, shifting from a fixed/static biomarker molecular

measurement to a live/dynamic measurement may indeed
provide both the spatial and temporal resolution needed to
maximize molecular phenotypic biomarker information. For
example, label-free quantification actin polymerization via mem-
brane fluctuations, in that it relates to protrusive forces and
motility, may be an important biomarker to characterize meta-
static potential of a given cell.

Cellular phenotypic biomarkers
Similar to molecular phenotypic biomarkers, cellular phenotypic
biomarkers may benefit from the incorporation of dynamic data,
on a single cell level, as well as a tissue-based level. For example,
and as tumorigenesis is a complex biological process that involves
alterations in the mechanical properties of cells,27 mechano-
transduction28-the conversion of mechanical forces into biochem-
ical signals29-contributes to developmental,30 physiological, and
pathological processes in cancer progression.31, 32 Work is
ongoing to apply microfluidic technologies to create tools that
can “squeeze” or mechanically stimulate cancer cells in suspen-
sion, derived from blood or urine samples, and thereby assess
cellular mechanical properties such as contractility and force
generation.33 Important recent advances in matrix biology, live
single-cell imaging, microfluidics and automated image analysis
have made it possible to maintain cancer cells ex vivo, and
quantify their mechanical or biophysical properties as “label-free”
phenotypic biomarkers.33, 34

The aforementioned advances have made it possible to
measure cellular phenotypes that take multiple snap-shots of
important cellular features that are the resultant actions of
multiple integrated biochemical signaling pathways, thereby
interrogating a single cancer cell’s signal transduction profile to
assess if it is normal or pathological. For example, cancer cells
have altered migration rates compared to non-cancer cells from
the same tissue. Changes in migration velocity can result from
underlying cytoskeletal changes such as shortening of F-actin
filaments35 or from changes in complex biochemical pathways
e.g., aberrant androgen signaling in prostate cancer results in
altered cell migration.36 Cell spreading is another actin-dependent
feature related to cellular invasiveness.37 Cell spreading is also
correlated with altered DNA synthesis, motility, and differentia-
tion.21 Cell deformability (or effective stiffness) is another cellular
biomarker used to categorize cell populations and is an end result
of multiple biochemical and molecular changes.34 Data from
several epithelial cell carcinomas, including ovarian and breast,
suggest that decreased cell stiffness or increased cell deform-
ability is indicative of malignant transformation and may be a
useful measure of metastatic potential.34, 38, 39 Table 1 lists
important live-cell phenotypic biomarkers and their functions.

As many signaling events that regulate oncogenesis and
metastasis are governed by dynamic cytoskeletal events that
occur on a sub-micron (sub-cellular) spatial scale and a (sub)
milli-second temporal scale, the addition of quantifiable live-cell
biomarkers on similar spatial and temporal scales may be useful as
a powerful addition to the current suite of cellular phenotypic
biomarkers towards ameliorating current clinical applications.

Comparison of conventional, genomic, and phenotypic
biomarkers using diagnostic and prognostic applications as an
example
Conventional histopathology is the current gold standard for
diagnosis of most cancers (e.g., prostate, breast, lung etc.). Based
on the qualitative and subjective evaluation of tissue specimens,
routine histopathology suffers from variability in diagnosis,
suboptimal sensitivities and the inability to distinguish indolent
from aggressive cancers. The relative recent adoption of
immunolabeling/IHC for a handful of protein biomarkers (like
PD-1, OX40, HER2) has improved the predictive power of
histopathology by providing information about tumor subtypes,
prognostication and even guiding treatment decisions. However,
IHC remains a semi-quantitative method at best, is time
consuming and relies on limited tissue sampling and the
pathologist’s subjective visual interpretation of staining intensity.
In an attempt to make diagnosis and prognosis more

standardized and accurate, several diagnostic tests based on
quantification of genomic cancer biomarkers have been devel-
oped.40–43 Genomic tests measure selected genetic loci and can
be performed on static/formalin fixed paraffin-embedded tissue
samples. Predictions of tumorigenicity (prognostication) are based
on the quantitative gene expression data of a selected but small
number of genes. Although innovative, genomic marker tests
suffer from poor “signal-to-noise” ratio due to the significant
tumor heterogeneity from bulk-tumor samples that occur in solid
tumors such as prostate and breast cancer.44–46 Genetic tests are
designed to detect mutational hotspots in cancer-related genes
and pose a risk of false negative results when used for testing
cancers with unknown mutations.47 This is reflective in the
relatively low sensitivities (<0.70), or other test performance
statistics (like area under the curve or AUC) reported in clinical
studies for many of the marketed genomic biomarker tests.40

Given the importance of maintaining in vivo cell behavior
in vitro and time to culture, traditionally it has been difficult to
culture single cell cultures of primary human cells derived from
biopsy tissue in vitro for clinical applications. Advances in our
understanding of integrin-mediated ECM interactions has enabled
rapid culturing of primary human cells (such as prostate) allowing
analysis of cells as early as 48 h after sample procurement with the
ability to maintain primary cells in vitro for at least 7 days.3, 48 A
study has shown the use of a well-defined ECM allows for survival
and growth of primary prostate cells derived from radical
prostatectomy tissue.3, 48 Further, the use of a defined ECM

Table 1. List of live cell phenotypic biomarkers and their implication in tumorigenesis

Phenotypic Biomarker Measure of Implication Ref

Cell tortuosity Shape O/A 63

Nucleus area and perimeter dynamics Proliferation O/A 64

Cell spreading dynamics Invasion M/I 65

Cell migration velocity Motility M/I 66

Cell stiffness Growth, migration M/I + O/A 67

Cell area/perimeter dynamics Shape & migration M/I + O/A 68

Retrograde actin flow velocity (RFV) Motility M/I + O/A 14

Note: O/A oncogenicity/aggressiveness, M/I metastasis/invasiveness
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environment provides a reference standard to gage and compare
how primary cells from different patients interpret a specific and
consistent microenvironment. More work in this field is ongoing
and shows promise towards the ability to rapidly and reproducibly
culture cells derived from patient biopsy.49 Additional studies
have also been successful at controlling media and ECM
conditions, to establish slice cultures, organoid cultures or slow
growing (~30 day) single-cell cultures.1, 2, 49–52

Live-single-cell cellular and molecular phenotypic biomarkers
represent an easily quantifiable result or biomarker representative
of a concert of biochemical pathways or the total expression of
the complex and inter-related cellular processes that regulate
cellular homeostasis and pathogenesis (i.e., genetic (DNA, RNA,
RNAi), epigenetic, chromosomal, proteasome, metabolome, etc.).
Imaging biophysical biomarkers and monitoring protein expres-
sion, sub-cellular localization, and modification states in living
cancer cells on a single-cell level may allow direct assessment of
cellular function and tumor heterogeneity by quantifying mole-
cular and cellular behavior in individual cells.
Specifically, rapid and quantitative measurement of live-cell

phenotypic biomarkers using a microfluidic platform and trained,
automatic machine vision, and learning algorithms could provide
meaningful, objective information about the invasiveness and
growth potential of tumor cells.53 Assessment of phenotypic
behavior at the resolution of individual cancer cells is advanta-
geous, as it considers functionally important discrete sub-
populations of cells that may dictate tumor biology that,
otherwise, would be lost in bulk genomic analysis. Furthermore,

single-cell analysis allow measurement of the intra-tumor hetero-
geneity, which itself could be used as a biomarker to predict
disease progression and drug resistance.54 Moreover, live-single-
cell phenotypic biomarkers provide direct measures of functional
biological pathways providing vital information such as protein
expression, localization or activity. Genomic tests on the other
hand do not provide information about protein localization and
infer data about protein expression and activity through gene
expression (RNA) profiling, which have been shown to have
minimal or limited correlations.55

Table 2 summarizes the main advantages and disadvantages of
the current diagnostic approaches in cancer. A drawback of both
genomic and live-single-cell phenotypic diagnostic tests described
above, is the loss of spatial information of different cell types
relative to each another, tumor microenvironment and to the
anatomical features of the tissue. With that, single-cell analysis is
buttressed by the ability to assess single-cell behavior when cells
interact with a defined ECM or microenvironment. The limitations
of most diagnostic tests are a function of the way samples,
intended for genotypic or live-single cell phenotypic analysis, are
processed for testing and could be a concern in specific cancers
like brain or skin malignancies, where tissue anatomy is
particularly informative. However, as live-cell diagnostic tests
evolve with greater predictive power and improved sensitivities,
this may become a minor concern.
There has been a rapid evolution in cancer diagnostics over the

last decade.56 Cancer diagnostics is moving quickly from reliance
on histopathology and immuno-histochemical tissue staining

Table 2. Advantages and disadvantages of conventional, genomic, and phenotypic diagnostic tests

Diagnostic test Time to
results

Categorization
of disease state

Tissue sample cellular/molecular
classification

Clinical
application

Advantages Disadvantages Ref

Histopathology 3–7 days Qualitative
broad
categorization

Single time point FFPE fixed cell
morphology and molecular (protein,
mRNA, DNA) classification

Diagnostic Clinical
familiarity

Subjective and variable
interpretation

69, 70

Spatial
information

Low sensitivity

Genomic Tests 14–21 days Quantitative
limited
categorization

Single time point FFPE fixed cell no
morphology and limited molecular
(mRNA & DNA) classification

Screening High
throughput

Poor performance
statistics,

71

Diagnostic Quantitative Loss of spatial
information

Risk
stratification

Predictive

Therapy
selection

Monitoring

Phenotypic
tests

1–7 daysa Quantitative
bcomposite
score predicting
severity of
disease

Multi-time point live-cell morphology
and live-cell/formalin fixed cell
molecular (protein, mRNA, DNA)
classification on standardized ECM
microenvironment

Screening High
throughput

Limited spatial
information

34

Diagnostic Quantitative Live-cell assays not yet
clinically validated

Risk
stratification

Predictive Live-cells not in native
microenvironment (alive-
cells maintained in
standardized ECM
microenvironment)

Therapy
selection

Faster
results

Monitoring

a projected estimate b based on preliminary results
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towards the use of quantitative, biomarker-based, personalized
approaches (Fig. 1d). In the future, development of diagnostic
platforms that incorporate both genomic and phenotypic and
biomarkers may allow for improved risk stratification and
treatment decision-making.

Promise of live-cell behavior as a phenotypic biomarker
The expansion in the repertoire of phenotypic biomarkers to
include live-cell behavior has the potential to revolutionize cancer
diagnostics and drug development in the new era of personalized
and precision medicine. Evaluation of live-cell behavior in a
rigorously engineered and reproducible environment that main-
tains consistent cell-cell and cell-matrix interactions will identify
new and previously inaccessible phenotypic biomarkers-distinct
for cancer and benign cells. Live-cell phenotypic biomarkers can
be measured label-free and represent the general characteristics
of any malignant cell, irrespective of tumor type.
In addition to diagnosis and prognosis (risk stratification), live-cell

phenotypic biomarkers have potential uses in drug screening,
companion diagnostics and lead compound discovery.57 For
example, assessment of cell migration has been employed to
screen FDA-approved drugs for effective treatment of metastatic
prostate cancer.58 The screen was based on the phenotype of cell
migration and invasion and depended on assessing the behavior of
living prostate cancer cells lines exposed to tested drugs vs. vehicle
controls.58 Within this same concept, a multi-phenotype assay
measuring all live-cell biomarkers outlined in Table 1 could be a
potentially powerful tool for compound discovery and FDA
approved drug library screening for prostate and other solid tumors.
Indeed, motivated by the need to dissect and interrogate the

heterogeneity and multiplicitous nature of many cancers,59–62 a
number of techniques are emerging that use high throughput
microfluidic devices to discern single cell phenotypic behavior often
focusing on cellular mechanics such as migration, traction force, cell
tensile strength, and extra-cellular matrix / microenvironment cell
interaction.48, 63–73 Additionally, there are emerging technologies
that apply single cell analysis techniques to for improved screening,
diagnosis, prognosis, and therapy selection, as well as drug
discovery and development that are extensions of more established
techniques that use cellular phenotype profiling.73–75

Live-cell phenotypic biomarkers could be used as a theranostic
(or via a companion diagnostic) approach in which an individual’s
live cells could be screened against a panel of chemotherapeutic
drugs (singly or in combination) to provide a direct read-out of
tumor response, again, given a defined ECM, to drug treatment
prior to use in oncology drug trials and clinical practice.76 Live-cell
phenotypic biomarkers could also be used to design and study
the effect of combination therapies and the new class of immune-
oncology drugs supporting the potential paradigm shift in cancer
diagnosis and treatment in the era of (live-cell) personalized
medicine.77

General biology is often studied using cellular phenotypic
assays as screens to test gene function and compare cancer cells
with non-cancer cells as a method to better understand the
underpinnings of cancer cell biology.76 Using a high-content,
automated live cell imaging, phenotypic assay, Pau et al was able
to screen cells treated with a small interfering RNA library and
identify 2190 genomic targets that disrupted the cell cycle,
mitosis, or cell death pathways.78 Indeed such large scale
screening approaches utilizing live cell phenotypic assays are
poised to usher in a novel approach to interrogate cancer cell
biology by allowing computer generated models to be developed
for studying cancer biology in-silico.79

CONCLUSIONS
While much progress has been made in identifying biomarkers in
research settings, clinical adoption has been slow. Thus, there
remains a significant unmet need for specific and sensitive
biomarkers of tumor aggressiveness and metastatic potential that
can be used for optimal risk stratification towards treatment
decision-making.
Phenotypic biomarkers, particularly those evaluating live-cell

behaviors, have the potential to fulfill this need for a quick and
actionable biomarker platform to underpin the precision
oncology paradigm. The underlying advantage of live-cell
phenotypic biomarkers (molecular and cellular) over genomic
biomarkers is their universal applicability in multiple solid human
tumors, their ability to report on multiple, synchronous
biochemical pathways, and their reflection of a cancer cell’s
protein expression profile in concert and behavior in its
microenvironment. Furthermore, recent technical advances allow
for rapid and automated measurement of phenotypic biomarkers
in large numbers of live tumor cells enabling big-data analysis at
the single cell level to mitigate the challenges of tumor
heterogeneity.
Precision oncology stands to benefit enormously from the

development of a live-cell phenotypic biomarker (molecular and
cellular) platform using high throughput automated approaches.
A composite measurement of live-cell phenotypic biomarkers in
cancer represents an innovative and actionable addition to
personalized cancer diagnosis, risk stratification, and treatment
decision-making.80-88

AUTHOR CONTRIBUTIONS
G.S., K.K., and D.A. took part in: study conception and design, acquisition of data,
analysis and interpretation of data, drafting of manuscript, critical revision, final
approval, and accountability for accuracy and integrity.

ADDITIONAL INFORMATION
Competing interests: Authors have stock options with Cellanyx Diagnostics. G. Sant
is the Chair of the Scientific Advisory Board, and K. Knopf and D. Albala are Members
of the Scientific Advisory Board.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

REFERENCES
1. Majumder, B. et al. Predicting clinical response to anticancer drugs using an

ex vivo platform that captures tumour heterogeneity. Nat. Commun. 6, 6169
(2015).

2. Yu, M. et al. Cancer therapy. Ex vivo culture of circulating breast
tumor cells for individualized testing of drug susceptibility. Science 345, 216–220
(2014).

3. Albala, D. et al. Clinical validation of a live-cell phenotypic biomarkers –based
diagnostic assay for the prediction of adverse pathology in prostate cancer.
J. Urol. 195, e83 (2016).

4. Humphrey, P. A. Gleason grading and prognostic factors in carcinoma of the
prostate. Mod. Pathol. 17, 292–306 (2004).

5. Veltri, R. W. et al. Long-term assessment of prostate cancer progression free
survival: evaluation of pathological parameters, nuclear shape and molecular
biomarkers of pathogenesis. Prostate 68, 1806–1815 (2008).

6. Darling, E. M. & Di Carlo, D. High-Throughput Assessment of Cellular Mechanical
Properties. Annu. Rev. Biomed. Eng. 17, 35–62 (2015).

7. Mir, M., Bergamaschi, A., Katzenellenbogen, B. S. & Popescu, G. Highly sensitive
quantitative imaging for monitoring single cancer cell growth kinetics and drug
response. PLoS ONE 9, e89000 (2014).

8. Orth, J. D. et al. Quantitative live imaging of cancer and normal cells treated with
Kinesin-5 inhibitors indicates significant differences in phenotypic responses and
cell fate. Mol. Cancer Ther. 7, 3480–3489 (2008).

9. Garvey, C. M. et al. A high-content image-based method for quantitatively
studying context-dependent cell population dynamics. Sci. Rep. 6, 29752
(2016).

Live-single-cell phenotypic cancer biomarkers
GR Sant et al.

5

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2017)  21 



10. Trevino, V. et al. Analysis of normal-tumour tissue interaction in tumours: pre-
diction of prostate cancer features from the molecular profile of adjacent normal
cells. PLoS ONE 6, e16492 (2011).

11. Cabodi, S., del Pilar Camacho-Leal, M., Di Stefano, P. & Defilippi, P. Integrin sig-
nalling adaptors: not only figurants in the cancer story. Nat. Rev. Cancer 10,
858–870 (2010).

12. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144,
646–674 (2011).

13. Yamashiro, S. & Watanabe, N. A new link between the retrograde actin flow and
focal adhesions. J. Biochem. 156, 239–248 (2014).

14. Zimmermann, J. et al. Actin filament elasticity and retrograde flow shape the
force-velocity relation of motile cells. Biophys. J. 102, 287–295 (2012).

15. Gu, S. et al. Rapid activation of FAK/mTOR/p70S6K/PAK1-signaling controls the
early testosterone-induced actin reorganization in colon cancer cells. Cell. Signal
25, 66–73 (2013).

16. Lock, J. G., Wehrle-Haller, B. & Stromblad, S. Cell-matrix adhesion complexes:
master control machinery of cell migration. Semin. Cancer Biol. 18, 65–76,
doi:10.1016/j.semcancer.2007.10.001 (2008).

17. Luo, M. & Guan, J. L. Focal adhesion kinase: a prominent determinant in breast
cancer initiation, progression and metastasis. Cancer Lett. 289, 127–139 (2010).

18. Tilghman, R. W. & Parsons, J. T. Focal adhesion kinase as a regulator of cell tension
in the progression of cancer. Semin. Cancer. Biol. 18, 45–52 (2008).

19. Putzke, A. P. et al. Metastatic progression of prostate cancer and e-cadherin
regulation by zeb1 and SRC family kinases. Am. J. Pathol. 179, 400–410
(2011).

20. Morgan, C., Jenkins, S. A., Kynaston, H. G. & Doak, S. H. The role of adhesion
molecules as biomarkers for the aggressive prostate cancer phenotype. PLoS ONE
8, e81666 (2013).

21. Bhadriraju, K. & Hansen, L. K. Extracellular matrix- and cytoskeleton-dependent
changes in cell shape and stiffness. Exp. Cell. Res. 278, 92–100 (2002).

22. Lindberg, U., Karlsson, R., Lassing, I., Schutt, C. E. & Hoglund, A. S. The micro-
filament system and malignancy. Semin. Cancer Biol. 18, 2–11 (2008).

23. Stehn, J. R. et al. A novel class of anticancer compounds targets the actin
cytoskeleton in tumor cells. Cancer Res. 73, 5169–5182 (2013).

24. Diamandis, E. P. The failure of protein cancer biomarkers to reach the clinic: why,
and what can be done to address the problem? BMC Med. 10, 87 (2012).

25. Drucker, E. & Krapfenbauer, K. Pitfalls and limitations in translation from bio-
marker discovery to clinical utility in predictive and personalised medicine. EPMA
J. 4, 7 (2013).

26. Kalia, M. Biomarkers for personalized oncology: recent advances and future
challenges. Metabolism 64, S16–S21 (2015).

27. Kumar, S. & Weaver, V. M. Mechanics, malignancy, and metastasis: the force
journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127 (2009).

28. Tilghman, R. W. et al. Matrix rigidity regulates cancer cell growth and cellular
phenotype. PLoS ONE 5, e12905 (2010).

29. Bausch, A. R. & Schwarz, U. S. Cellular mechanosensing: Sharing the force. Nat.
Mater. 12, 948–949 (2013).

30. Spill, F., Reynolds, D. S., Kamm, R. D. & Zaman, M. H. Impact of the physical
microenvironment on tumor progression and metastasis. Curr. Opin. Biotechnol.
40, 41–48 (2016).

31. Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nat. Rev. Mol.
Cell. Biol. 10, 63–73 (2009).

32. Mierke, C. T., Frey, B., Fellner, M., Herrmann, M. & Fabry, B. Integrin alpha5beta1
facilitates cancer cell invasion through enhanced contractile forces. J. Cell. Sci.
124, 369–383 (2011).

33. Liu, Z. et al. Microfluidic cytometric analysis of cancer cell transportability and
invasiveness. Sci. Rep. 5, 14272 (2015).

34. Gossett, D. R. et al. Hydrodynamic stretching of single cells for large population
mechanical phenotyping. Proc. Natl. Acad. Sci. USA 109, 7630–7635 (2012).

35. Chan, E., Saito, A., Honda, T. & Di Guglielmo, G. M. The acetylenic tricyclic bis
(cyano enone), TBE-31 inhibits non-small cell lung cancer cell migration through
direct binding with actin. Cancer Prev. Res. (Phila) 7, 727–737 (2014).

36. Kroiss, A. et al. Androgen-regulated microRNA-135a decreases prostate cancer
cell migration and invasion through downregulating ROCK1 and ROCK2. Onco-
gene 34, 2846–2855 (2015).

37. Maiuri, P. et al. Actin flows mediate a universal coupling between cell speed and
cell persistence. Cell 161, 374–386 (2015).

38. Plodinec, M. et al. The nanomechanical signature of breast cancer. Nat. Nano-
technol. 7, 757–765 (2012).

39. Xu, W. et al. Cell stiffness is a biomarker of the metastatic potential of ovarian
cancer cells. PLoS ONE. 7, e46609 (2012).

40. Klein, E. A. et al. A 17-gene assay to predict prostate cancer aggressiveness in the
context of Gleason grade heterogeneity, tumor multifocality, and biopsy
undersampling. Eur. Urol. 66, 550–560 (2014).

41. Karnes, R. J. et al. Validation of a genomic classifier that predicts metastasis
following radical prostatectomy in an at risk patient population. J. Urol. 190,
2047–2053 (2013).

42. Cuzick, J. et al. Prognostic value of an RNA expression signature derived from cell
cycle proliferation genes in patients with prostate cancer: a retrospective study.
Lancet Oncol. 12, 245–255 (2011).

43. Stewart, G. D. et al. Clinical utility of an epigenetic assay to detect occult prostate
cancer in histopathologically negative biopsies: results of the MATLOC study. J.
Urol. 189, 1110–1116 (2013).

44. Almendro, V. et al. Genetic and phenotypic diversity in breast tumor metastases.
Cancer Res. 74, 1338–1348 (2014).

45. Beltran, H. & Demichelis, F. Prostate cancer: Intrapatient heterogeneity in prostate
cancer. Nat. Rev. Urol. 12, 430–431 (2015).

46. Marusyk, A. & Polyak, K. Tumor heterogeneity: causes and consequences. Biochim.
Biophys. Acta. 1805, 105–117 (2010).

47. Bailey, A. M. et al. Implementation of biomarker-driven cancer therapy: existing
tools and remaining gaps. Discov. Med. 17, 101–114 (2014).

48. Chander, A. et al. Rapid and short-term extra-cellular matrix-mediated in vitro
culturing of tumor and non-tumor human primary prostate cells from fresh
radical prostatectomy tissue. Urology. doi:10.1016/j.urology.2017.03.029. [Epub
ahead of print] (2017)

49. Rhim, J. S. Human prostate epithelial cell cultures. Methods Mol. Biol. 946,
383–393 (2013).

50. Hudson, D. L. Prostate epithelial stem cell culture. Cytotechnology 41, 189–196
(2003).

51. Russell, P. J., Jackson, P., & Kingsley, E. A. (eds) Prostate Cancer Methods and
Protocols Vol. 81 (Springer New York, 2003).

52. Peehl, D. M. Primary cell cultures as models of prostate cancer development.
Endocr. Relat. Cancer 12, 19–47 (2005).

53. Mattiazzi Usaj, M. et al. High-Content Screening for Quantitative Cell Biology.
Trends Cell. Biol. 26, 598–611 (2016).

54. Maley, C. C. et al. Genetic clonal diversity predicts progression to esophageal
adenocarcinoma. Nat. Genet. 38, 468–473 (2006).

55. Greenbaum, D., Colangelo, C., Williams, K. & Gerstein, M. Comparing protein
abundance and mRNA expression levels on a genomic scale. Genome Biol. 4, 117
(2003).

56. Lyman, G. H. & Moses, H. L. Biomarker Tests for Molecularly Targeted
Therapies--The Key to Unlocking Precision Medicine. N. Engl. J. Med. 375, 4–6
(2016).

57. Colburn, W. A. Biomarkers in drug discovery and development: from target
identification through drug marketing. J. Clin. Pharmacol. 43, 329–341 (2003).

58. Shah, E. T. et al. Repositioning “old” drugs for new causes: identifying new
inhibitors of prostate cancer cell migration and invasion. Clin. Exp. Metastasis. 33,
385–399 (2016).

59. Gerlinger, M. et al. Intratumour heterogeneity in urologic cancers: from molecular
evidence to clinical implications. Eur. Urol. 67, 729–737 (2015).

60. Koren, S. & Bentires-Alj, M. Breast Tumor Heterogeneity: Source of Fitness, Hurdle
for Therapy. Mol. Cell. 60, 537–546 (2015).

61. Stanta, G., Jahn, S. W., Bonin, S. & Hoefler, G. Tumour heterogeneity: principles
and practical consequences. Virchows Arch. 469, 371–384 (2016).

62. Tellez-Gabriel, M., Ory, B., Lamoureux, F., Heymann, M. F. & Heymann, D. Tumour
heterogeneity: The key advantages of single-cell analysis. Int. J. Mol. Sci. 17,
doi:10.3390/ijms17122142 (2016).

63. Carey, S. P. et al. Comparative mechanisms of cancer cell migration through 3D
matrix and physiological microtracks. Am. J. Physiol. Cell. Physiol. 308, C436–447
(2015).

64. Chang, T. C. et al. Parallel microfluidic chemosensitivity testing on individual slice
cultures. Lab. Chip. 14, 4540–4551 (2014).

65. Chen, Y. C. et al. Single-cell Migration Chip for Chemotaxis-based Microfluidic
Selection of Heterogeneous Cell Populations. Sci. Rep. 5, 9980 (2015).

66. Jonas, O. et al. An implantable microdevice to perform high-throughput in vivo
drug sensitivity testing in tumors. Sci. Transl. Med. 7, 284ra257 (2015).

67. Mulligan, J. A., Bordeleau, F., Reinhart-King, C. A. & Adie, S. G. Measurement of
dynamic cell-induced 3D displacement fields in vitro for traction force optical
coherence microscopy. Biomed. Opt. Express 8, 1152–1171 (2017).

68. Otto, O. et al. Real-time deformability cytometry: on-the-fly cell mechanical
phenotyping. Nat. Methods 12, 199–202 (2015). 194 p following 202.

69. Prakadan, S. M., Shalek, A. K. & Weitz, D. A. Scaling by shrinking: empowering single-
cell ‘omics’ with microfluidic devices. Nat. Rev. Genet. doi:10.1038/nrg.2017.15
(2017).

70. Pushkarsky, I. et al. Automated single-cell motility analysis on a chip using
lensfree microscopy. Sci. Rep. 4, 4717 (2014).

71. Reed, J. et al. Rapid, massively parallel single-cell drug response measurements
via live cell interferometry. Biophys. J. 101, 1025–1031 (2011).

Live-single-cell phenotypic cancer biomarkers
GR Sant et al.

6

npj Precision Oncology (2017)  21 Published in partnership with The Hormel Institute, University of Minnesota

http://dx.doi.org/10.1016/j.semcancer.2007.10.001
http://dx.doi.org/10.1016/j.urology.2017.03.029
http://dx.doi.org/10.3390/ijms17122142
http://dx.doi.org/10.1038/nrg.2017.15


72. Tse, H. T. et al. Quantitative diagnosis of malignant pleural effusions by single-cell
mechanophenotyping. Sci. Transl. Med. 5, 212ra163 (2013).

73. Vincent, F. et al. Developing predictive assays: the phenotypic screening “rule of
3”. Sci. Transl. Med. 7, 293ps215 (2015).

74. Goossens, N., Nakagawa, S., Sun, X. & Hoshida, Y. Cancer biomarker discovery and
validation. Transl. Cancer. Res. 4, 256–269 (2015).

75. Moffat, J. G., Rudolph, J. & Bailey, D. Phenotypic screening in cancer drug dis-
covery - past, present and future. Nat. Rev. Drug. Discov. 13, 588–602 (2014).

76. Swinney, D. C. The value of translational biomarkers to phenotypic assays. Front.
Pharmacol. 5, 171 (2014).

77. McCormack, E. et al. Bi-specific TCR-anti CD3 redirected T-cell targeting of NY-ESO-
1- and LAGE-1-positive tumors. Cancer Immunol. Immunother. 62, 773–785 (2013).

78. Pau, G. et al. Dynamical modelling of phenotypes in a genome-wide RNAi live-cell
imaging assay. BMC Bioinform. 14, 308 (2013).

79. Horwitz, R. Cellular Biophysics. Biophys. J. 110, 993–996 (2016).
80. Cadart, C., Zlotek-Zlotkiewicz, E., Le Berre, M., Piel, M. & Matthews, H. K. Exploring

the function of cell shape and size during mitosis. Dev. Cell. 29, 159–169 (2014).
81. Zink, D., Fischer, A. H. & Nickerson, J. A. Nuclear structure in cancer cells. Nat. Rev.

Cancer. 4, 677–687 (2004).
82. Douezan, S. et al. Spreading dynamics and wetting transition of cellular aggre-

gates. Proc. Natl. Acad. Sci. USA 108, 7315–7320 (2011).
83. Yamaguchi, H. & Condeelis, J. Regulation of the actin cytoskeleton in cancer cell

migration and invasion. Biochim. Biophys. Acta 1773, 642–652 (2007).
84. Golubovskaya, V. M., Kweh, F. A. & Cance, W. G. Focal adhesion kinase and cancer.

Histol. Histopathol. 24, 503–510 (2009).

85. Driscoll, M. K. et al. Cell shape dynamics: from waves to migration. PLoS Comput.
Biol. 8, e1002392 (2012).

86. Carvajal-Hausdorf, D. E., Schalper, K. A., Neumeister, V. M. & Rimm, D. L. Quanti-
tative measurement of cancer tissue biomarkers in the lab and in the clinic. Lab.
Invest. 95, 385–396 (2015).

87. Lattouf, J. B. & Saad, F. Gleason score on biopsy: is it reliable for predicting the
final grade on pathology? BJU Int. 90, 694–698 (2002). discussion 698–699.

88. Roychowdhury, S. & Chinnaiyan, A. M. Translating cancer genomes and tran-
scriptomes for precision oncology. CA Cancer J. Clin. 66, 75–88 (2016).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2017

Live-single-cell phenotypic cancer biomarkers
GR Sant et al.

7

Published in partnership with The Hormel Institute, University of Minnesota npj Precision Oncology (2017)  21 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Live-single-cell phenotypic cancer biomarkers-future role in precision oncology?
	Introduction
	Molecular phenotypic biomarkers
	Cellular phenotypic biomarkers
	Comparison of conventional, genomic, and phenotypic biomarkers using diagnostic and prognostic applications as an example
	Promise of live-cell behavior as a phenotypic biomarker

	Conclusions
	Author contributions
	Competing interests
	ACKNOWLEDGMENTS




