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A B S T R A C T   

It has long been recognized that the antioxidants present in fresh plant materials may be very different to those 
we ingest via our foods. This is often due to the use of food processing strategies involving thermal/non-thermal 
treatments. Current research mostly focuses on determining what is present in vegetative starting materials; how 
this is altered during processing; how this influences activity in the gut and following uptake into bloodstream; 
and which in vivo physiological effects this may have on human body. Having a better understanding of these 
different steps and their importance in a health-and-nutrition-context will place us in a better position to breed 
for improved crop varieties and to advise the food industry on how to optimize processing strategies to enhance 
biochemical composition of processed foods. This review provides an overview of what is currently known about 
the influence which food processing treatments can have on antioxidants and gives some pointers as to their 
potential relevance.   

1. Introduction 

The best sources of antioxidants are fruits and vegetables which are 
now regularly reported to promote health and quality of life, particu-
larly by reducing the risk of chronic degenerative diseases, such as 
cardiovascular disease and certain types of cancer (Aune et al., 2017; 
Gürbüz, Uluişik, Frary, Frary, & Doğanlar, 2018). Their protective ef-
fects have mainly been attributed to the presence of bioactive antioxi-
dant compounds (i.e. carotenoids, flavonoids, and other dietary 
antioxidants), as these likely prevent cell damage through synergistic 
interactions (Chugh & Kamal-Eldin, 2020; Mao et al., 2019). Although 
fruits and vegetables are commonly consumed as fresh produce, they are 
also often processed into a variety of food products including juices, 
pastes, canned foods, etc. (Gülçin, 2012, 2020). These products can also 
be valuable sources of antioxidants. However, various processing 
methods can have marked effects on fruit and vegetable antioxidants 

and hence, may influence the health-promoting properties of the final 
food products (Al-juhaimi et al., 2018; Khan et al., 2018; Lourenço, 
Moldão-Martins, & Alves, 2019). 

A requirement for a specific processing step usually stems from a 
variety of origins. For example, the need to prolong shelf-life; the desire 
to have certain products available out of season; to optimize products 
especially suited for home-consumption; to develop strategies to design 
new or alternative food products with modified/supplemented flavor 
and texture; to maintain or improve nutritional characteristics; and, to 
increase quality and therefore value, to generate extra income for the 
producer (Toledo, Singh, & Kong, 2018). Although the effect of pro-
cessing on the fate of antioxidants has previously been reviewed, the 
extent of their losses or even gains and the influence which processing 
can have on bioavailability have been reported to differ considerably. 
This relates to the exact nature and conditions of the processes applied, 
the variety/origin of the food material used, and the biochemical 
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properties of the antioxidant itself (Arfaoui, 2021; Kamiloglu, Boyacio-
glu, & Capanoglu, 2013; Ribas-Agustí, Martín-Belloso, Soliva-Fortuny, 
& Elez-Martínez, 2018; Verghese, Willis, Boateng, Gomaa, & Kaur, 
2021). 

It is essential we gain a deep understanding of the consequences of 
processing on food composition in order to be able to design optimized 
strategies for the preservation and/or improvement of the antioxidant 
activity and bioavailability of these functional components in important 
key foodstuffs common to our daily diet (Barba et al., 2017; Ribas-Agustí 
et al., 2018; Verghese et al., 2021). To ascertain what the causality is 
behind various, contrasting (even apparently contradictory) results as 
reported in recent literature on the effect of industrial treatments, we 
need to perform an extensive evaluation as is detailed below. Thermal 
and non-thermal treatment effects on food composition as well as the 
bioavailability of different dietary antioxidants are both given particular 
emphasis as these are potentially the two most influential factors 
determining end-quality (Ahmed & Eun, 2018; Barba et al., 2017; Yuste 
et al., 2020). 

2. Dietary antioxidants and their health effects 

There is still growing interest in the new diet-health paradigm which 
places increasing emphasis on the positive aspects of our diet. This has 
led to nutritional studies in which our foods are being analyzed for their 
protective and disease prevention potential (Campbell, 2017; Corzo 
et al., 2020; Patel, Chandra, Alexander, Soble, & Williams, 2017). As a 
result of this research, fruits and vegetables have gained a more 
important status in the human diet as being potentially “functional 
foods”. These are foods which are capable of providing additional 
physiological benefits, including preventing or delaying the onset of a 
range of chronic diseases, due to their potentially health-promoting 
antioxidant constituents (Corsetto et al., 2020; Grosso, 2018; Lammi & 
Arnoldi, 2021). This topic has already reached the recognition of the 
consumer and is becoming increasingly prominent in advertising 
campaigns. 

Oxidative stress has been well-documented as the cause of a number 
of health disorders, including cardiovascular malfunction, certain types 
of cancer, type 2 diabetes, and many other auto-immune diseases as well 
as and often linked to, ageing (Apak et al., 2022; Cetin Cakmak & Gülçin, 
2019). This stress results from the release of free oxygen radicals in the 
body (Al-juhaimi et al., 2018; Sarkate, Jambhorkar, & Sakhale, 2020; 
Warraich, Hussain, & Kayani, 2020). Antioxidants in fruits and vegeta-
bles are able to stabilize reactive oxygen species due to their free radical 
scavenging capacity (Warraich et al., 2020). Such a modulation of in vivo 
oxidative stress protects the cellular lipids, proteins, and DNA from 
molecular damage. Accordingly, the ingestion of these biologically 
active components either as fresh fruits and vegetables or their pro-
cessed products has been correlated with the prevention and lower 
incidence of several degenerative diseases (Aune et al., 2017; Cömert & 
Gökmen, 2020; Huang, 2018; Kiokias, Proestos, & Oreopoulou, 2018; 
Patel et al., 2017). 

The most thoroughly-studied groups of dietary antioxidants in fruits 
and vegetables include the carotenoids (i.e. α-carotene, β-carotene, 
lycopene, etc.) and phenolic compounds (i.e. flavonoids) (Table 1). 
Although any potential causal relationships are still controversial, 
epidemiological studies have provided useful data in evaluating the 
possible protective effects of foods or food components in disease pre-
vention (Battino et al., 2019; Cömert & Gökmen, 2020). A high dietary 
intake of fruits and vegetables that are rich in carotenoids (particularly 
β-carotene and lycopene) has been associated with a decreased risk of 
developing cancer, which, in particular, is more consistent for forms of 
lung and stomach cancer (Rowles & Erdman, 2020; Saini, Keum, Daglia, 
& Rengasamy, 2020) and a decreased risk of developing cardiovascular 
problems (Jahns et al., 2018; Matsumoto et al., 2020). In addition, 
among the carotenoids, lutein and zeaxanthin have also been suggested 
to have a protective role against developing certain eye diseases (Johra, 

Bepari, Bristy, & Reza, 2020). A dietary deficiency in carotenoids such as 
α-carotene, β-carotene, which are precursors of vitamin A, is a global 
health problem responsible for growth retardation in children and an 
increased susceptibility to infection, blindness, and death (Carazo et al., 
2021; Hanson et al., 2018). 

Flavonoids, which constitute the major subclass of polyphenols, are 
common in the daily diet (Table 1). These bioactive components have 
received considerable attention because of their health-promoting ef-
fects as antioxidants and have been identified as strong candidates in the 
prevention of human diseases such as cancer, cardiovascular diseases as 
well as some pathological disorders such as gastric and duodenal ulcers, 
allergies, vascular fragility, and viral and bacterial infection (Dabeek & 
Marra, 2019; Fusi et al., 2020). For instance, the intake of quercetin (one 
of the major plant flavonols) has been inversely associated with the 
levels of both total cholesterol and low-density-lipoprotein (LDL) 
cholesterol in human plasma (Dabeek & Marra, 2019). In addition, 
anthocyanin consumption has also recently been related to several 
health-promoting effects, including anti-obesity (Kim et al., 2020; Xie, 
Su, Sun, Zheng, & Chen, 2018) and the regulation of plasma cholesterol 
and lipid levels (Xu et al., 2021; Zhao et al., 2021). Results obtained 
from both in vitro and in vivo studies have revealed several other health- 
related effects of anthocyanins, including inhibition of tumor develop-
ment (Lee et al., 2020; Paramanantham et al., 2020) and prevention of 
certain cardiovascular risk factors (Krga & Milenkovic, 2019; Xu et al., 
2021). 

3. Changes in antioxidant profile during food processing 

It has been proposed that it is healthier to consume natural antiox-
idants through foods which are inherently rich in these bioactive com-
pounds, rather than ingestion in the form of dietary supplements or pills 
(Burton-Freeman & Sesso, 2014). Furthermore, it has also been pointed 
out that food composition tables, which are tools used for epidemio-
logical and nutritional studies, generally only include information on the 
consumption of raw-state foodstuffs whereas nutritional properties and 
biological activity are known to be significantly influenced by food 
processing (Tanemura, Machii, & Urushihara, 2020). Food processing is 
a broad concept as strategies can range from being simple to being 
considerably complicated depending on the desired end product. For 
example, fresh produce may require non-thermal pre/post operations, 
such as washing, selection, packaging, transportation and storage at the 
point of retail. In contrast, production of fully processed products 
generally includes multiple non-thermal as well as thermal treatments, 

Table 1 
Major dietary antioxidants and their occurrence in common foods.  

Dietary 
antioxidants 

Example 
compounds 

Major food 
sources 

References 

Carotenoids α-carotene, 
β-carotene, 
lutein, lycopene 

tomato, carrot, 
spinach, chili 
(red), kale, 
lettuce 

Bartali & Semba (2021); 
Chacón-Ordóñez et al. 
(2019); Rodrigo et al. 
(2015); Rowles & 
Erdman (2020)  

Flavonoids    
Flavonols quercetin, 

kaempferol 
onions, apples, 
berries, tea, red 
wine 

Guaadaoui et al. (2020); 
Maleki et al. (2019); 
Rodríguez-García et al. 
(2019); Waheed Janabi 
et al. (2020) 

Flavones apigenin, chrysin parsley, thyme 
Flavanones hesperidin, 

naringenin 
citrus 

Flavanols catechin, 
epicatechin 

tea, apples 

Anthocyanins cyanidin, 
pelargonidin 

cherries, grapes 

Isoflavones genistein, 
daidzein 

soy beans, 
legumes  
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like washing, selection, cutting, removal of the seed and skin, blanching, 
roasting, evaporation, pasteurization, canning, and prolonged storage. 
Such complex production strategies with many consecutive steps have a 
high potential to affect the nutritional status of the end product, and 
especially so if different heat treatments are involved (Knorr, Augustin, 
& Tiwari, 2020; Sá, Moreno, & Carciofi, 2020). 

It has long been recognized that fruit and vegetable processing re-
sults in the loss of antioxidants with a concomitant reduction in bioac-
tivity in processed products compared to the fresh equivalents (Boz & 
Koelsch Sand, 2020; Chen, Chaudhary, & Mathys, 2020). This is sug-
gested as a result of oxidation, (non)enzymatic conversion, thermal 
degradation, leaching, etc. that occur during processing. However, it is 
now increasingly evidenced that food processing does not necessarily 
negatively affect the functional properties of food components (Lafarga, 
Viñas, Bobo, Simó, & Aguiló-Aguayo, 2018; Yuste et al., 2020). Several 
recent studies have reported that compounds possessing antioxidative 
effects, may occur in increased quantities and with enhanced bioavail-
ability following food processing protocols which involve e.g. moderate 
heating or enzymatic disruption of cell walls (Al-juhaimi et al., 2018; 
Barba et al., 2017; Castro et al., 2020; Ribas-Agustí et al., 2018). 
Therefore, the exact effect may be managed by a combination of the 
processing strategies used, in association with the specific biochemical 
composition of the raw materials included. 

3.1. Thermal treatments 

Generally, industrial food processing strategies aimed at generating a 
range of end-products include one or more temperature treatment steps. 
These can include drying, blanching, boiling, pasteurizing, etc. These 
treatments are employed for specific reasons such as the inactivation of 
microorganisms or enzymes, to decrease the water content and thus 
concentrate the product, or for example, to soften the materials in order 
to facilitate the separation of fruit/vegetable flesh from the skin. During 
treatment, next to the desired goal, several additional changes may also 
occur, including the alteration of the biochemical composition and 
nutritional value of the food material as a result of quantitative/quali-
tative changes in the composition of different antioxidant groups. This 
has been an issue of particular interest in many recent studies and is 
therefore, the focus of this section (Table 2). 

3.1.1. Carotenoids 
Among the isoprene antioxidants, lycopene has long been recognized 

as being the most abundant in our food. It is also the most efficient 
carotenoid singlet oxygen quencher (free radical scavenger), with a 
capacity found to be more than twice that of β-carotene (Di Mascio, 
Kaiser, & Sies, 1989; Przybylska, 2020). Tomatoes and tomato products 
are the primary suppliers of lycopene to the human diet while other 
fruits such as apricots, pink grapefruit, watermelon, guava, and papaya 
are also recognized as (seasonal) dietary sources (Caseiro et al., 2020; 
Grabowska et al., 2019). As many tomato products are often processed 
in a variety of ways (as well as also often being cooked before eating), 
the effect of thermal treatments on carotenoids, and in particular lyco-
pene, in tomato products has widely been studied (Badin, Quevedo- 
Leon, Ibarz, Ribotta, & Lespinard, 2021; Cámara et al., 2013; Cooper-
stone, Francis, & Schwartz, 2016; Graziani et al., 2003; Gupta, Balasu-
bramaniam, Schwartz, & Francis, 2010; Hashemi et al., 2019; 
Mahieddine, Amina, Faouzi, Sana, & Wided, 2018; Makroo, Rastogi, & 
Srivastava, 2017; Mayeaux, Xu, King, & Prinyawiwatkul, 2006; Müller 
et al., 2011; Re, Bramley, & Rice-Evans, 2002; John Shi, Dai, Kakuda, 
Mittal, & Xue, 2008; Sramek, Schweiggert, van Kampen, Carle, & Koh-
lus, 2015). Various steps applied during the production of tomato 
products may cause the degradation of carotenoids, but they are also 
known to be necessary for enhanced carotenoid extraction, together 
which lead to conflicting results in different studies on carotenoid pro-
files (Schieber & Weber, 2016). 

Lycopene and other carotenoid contents can be altered during 

thermal treatment in a positive or negative direction depending on 
several factors, such as the degree of degradation, trans- to cis-form 
isomerization, effectiveness of extraction from the plant matrix, and the 
actual carotenoid itself (Hashemi et al., 2019; John Shi et al., 2008). 
Research on cis-lycopene isomers have gained increasing interest since 
these have been reported to exert higher antioxidant activity (Müller 
et al., 2011) and bioavailability (Cámara et al., 2013) than all-trans- 
lycopene which is the major form in raw fruit produce. In a study, the 
thermal pre-treatment of dried tomato pulp at 120 or 150 ◦C for 1 h 
resulted in 10 % and 56.2 % increases in cis-lycopene contents, respec-
tively, which were further shown to be more extractable in organic 
solvents (ethanol or ethyl acetate) and supercritical carbon dioxide (3 
mL/min for 8 h) compared to all-trans-isomers (Honda, Watanabe et al., 
2017). In another study performed by the same research group (Honda, 
Murakami et al., 2017), heating (at 120 ◦C for 30 min) different tomato 
products, including soup and sauce, in the presence of 5 % oil led to 
significant enhancement in cis-lycopene contents ranging from 39.2 % to 
50.7 % increases. The effect of thermal processing on carotenoid isom-
erization and degradation was investigated in tangerine tomatoes, which, 
unlike red tomatoes, are rich in cis-lycopene (specifically tetra-cis-lyco-
pene) instead of the all-trans isomer (Cooperstone et al., 2016). Heat 
treatment of tangerine tomato sauce (supplemented with 0, 1, 5, 15, and 
30 % olive oil (w/w)) in a boiling water bath at 100 ◦C for 30, 60, 120, 
and 180 min led to significant decreases in the tetra-cis-lycopene content 
with each additional increase in heating time and overall ca. 80 % 
reduction was observed at the end of 180 min heating compared to the 
initial content measured in sauce. No significant influence of the oil 
content was observed. In contrast, increased heating times were deter-
mined to lead to significant increases in all-trans-lycopene and other-cis- 
lycopene levels of tangerine tomato sauce, while the total lycopene 
content decreased. All in all, these results were proposed to indicate the 
vulnerability of tetra-cis-lycopene to thermal degradation, in addition to 
its isomerization to other cis-forms and to all-trans-lycopene. Besides, 
among the individual carotenoids tested (all of which are considered to 
occur as cis-isomers), phytoene and phytofluene contents did not show 
significant changes during 180 min of boiling; while the levels of 
ζ-carotene and neurosporene significantly decreased (but relatively, to a 
lesser extent, compared to the decrease in tetra-cis-lycopene) after the 
same treatment (Cooperstone et al., 2016). This was different from the 
lycopene from red tomatoes which appeared to be relatively more stable 
to heat processing (Hackett, Lee, Francis, & Schwartz, 2004). In another 
study, Mayeaux et al. (2006) reported 10, 30, and 70 % degradation of 
pure lycopene after 10 min heating at temperatures of 100, 125, and 
150 ◦C, respectively while these values increased to approximately 47, 
79, and 95 %, respectively, after 60 min of heating. These results appear 
to indicate a poor stability for lycopene during long heating times and its 
rapid decomposition at temperatures above 150 ◦C. This study also 
determined significant differences in lycopene stability between heating 
a pure lycopene standard and cooking a tomato slurry. Less lycopene 
degradation was observed when baking tomato slurry at 218 ◦C for 15 
min (≈ 48 % loss), 30 min (≈ 59 % loss) and 45 min (≈ 75 % loss). It was 
considered that the moisture in tomato slurry could help to slow down 
the heat transfer as well as to hydrolyze possible lycopene derivatives to 
release more free lycopene. Dramatic losses in lycopene content upon 
frying the tomato slurry for 2 min at 145 ◦C (approximately 70 % loss) 
and at 165 ◦C (approximately 75 % loss) were partly associated with 
rapid losses of moisture in the initial minutes of exposure to the frying 
temperatures. Additionally, microwave cooking (at 1000 W for 20, 30, 
45, and 60 s), with a relatively lower processing temperature (max 100 
◦C) and shorter heating time, contributed to the highest degree of 
lycopene retention in tomato slurry. Here, the highest percentage loss 
was 35 % after 60 s of heating (Mayeaux et al., 2006). Isothermal heat 
treatment of crushed tomato at 70, 80, 90, and 100 ◦C for 120 min 
resulted in an increased rate of lycopene loss with increased tempera-
ture, leading to 23.94, 30.17, 45.05, and 55.24 % losses, respectively. 
This was linked to destruction by heat and oxidation (Badin et al., 2021). 
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Table 2 
Thermal processing effects on carotenoids/phenolics in selected plant foods.  

Food Product Processing Conditions Impact on carotenoids/phenolics References 

Tangerine tomato sauce (added with 0 
%, 1 %, 5 %, 15 %, and 30 % olive oil 
(w/w)) 

Heating at 100 ◦C for 30, 60, 120, and 
180 min 

↓ Total lycopene (with each additional increase in heating time) 
↓ Tetra-cis-lycopene (with each additional increase in heating time) 
↑ Other-cis-lycopene (no change at 30 min of heating) 
↑ All-trans-lycopene (120 min and 180 min) 
No change in phytoene and phytofluene contents 
↓ ζ-Carotene and neurosporene  
(with each additional increase in heating time) 

Cooperstone et al. 
(2016)fv 

Tomato slurry Microwave cooking (1000 W for 20, 30, 
45, and 60 s) 
Pan frying (145 ◦C and 165 ◦C for 1 and 2 
min) 
Baking (177 ◦C and 218 ◦C for 15, 30, and 
45 min) 

↓ Lycopene (all treatments) Mayeaux et al. 
(2006) 

Crushed tomato Isothermal heat treatment at 70, 80, 90, 
and 100 ◦C for 120 min 

↓ Lycopene (with each additional increase in processing temperature) Badin et al. (2021) 

Tomato paste Vacuum drying (200 mbar; 50, 60, and 
70 ◦C) 
Air drying (50, 60, and 70 ◦C) 
Freeze drying (-45 ◦C for 48 h) 

↓ All-trans-lycopene (all treatments) 
↑ cis-Lycopene isomers 
↓ β-carotene (except for freeze drying (no change), vacuum drying 
(70 ◦C) (no change), and vacuum drying (50 ◦C) (increase)) 

Sramek et al. 
(2015) 

Tomato juice (high lycopene) Pressure assisted thermal processing 
(600 MPa, 100 ◦C, 10 min) 
Thermal sterilization (100 ◦C, 35 min) 

↑ All-trans-lycopene (pressure assisted thermal processing) 
No change in all-trans-lycopene during thermal sterilization 
No change in cis-lycopene during all treatments 

Gupta et al. 
(2010) 

Tomato juice Ohmic heat treatment (90 ◦C for 1 min) 
Conventional hot break treatment (90 ◦C 
for 5 min) 

↑ Lycopene (all treatments) Makroo et al. 
(2017) 

Tomato Microwave heating (1000 W, for 30 s and 
300 s) 

↑ Lycopene (with each additional increase in treatment time) Mahieddine et al. 
(2018) 

Sweet potato Boiling (10 min) 
Steaming (97 ± 2 ◦C, 15 min) 
Microwaving (800 W, 5 min) Baking 
(200 ◦C, 15 min) 

↑ Total polyphenols (all treatments) 
↑ Total anthocyanins (all treatments) 
↓ Chlorogenic acid(all treatments) 
↓ Neochlorogenic acid (all treatments) 
↓ trans-Ferulic acid (all treatments) 

Musilova et al. 
(2020) 

Strawberry Steam blanching (85 ◦C, 3 min) 
Pasteurization (85 ◦C, 3 min) 

↓ Anthocyanins (steam blanching) 
↑ Anthocyanins (pasteurization) 

Garzoli et al. 
(2020) 

Purple skin eggplants Boiling (5, 10, and 15 min) 
Steaming (5, 10, and 15 min) 
Microwaving (700 W; 5, 10, and 15 min) 

↑ Total phenolic content (all treatments) Chumyam et al. 
(2013) 

Maqui fruit Conventional canning (CC) (100 ◦C, 5 
min in boiling water) 
Convective forced hot air drying 
(CFHAD) (60 ◦C, 72h), 
Osmotic drying (OD) (60 ◦C, 1h; pre- 
treatment with sucrose solution for 12h) 
Freeze-drying (FD) (-70 ◦C, 20h) 

↓ Hydroxycinnamic acid and luteolin-7-O-glucoside (CFHAD, OD, and 
FD) 
↑ Hydroxycinnamic acid and luteolin-7-O-glucoside (CC)  
↑ Rutin and hyperoside (FD and CFHAD) 
↓Rutin and hyperoside (CC and OD) 

Concha-Meyer 
et al. (2021) 

Apricots Canning (121 ◦C, 30 min) 
Freezing  
(-18 ◦C) 
Drying (65 ◦C, RH 70%) 

↑ Ellagic acid, gallic acid, ferulic acid, epicatechin, epigallocatechin, 
rutin (in canned samples as compared to frozen samples) 
↓ Ellagic acid, gallic acid, ferulic acid, epicatechin, epigallocatechin, 
rutin (in dried samples as compared to frozen samples) 

Wani et al. (2020) 

Raspberry, boysenberry, redcurrants, 
and blackcurrants 

Convective drying; 
50 ◦C for 48h 
65 ◦C for 20h 
130 ◦C for 2h 

↓ Total anthocyanins by HPLC and monomeric anthocyanins (all 
treatments; higher degradation rates at higher temperatures) 
↑ Total polyphenol content (in methanolic extract) (all treatments) 
↑ Total polyphenol content (in acetone extract) (65 ◦C for 20h) 
↓ Total polyphenol content (in acetone extract) (50 ◦C for 48h and 
130 ◦C for 2h) 

Bustos et al. 
(2018) 

Grape juice Hot press (maceration at 60 ◦C for 60 
min)Hot break  
(preheating at 80 ◦C for 5 min, followed 
by maceration at 60 ◦C for 60 min)Cold 
press  
(at room temperature for 60 min) 
Artisanal steam extraction  
(85 ◦C) 

In hot break, hot press, and steam extraction compared to cold press; 
↑ Total phenolics 
↑ Total monomeric anthocyanins 
↑ Individual flavanols (included procyanidin B1, (-)-epicatechin, and 
(-)-epigallocatechin as the major ones)  
↑ Individual flavonols (included quercetin 3-pyranoside as the major 
one) 
↑ Individual anthocyanins  
(included malvidin 3-glucoside, cyanidin 3-glucoside, delphinidin 3- 
glucoside, malvidin 3,5-diglucoside, and cyanidin 3,5-diglucoside as 
the major ones) 
↑ Individual phenolic acids (including chlorogenic acid, O-coumaric 
acid, and caffeic acid as the major ones) 

Silva et al. (2019) 

Lychee juice 70 ◦C or 121 ◦C for 30 min ↑ Total phenolics (all treatments; favoured by heating at 121 ◦C) 
↑ Total flavonoids (121 ◦C) 
↑ Gallic acid (121 ◦C) 
↑ (-)-Gallocatechin (generated at 121 ◦C) 
↑ Procyanidin A2 (all treatments) 

Su et al. (2019)  
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Accordingly, a conventional drying process, in which elevated temper-
atures are applied over a longer period of time, may be particularly 
harmful to carotenoids in tomato products (Schieber & Weber, 2016). 
Sramek et al., (2015) studied and compared the effects of drying tomato 
paste to a powder on the carotenoid content using three different drying 
methods: vacuum drying (200 mbar; 50, 60, and 70 ◦C), air drying (50, 
60, and 70 ◦C), and freeze drying (-45 ◦C for 48 h). The highest levels of 
lycopene (all-trans-isomer) retention were observed in freeze-dried and 
vacuum-dried (at 50 and 60 ◦C) powders with slight, but insignificant 
decreases in lycopene contents compared to the initial tomato paste. 
However, vacuum drying at higher temperatures (70 ◦C) resulted in a 
significant lycopene reduction (10 % loss). Maximum levels of lycopene 
loss occurred during air drying, ranging between 18 % (at 50 ◦C) and 33 
% (at 70 ◦C), as compared to the initial levels in tomato paste. These 
observations also suggest that the detrimental effects of higher tem-
peratures on carotenoids are greater in the presence of oxygen during 
processing. 

In contrast to above detailed findings, increased carotenoid con-
centrations in processed products have also been reported in several 
other studies. Graziani et al. (2003) showed a significant increase (more 
than 30 %) in lycopene content when unpeeled tomatoes were heated in 
an oil bath at 100 ◦C for 2 h. Re et al. (2002) measured higher lycopene 
contents and antioxidant activities during processing of tomato pulp for 
paste production under different temperatures. The use of more recent 
technologies, such as combined pressure-heat treatments including high 
pressure processing (700 MPa, 45 ◦C, 10 min) and pressure-assisted 
thermal processing (600 MPa, 100 ◦C, 10 min) have also been shown 
to contribute to increased all-trans-lycopene contents (12 % and 7 %, 
respectively) in (high lycopene) tomato juice (Gupta et al., 2010). This 
has been explained by the ability of combined pressure–temperature 
treatments to affect cell membrane permeability (Shi & Le Maguer, 
2000) and the plant matrix (i.e., proteins and carbohydrates as matrix 
macromolecules) (Butz & Tauscher, 2002), thus facilitating the release 
and extraction of lycopene, which also leads to its enhanced bioavail-
ability (Gupta et al., 2010). Similarly, ohmic heat treatment (90 ◦C for 1 
min) and conventional hot break treatment (90 ◦C for 5 min) of fresh 
juice from fully ripe tomatoes both led to increased release of phyto-
chemicals from the fruit matrix, giving rise to significant increases in 
lycopene content (by 21.3 and 20.5 %, respectively) during the first 15 
and 75 s of ohmic and conventional heat treatments, respectively, with 
no significant changes during further heating (Makroo et al., 2017). 
Moreover, microwave drying of tomato slices led to increased lycopene 
contents those ranged from ≈ 5.8 mg/kg fw in the control sample to ≈
32 mg/kg fw and ≈ 41 mg/kg fw in microwave-treated samples after 30 
s and 300 s treatment times, respectively (Mahieddine et al., 2018). 

3.1.2. Phenolics 
Phenolic compounds are abundantly present in many fruits and 

vegetables which also undergo several industrial and domestic food 
preparation techniques before consumption. Many of these processing 
methods again involve thermal treatments which are reported in several 
studies to result in detrimental changes with regard to the retention of 
phenolics in these crops (Concha-Meyer, Sepúlveda, Pérez-Díaz, & 
Torres, 2021; Garzoli et al., 2020; Musilova et al., 2020). However, 
several other studies indicate the opposite, relating the thermal pro-
cessing to an increase in phenolic content (Chumyam, Whangchai, 
Jungklang, Faiyue, & Saengnil, 2013; Concha-Meyer et al., 2021; Gar-
zoli et al., 2020; Musilova et al., 2020; Rossi et al., 2003; Silva et al., 
2019; Su et al., 2019). The food matrix has been identified to be a more 

important factor in determining the fate of polyphenolic compounds 
during food processing (Rothwell et al., 2015) although the chemical 
structure of the compound itself and the method used in preparation also 
have considerable influences (Arfaoui, 2021; Minatel et al., 2017). 
Heating ruptures cell walls and leads to the release, and hence, enhanced 
extractability of membrane-bound phenolics. However, at the same 
time, an increase in temperature results in thermal degradation and 
oxidation of the more susceptible compounds belonging to this group 
(Arfaoui, 2021; Minatel et al., 2017). All of these influencing factors may 
contribute individually or in combination to the reported contradictory 
results for the alterations in the profile of phenolic compounds under 
different thermal treatments applied to plant matrices. 

In a recent study, total phenolic and total anthocyanin levels, as well 
as total antioxidant capacities of four different sweet potato varieties 
were all measured to be significantly increased as a result of four 
different heat treatments. These included boiling (10 min), steaming (97 
± 2 ◦C, 15 min), microwaving (800 W, 5 min), and baking (200 ◦C, 15 
min). Of these, baking and microwaving appeared to be more favorable 
in terms of having the highest total phenolic, anthocyanin and antioxi-
dant capacity levels. On the contrary, each of these treatments, and 
specifically boiling, had a negative effect on the levels of individual 
phenolic acids. Considerable decreases were reported for chlorogenic 
acid (≥29 %), neochlorogenic acid (≥47 %), and trans-ferulic acid (≥29 
%) after boiling of the analyzed sweet potato varieties (Musilova et al., 
2020). Garzoli et al. (2020) reported a lower retention rate of antho-
cyanins in steam blanched (85 ◦C, 3 min) strawberry samples in com-
parison to the pasteurized (85 ◦C, 3 min) samples. While the 
anthocyanin levels were not significantly altered during the pasteuri-
zation process, the blanching process did lead to a 44 % decrease in the 
levels of anthocyanins compared to those were measured in the 
pasteurized samples (Garzoli et al., 2020). In another study, the total 
anthocyanin content of blueberry juice, produced using 3 min steam- 
blanched fruits was determined to be two times higher than that in 
juice obtained from non-blanched fruits (Rossi et al., 2003). Further-
more, boiling, steaming, or microwaving of purple skin eggplants for 5, 
10, and 15 min were all found to give rise to significant increases in the 
total phenolic content and antioxidant capacity; while the lowest level of 
increase was observed for the boiling treatment (Chumyam et al., 2013). 
All these contradictory observations from different studies could be 
linked to the two-sided effects of boiling/blanching (utilizing water as 
the treatment medium) on polyphenols which could contribute, on one 
hand, to the leakage (loss) of water-soluble phenolics into the sur-
rounding medium (Arfaoui, 2021), while, on the other hand, to the 
protection of these compounds from oxidation through enzyme inacti-
vation (Minatel et al., 2017). 

Concha-Meyer et al. (2021) investigated the effects of conventional 
canning (100 ◦C, 5 min in boiling water), convective forced hot air 
drying (60 ◦C, 72 h), osmotic drying (60 ◦C, 1 h; a pre-treatment with 
sucrose solution for 12 h), and freeze-drying (-70 ◦C, 20 h) on the sta-
bility of non-anthocyanin phenolic compounds as well as the antioxidant 
capacity of a wild native berry, maqui. Convective forced hot air drying 
and osmotic drying led to significant decreases (by approximately 45 %) 
in hydroxycinnamic acid and luteolin-7-O-glucoside levels compared to 
those measured in the frozen control sample and these reductions were 
linked to the use of heat. On the other hand, sucrose addition during 
conventional canning was suggested to protect these compounds from 
thermal degradation. Fruit samples treated by freeze-drying or convec-
tive forced hot air drying had significantly higher (even higher than 
those of the control samples) rutin and hyperoside (quercetin-3-D- 
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galactoside) contents compared to samples treated with the other 
methods. Water-based thermal processing in osmotic drying was sug-
gested to result in the leaching of rutin that led to decreased contents. On 
the other hand, antioxidant activity significantly increased after freeze- 
drying, convective hot air drying and osmotic drying; while conven-
tional canning resulted in significant decreases. This may be linked to 
the dissolution and degradation of anthocyanins (not studied in this 
work) in canning solution (Concha-Meyer et al., 2021). In another study, 
among three different processing techniques applied to apricots, can-
ning (121 ◦C, 30 min) was reported to be the most efficient method for 
preserving the contents of various phenolic compounds, including ella-
gic acid, gallic acid, ferulic acid, epicatechin, epigallocatechin, and 
rutin. Freezing (-18 ◦C), and drying (65 ◦C, RH 70 %) methods were less 
effective. During canning, the heat used may contribute both by inac-
tivating oxidative enzymes (i.e., polyphenol oxidase) and releasing 
bound phenolics through disruption of cellular structures. The exclusion 
of oxygen in canning may also help to prevent oxidative degradation. 
While in drying, a longer period of processing time and the presence of 
oxygen could result in a higher rate of loss of the analyzed bioactives 
(Wani, Masoodi, Haq, Ahmad, & Ganai, 2020). 

In thermal treatments, optimizing the temperature, together with the 
processing time, may give better results in regard to bioactive retention. 
Bustos et al. (2018) studied different air-drying conditions on raspberry, 
boysenberry, redcurrant, and blackcurrant fruits to determine the best 
temperature–time parameters to preserve polyphenolic content and 
antioxidant activity. The application of an intermediate drying tem-
perature of 65 ◦C for 20 h was measured to give significantly higher total 
polyphenol contents and antioxidant activities in comparison to drying 
at 50 ◦C for 48 h or at 130 ◦C for 2 h. These findings indicated the 
detrimental effects of long term or high temperature thermal treatments 
on the phenolic compounds present in berry fruits. On the other hand, 
anthocyanin levels in berries were suggested to alter in a more directly 
proportional manner to the drying temperature than to exposure time, 
and generally, higher losses were observed with increased temperature. 
In another study, the alterations in phenolic compositions and antioxi-
dant activities of grape juices were determined and compared using a 
range of processing methods, including hot press (maceration at 60 ◦C 
for 60 min), hot break (preheating at 80 ◦C for 5 min, followed by 
maceration at 60 ◦C for 60 min), cold press (at room temperature for 60 
min) and an artisanal steam extraction (at 85 ◦C). The juices processed 
using classical heating methods contained higher levels of total pheno-
lics and total monomeric anthocyanins (determined by spectrophoto-
metric methods), as well as total flavanols, flavonols, anthocyanins, and 
phenolic acids (determined through HPLC measurements of individual 
phenolics). Of these, the hot break method was found to be the most 
effective one. In parallel, the antioxidant activities of the juices pro-
duced with the classical methods were also found to be higher than the 
juice prepared by the cold press method. These results also support the 
notion that moderate heating contributes to a greater retention of 
antioxidant phenolics during juice extraction (Silva et al., 2019). Heat 
treatment of lychee juice at 121 ◦C (for 30 min) led to significant in-
creases in total phenolic (up to 165.16 %) and total flavonoid (up to 
121.82 %) contents, and in total antioxidant activity, in comparison to 
those values determined for untreated juice and the juice treated by 
heating at 70 ◦C for 30 min. Moreover, (-)-gallocatechin was determined 
to be generated after thermal processing at 121 ◦C, accounting for 89.5 
% of the total phenolics present. It was suggested from these observa-
tions that a heat treatment at 121 ◦C could contribute to the release of 
phenolics from lychee juice, as well as promoting the formation of new 
flavonoid group bioactives (Su et al., 2019). 

3.2. Non-thermal treatments 

Non-thermal treatments that are applied in conventional food pro-
cessing, such as cutting, homogenization, peeling, grinding, etc., all 
potentially influence the antioxidant properties of food products. In 

recent years, other “emerging” or “novel” non-thermal food processing 
technologies, including high pressure, pulsed electric field, ultrasound 
processing, etc. have widely been studied due to their ability to provide 
better consumer-targeted processed foods with the desired amounts of 
nutrients and other health-promoting components (Khan et al., 2018). In 
this section, the updated literature available on the effects of these novel 
non-thermal treatments are evaluated in the context of the main anti-
oxidants (Table 3). 

3.2.1. Carotenoids 
Thermal treatments may help to extract higher levels of carotenoids 

from the plant matrix, but high temperatures may also lead to their 
degradation or isomerization which results in detrimental effects on 
these bioactives. Consequently, novel non-thermal processing technol-
ogies have been proposed as alternative methods to produce a better 
quality product (López-Gámez, Elez-Martínez, Martín-Belloso, & Soliva- 
Fortuny, 2021). 

González-Casado et al. (2018) applied pulsed electric field (PEF) to 
whole tomatoes with different field strengths (0.4, 1.2, and 2 kV/cm) 
and numbers of pulses (5, 18, and 30 pulses) at 20 ◦C before their use in 
preparing tomato puree (with 5 % olive oil, w/w). Total carotenoid 
concentrations in purees prepared from PEF-treated tomatoes were 
found to be significantly higher (up to 52 % increase when 30 pulses of 2 
kV/cm was applied) in comparison to the purees prepared from un-
treated fruits. The most intense PEF treatment (30 pulses at 2 kV/cm) 
also led to increased concentrations of individual carotenoids, including 
phytoene (178 % increase), phytofluene (131 % increase), lycopene 
(1.5-fold increase), and δ-carotene (104 % increase), in purees obtained 
from PEF-treated tomatoes in comparison to the product obtained from 
untreated fruits. In another study, moderate intensity PEF treatments (1 
kV/cm for 4, 80, and 320 μs of treatment durations) provided higher 
levels of total lycopene, all-trans, and cis-lycopene in whole tomatoes 
with increasing treatment time (Jayathunge et al., 2017). These higher 
concentrations were suggested to indicate the enhanced extraction 
ability of these bioactives as a result of the electropermeabilization of 
cell membranes (Vallverdú-Queralt et al., 2013), as well as the activa-
tion of secondary metabolic pathways, as a stress response to PEF 
treatment (Galindo et al., 2009), that results in the biosynthesis of these 
carotenoids in tomato fruits to overcome stress conditions (Vallverdú- 
Queralt et al., 2012). 

The stability of carotenoids was studied in tomato juice treated with 
either high pressure homogenization (HPH) at 200, 300, 400, and 500 
bar (twice for 15 min; maximum temperature did not exceed 35 ◦C) and 
ultrasonic (US) power of 200, 400, 600, and 800 W (for 20 min) and 
compared to that in the untreated juice. Among the juice samples treated 
with HPH, the highest total lycopene content was measured in samples 
treated at 200 bar (significantly higher than the untreated juice), while 
considerable lycopene loss (48 %) occurred as the pressure increased to 
500 bar. The same trend was also observed for all-trans lycopene as this 
was the dominant isomer, but the trend was reversed for cis-lycopene 
isomers. Ultrasound treatment gave rise to significant increases in total 
lycopene, as well as in all-trans lycopene, at 200 W and 400 W compared 
to levels in untreated juice. The highest values were measured after a US 
treatment of 400 W. These results suggest a facilitated release of lyco-
pene from cells with the lowest to moderate levels of high pressure and 
ultrasonic power applications as tested in this study (Zhang et al., 2019). 
In another report, guava juice was treated with high-power US pro-
cessing, performed at a power of 1000 W for 0 min (control sample), 3 
min, 6 min, and 9 min, under a constant temperature of 25 ◦C. The 
lycopene content in US-treated samples gradually decreased as the 
treatment time increased (Campoli, Rojas, do Amaral, Canniatti- 
Brazaca, & Augusto, 2018). This lycopene degradation was suggested 
to be related to the effect of cavitation where high temperatures occur at 
the regions of bubble implosion (Rastogi, 2011) leading to possible re-
actions of lycopene with the free radicals that are formed during this 
phenomenon (Sun et al., 2017; Ulloa et al., 2015). In addition, oxidation 
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Table 3 
Non-thermal processing effects on carotenoids/phenolics in selected plant foods.  

Food Product Processing Conditions Impact on carotenoids/phenolics References 

Tomato puree (prepared from 
untreated or PEF-treated 
tomatoes) 

PEF (0.02–2.31 kJ/kg; 0.4, 1.2, and 2 kV/ 
cm; 5, 18, and 30 pulses) 

All treatments; the highest values at the most intense (2 kV/cm, 30 pulses) 
treatment; 
↑ Total carotenoids 
↑ Phytoene, phytofluene, lycopene, δ-carotene, and lutein 

González-Casado 
et al. (2018) 

Whole tomatoes PEF (1 kV/cm for 4, 80, and 320 μs) ↑ Total lycopene, all-trans- and cis lycopene (all treatments; with each 
additional increase in treatment time) 

Jayathunge et al. 
(2017) 

Tomato juice HPH (200, 300, 400, and 500 bar; twice 
for 15 min)  

↑ Total lycopene and all-trans-lycopene (200 bar) 
↓ Total lycopene and all-trans-lycopene (300, 400, and 500 bar) 
↑ 5-cis-lycopene (200 and 300 bar) 
↓ 5-cis-lycopene (400 and 500 bar) 
↓ 9-cis-lycopene (all pressures) 
↑ 13-cis-lycopene (300 and 400 bar) 
↓ 13-cis-lycopene (200 and 500 bar) 
↑ β-carotene (200 bar) 

Zhang et al. 
(2019) 

Tomato juice US (200, 400, 600, and 800 W for 20 min) ↑ Total lycopene and all-trans-lycopene (200 and 400 W) 
↓ 5-cis-lycopene (all US powers) 
↑ 9-cis-lycopene (200, 400, and 800 W) 
↑ 13-cis-lycopene, ζ-carotene (all US powers) 

Zhang et al. 
(2019) 

Guava juice US (1000 W; 0, 3, 6, and 9 min) ↓ Lycopene (with each additional increase in the treatment time) Campoli et al. 
(2018) 

Carrot juice HPP (300 MPa (1 cycle and 3 cycles), 450 
MPa (1 cycle), and 600 MPa (1 cycle) for 
5 min) 

↓ Total carotenoids, β-carotene, α-carotene, ζ-carotene, phytofluene, and 
phytoene (all treatments; highest loss at 300 MPa (3 cycles), lowest loss at 
600 MPa) 

Stinco et al. 
(2019) 

Cranberrybush puree HPP (200, 400, and 600 MPa for 5 or 15 
min) PEF (3 kV/cm, 5, 10, and 15 kJ/kg) 

↑ Total phenolics, total flavonoids, total anthocyanins and chlorogenic 
acid 
(generally with the trend of increase with increasing pressures and longer 
duration times in HPP, and with increasing energy input values in PEF) 

Ozkan et al. 
(2021) 

Fruit juice blend (orange, kiwi, 
pineapple, and mango) with 
water 

PEF (35 kV/cm for 1800 μs)HPP  
(400 MPa for 5 min) 

In both HPP and PEF: 
↓ Total phenolics, chlorogenic acid, p-coumaric acid, p-hydroxybenzoic 
acid, hesperidin, quercetin, and rutin 
↑ Caffeic acid and ferulic acid 
No change in naringenin 

Rodríguez-Roque 
et al. (2015) 

Fruit juice blend (orange, kiwi, 
pineapple, and mango) with milk 
or soymilk 

PEF (35 kV/cm for 1800 μs) 
HPP (400 MPa for 5 min) 

In both HPP and PEF: 
↑ Total phenolics (fruit juice-milk and fruit juice-soymilk) 
↓ Ferulic acid and rutin (fruit juice-milk) 
↓ Ferulic acid (fruit juice-soymilk) 
↑ Rutin (fruit juice-soymilk) 
↑ Caffeic acid, chlorogenic acid, p-coumaric acid, p-hydroxybenzoic acid, 
hesperidin, naringenin, and quercetin (fruit juice-milk and fruit juice- 
soymilk) 

Rodríguez-Roque 
et al. (2015) 

Strawberry puree (with or without 
mixing protein-rich kale juice) 

PEF (11.9 kV/cm, 120 kJ/kg) 
HPP (600 MPa for 1 min) 

↑ Total anthocyanins (during HPP and PEF treatment of strawberry-kale 
mixture) 
↑ Total anthocyanins  
(PEF-treated strawberry) 
↓ Total anthocyanins  
(HPP-treated strawberry)  

Stübler et al. 
(2020) 

Açaí juice HPP (400, 450, 500, and 600 MPa for 5 
min) 

↓ Total monomeric anthocyanins, cyanidin 3-glucoside, and cyanidin 3- 
rutinoside (all treatments) 
↑ 3,4-dihydroxybenzoic acid, 4-hydroxybenzoic acid, vanillic acid, caffeic 
acid, syringic acid, p-coumaric acid, isoorientin, orientin, and ferulic acid 
(450, 500 and 600 MPa; the highest increases at 500 MPa) 
No change in total phenolic content (all treatments) 

da Silveira et al. 
(2019) 

Açaí juice US (0, 0.9, 1.8, 2.7, and 3.6 kJ/cm3) ↓ Total monomeric anthocyanins (up to 1.8 kJ/cm3) 
↑ Total monomeric anthocyanins (2.7 and 3.6 kJ/cm3) 
↑ Total phenolic content (with increasing energy densities) 

de Souza Carvalho 
et al. (2020) 

Apple-grape juice blend Blanching (in hot water at 100 ◦C for 4 
min) High temperature-short time 
(HTST) (72 ◦C for 15 s) 
US (25 kHz for 5 and 10 min) 
Thermo-US (40 ◦C, for 5 min and 10 min; 
50 ◦C for 5 min and 10 min) 

↑ Total phenolics, total flavonoids, and total flavonols (all treatments 
except for blanching) 
↑ Phenolic acids (chlorogenic acid, caffeic acid, p-coumaric acid, syringic 
acid, gallic acid, vanillic acid, caftaric acid) (HTST and US (10 min)) 
↑ Flavanols (catechin, epicatechin, epigallocatechin gallate, procyanidin 
B1, procyanidin B2) (HTST and US (10 min)) 
↑ Resveratrol (HTST and US (10 min)) 
↑ Anthocyanins (petunidin 3-O-glucoside, peonidin 3-O-glucoside, 
malvidin 3-O-glucoside, cyanidin 3-O-glucoside, delphinidin 3-O-gluco-
side, cyanidin 3,5-diglucoside, malvidin 3,5-diglucoside) (HTST and US 
(10 min)) 
for individual phenolics significant increases were only observed for US (10 
min) treatment 

Aadil et al. (2020) 

PEF: Pulsed electric field; HPH: High pressure homogenization; US: Ultrasound; HPP: High pressure processing. 
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of lycopene can result from the release of oxygen due to the disruption of 
the juice microstructure (Aguilar, Garvín, Ibarz, & Augusto, 2017). 
(Stinco et al., 2019) investigated the effects of high pressure processing 
(HPP) treatments, applied at 300 MPa (1 cycle and 3 cycles), 450 MPa (1 
cycle), and 600 MPa (1 cycle) for 5 min at room temperature (≈ 22 ◦C), 
on the carotenoid profile of cloudy carrot juice. Almost all HPP treat-
ments led to significant reductions in the levels of total carotenoids, as 
well as in individual carotenoids (including β-carotene, α-carotene, 
ζ-carotene, phytofluene, phytoene, and lutein). The highest and lowest 
levels of carotenoid losses in HPP-treated carrot juices were observed for 
HPP at 300 MPa in three cycles (leading to 41 % carotenoid degrada-
tion) and HPP at 600 MPa (leading to 26 % carotenoid degradation), 
respectively. These results were proposed to represent a dual effect of 
HPP on carotenoids in carrot juice as a result of the disruption of the 
cellular structure; firstly, an induction of carotenoid degradation 
through increased exposure of these bioactives to enzymes, oxygen, etc., 
and secondly an improved extractability of carotenoids as a result of 
their facilitated release from the matrix particles that decrease in size. 
The highest pressure performed in this study (600 MPa) was found to 
lead to relatively lower levels of carotenoid degradation and/or higher 
levels of carotenoid extraction compared to the other treatments. 

3.2.2. Phenolics 
Nowadays, there is also growing interest for the use of non-thermal 

technologies on whole fruits and vegetables, as well as their products, 
in order to minimize the loss of phenolic compounds, which are known 
to be more vulnerable to high temperatures (Khan et al., 2018). Ozkan 
et al. (2021) studied the alterations in the total phenolic, total flavonoid, 
total anthocyanin, and chlorogenic acid contents, as well as antioxidant 
capacities of cranberry purees subjected to HPP (200, 400, and 600 MPa 
for 5 or 15 min) and PEF (3 kV/cm, 5, 10, and15 kJ/kg) treatments. 
Increased pressure levels and longer duration times in HPP, and 
increased specific energy input values in PEF treatment were deter-
mined to lead to higher total phenolic and total flavonoid levels. How-
ever, only the PEF treatment performed at 15 kJ/kg specific energy 
input level yielded significantly higher values than for the untreated 
puree. The trend for total anthocyanin contents of HPP and PEF-treated 
purees was a slight (but not statistically significant) increase. HPP and 
PEF treatments also gave rise to an increase in the content of chlorogenic 
acid, which is the major phenolic compound in cranberrybush fruit, by ≈
6–7 % and ≈ 5.6–11 %, respectively. While HPP did not cause significant 
differences in antioxidant capacity, PEF treatment of 15 kJ/kg did give a 
significantly higher antioxidant capacity which may be due to higher 
levels of phenolics and flavonoids occurring in these samples. These 
slight increases observed in HPP and PEF-treated samples were proposed 
to be triggered by the enhanced extractability of phenolics as a result of 
improved cell permeability, as well as to the possible inactivation of the 
endogenous deteriorative enzymes. 

In another study, Rodríguez-Roque et al. (2015) studied and 
compared the effects of high-intensity PEF (35 kV/cm for 1800 μs) and 
HPP (400 MPa for 5 min) on phenolic compounds in three different fruit 
juice-based beverages obtained by mixing a fruit juice blend (orange, 
kiwi, pineapple, and mango juices) with milk, soymilk, or water. In the 
fruit juice-water mixture, both high-intensity PEF and HPP treatments 
resulted in significant decreases in the concentrations of individual 
phenolics, including chlorogenic acid, p-coumaric acid, p-hydrox-
ybenzoic acid, hesperidin, quercetin, and rutin; while caffeic and ferulic 
acid showed significant increases, and naringenin did not show any 
significant change. Alterations in the contents of individual phenolics 
(except for rutin), after high-intensity PEF and HPP treatments, followed 
the same trend in fruit juice-milk and fruit juice-soymilk mixtures, 
which was different from the fruit juice-water mixture. Ferulic acid and 
rutin levels in fruit juice-milk mixtures and only ferulic acid level in fruit 
juice-soymilk mixtures decreased significantly in the high-intensity PEF 
and HPP-treated samples. Others, including caffeic acid, chlorogenic 
acid, p-coumaric acid, p-hydroxybenzoic acid, hesperidin, naringenin, 

and quercetin, (and rutin in fruit juice-soymilk mixture) increased 
significantly. In parallel to the results obtained for individual phenolics, 
both high-intensity PEF and HPP treatments led to significant decreases 
in total phenolic content (measured by HPLC) of fruit juice-water mix-
tures, while significant increases were observed in total phenolics in the 
fruit juice-milk and fruit juice-soymilk mixtures following both treat-
ments. These observations indicated the significant influence of the food 
matrix on the concentration of phenolic compounds which was in this 
case positively influenced by the addition of milk or soymilk to the 
blended fruit juices. 

Stübler et al. (2020) investigated the stability of polyphenols in 
strawberry puree as influenced by different processing techniques 
(thermal (72 ◦C for 1 min), PEF (11.9 kV/cm, 120 kJ/kg; included pre- 
heating to 35 ◦C), and HPP (600 MPa for 1 min at room temperature) as 
well as by mixing with a protein-rich kale juice. These different treat-
ments applied all led to significant increases in the antioxidant capac-
ities of the individual strawberry (with water) and kale (with water) 
systems; while no significant alteration was observed for the strawberry- 
kale mixture. Total anthocyanin levels in the mixture slightly increased 
during HPP and PEF treatments as compared to the untreated mixture. 
On the other hand, for the individual strawberry-water-system, thermal 
and PEF treatments yielded significantly higher total anthocyanin levels, 
while the HPP treatment did cause a decrease in the levels of anthocy-
anins than untreated strawberries. These opposing effects of HPP on the 
anthocyanin levels of the strawberry-water-system (leading to a 
decrease) and strawberry-kale mixture (leading to an increase) suggests 
that HPP may interfere with the complexation of anthocyanins with 
components of the kale matrix. Anthocyanin stability during processing 
should therefore better be evaluated by considering both the matrix 
involved (formulation) and the processing conditions. 

High pressure processing of açaí juice at 400, 450, 500, and 600 MPa 
for 5 min at 20 ◦C led to significant reductions in total monomeric 
anthocyanin levels (except for 600 MPa, for which the decrease was not 
significant), as well as in individual anthocyanins (included cyanidin-3- 
glucoside, and cyanidin-3-rutinoside) compared to the levels deter-
mined for untreated juice. This was attributed to the release of oxidative 
enzymes from damaged cells which were suggested to be only partially 
deactivated during HPP. Non-anthocyanin phenolic compounds, 
including 3,4-dihydroxybenzoic acid, 4-hydroxybenzoic acid, vanillic 
acid, caffeic acid, syringic acid, p-coumaric acid, isoorientin, orientin, 
and ferulic acid, were retained in HPP-treated juices and even showed 
significant increases at 500 MPa (28 % to 69 % increases were observed 
for isoorientin and caffeic acid as compared to control samples). Here 
this was linked to the enhanced extractability of phenolics as HPP pro-
moted cell wall breakdown and facilitated release of these compounds 
from the food matrix. However, total phenolic levels in HPP-treated 
juice samples did not differ from untreated juice (da Silveira et al., 
2019). This may be an overall result of the decrease in anthocyanin 
levels together with increases in non-anthocyanin phenolics. The treat-
ment of açaí juice by US treatment, applied at five levels of energy 
density (0, 0.9, 1.8, 2.7, and 3.6 kJ/cm3), led to slight, but not signifi-
cant, decreases in total monomeric anthocyanins up to the energy den-
sity of 1.8 kJ/cm3, as compared to untreated juice. Higher energy 
densities contributed to increased anthocyanin levels which were sig-
nificant at a US treatment of 3.6 kJ/cm3. Again this may have arisen 
from the facilitated release of anthocyanins as a result of the rupture of 
cell walls that was promoted at the higher energy densities (de Souza 
Carvalho et al., 2020). 

Aadil et al. (2020) compared the effects of blanching (in hot water at 
100 ◦C for 4 min), high temperature-short time (HTST) (72 ◦C for 15 s), 
ultrasonication (25 kHz for 5 and 10 min), and thermo-ultrasound (40 
◦C, for 5 min and 10 min; 50 ◦C for 5 min and 10 min) treatments on the 
levels of total and individual phenolics of an apple-grape juice blend. 
The maximum levels of total phenolics, total flavonoids, and total fla-
vonols were measured in juice samples treated with ultrasonication for 
10 min and all were significantly higher compared to the levels in 
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untreated (fresh) juice and the juices subjected to the other thermal and 
ultrasound treatments. In parallel to what was observed for total con-
tents of phenolics, the levels of individual phenolics, including phenolic 
acids (chlorogenic acid and caftaric acid being the most abundant), 
flavanols (epigallocatechin being the most abundant), stilbenes 
(resveratrol), and anthocyanins (malvidin 3,5-diglucoside and malvidin 
3-O-glucoside as the most abundant) were all measured to be signifi-
cantly higher in juice samples treated with ultrasonication for 10 min as 
compared to the untreated juice as well as to the other thermal- 
(blanching, HTST) and ultrasound-treated (40 ◦C, for 5 min and 50 ◦C, 
for 5 min) samples. This increased concentrations of phenolics during 
ultrasonication may be linked to the mass transfer effects of shock and 
shear waves generated during the cavitation process which may 
contribute to the elevated diffusion rates of these compounds (Zou & 
Hou, 2017). 

4. Changes in antioxidant bioavailability during food processing 

To exert their health-protective effects, in other words, to be bio-
logically active, antioxidant compounds must first be released from the 
food matrix during digestion in the gastrointestinal tract and further 
chemically modified into absorbable units (become ‘bioaccessible’) 
(Heaney, 2001). After this, they can finally be absorbed into the 
bloodstream and transferred to the systemic circulation for utilization in 
metabolic functions (become ‘bioavailable’) (Wood, 2005). The term 
bioavailability, including all the actions that take place under the term 
bioaccessibility, further refers to the transport and distribution of 
bioactive compounds to their target tissues and cells where they can 
exert their bioactivities and hence, have a positive effect on human 
health (Carbonell-Capella, Buniowska, Barba, Esteve, & Frígola, 2014; 
Wood, 2005). However, since practical and ethical issues make it diffi-
cult to measure the bioactivity of food components, bioavailability is 
considered as the fraction of an ingested compound (or its active 
metabolite) that reaches systemic circulation (Holst & Williamson, 
2008), and bioactivity often remains undetermined. In vitro digestion 
procedures, that simulate gastric and small intestinal digestion, and 
which are in some cases followed by the simulation of uptake by Caco-2 
cells, are generally performed for evaluating bioaccessibility (Courraud, 
Berger, Cristol, & Avallone, 2013). On the other hand, bioavailability of 
a food compound can generally be determined using in vivo models to 
measure changes in plasma concentrations of that specific compound in 
humans or animals after its acute or chronic administration as a single 
compound or in a food matrix (Rein et al., 2013). 

The primary factors that largely influence the bioaccessibility and 
bioavailability of dietary antioxidants are the concentration and com-
plexing of these compounds within the plant matrix in combination with 
their chemical structure. It has been well-documented that food pro-
cessing introduces many factors which can substantially influence, in a 
positive or negative manner, the bioaccessibility and bioavailability of 
antioxidant compounds from plant materials (Fig. 1). Postharvest pro-
cessing plays a significant role in determining the composition of foods 
of plant origin and affects the levels of many bioactives in the related 
foodstuffs. This can result in altered amounts of ingested and potentially 
bioavailable antioxidant phytochemicals in processed foods. In addition, 
food processing can potentially change the chemical form of the com-
pounds of interest which, in turn, may have a substantial positive or 
negative impact on bioavailability (Cermak et al., 2009). There is 
currently a general lack of information on the effect of food processing 
methods on antioxidant bioavailability. In this section, processing 
methods will be assessed in their relation to in vivo and in vitro 
bioavailability conditions of antioxidant bioactives (Table 4). 

4.1. In vivo bioavailability 

Although in vivo approaches are considered more realistic, the high 
expense and difficult implementations of these methods make them less 
preferred by researchers. Therefore, very few -and even old- data are 
available representing the processing effect on the bioavailability of 
phytochemicals in vivo (Ribas-Agustí et al., 2018). 

Several studies support the concept that the disruption of the food 
matrix by heat, homogenization or both can have a positive effect on in 
vivo bioavailability of β-carotene and other plant carotenoids. A recent in 
vivo study investigated the human plasma bioavailability of β-carotene, 
lutein, and isothiocyanate after consumption of broccoli which was 
exposed to varying cooking procedures, including steam cooking (100 % 
RH, 99 ◦C, 13 min) and boiling (10 min). The lutein and β-carotene 
levels in the serum were not significantly altered through consumption 
of broccoli prepared by different cooking procedures; while steam- 
cooking gave rise to a significant increase in plasma bioavailability of 
isothiocyanate (by 138 %) compared to the values obtained with the 
boiling procedure (Orlando et al., 2022). Edwards et al. (2002) tested 
and compared the in vivo bioavailability of carrot carotenoids (α- and 
β-carotene) supplied in a carrot puree (in a commercial baby food form), 
in boiled-mashed carrots, and raw chopped carrots. The absorption 
levels of α-carotene and β-carotene were determined to be approxi-
mately 2-fold higher in carrot puree than in boiled-mashed carrots 

Fig. 1. Relationship between food processing strategies and bioavailability/bioaccessibility of antioxidant compounds.  
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which was linked to a reduced particle size (increased surface area), 
greater heat exposure or a combination of both in puree (Edwards et al., 
2002). These results were also in accordance with those of Livny et al. 
(2003) who observed significantly higher plasma β-carotene levels 
following consumption of cooked, pureed carrots (≈ 65 %) as compared 
to raw, chopped carrots (≈ 41 %). In addition, Rock et al. (1998) also 
reported that continuous consumption of pureed, cooked carrots and 
spinach enhanced the plasma response of β-carotene (3-fold higher in-
crease) in comparison to the consumption of these vegetables in their 
raw, unhomogenized form. In the case of pureed vegetables, smaller 
particle sizes and mechanical disruption of the plant cells are presumed 
to make the carotenoids more available for absorption in the intestinal 
lumen (Edwards et al., 2002). Processing of tomatoes into tomato paste, 
which includes both mechanical homogenization and heat treatments, 
was shown to lead to significant increases in lycopene bioavailability. 
Consumption of tomato paste resulted in a 22–380 % higher lycopene 
response in plasma or in triglyceride-rich lipoproteins compared to the 
levels following consumption of the same amount of lycopene in fresh 
tomatoes (Gärtner, Stahl, & Sies, 1997; Porrini, Riso, & Testolin, 1998). 
Similarly, serum lycopene levels were recorded to be greater in humans 
after consumption of heat-processed tomato juice but not after unpro-
cessed juice. This improved bioavailability of lycopene from the pro-
cessed food was again attributed to its release as a result of plant cell 

disruption during mechanical and thermal processing, as well as to heat- 
induced trans- to cis-isomerization (Gärtner et al., 1997; Stahl & Sies, 
1992). Mild heat treatment was also suggested to improve carotenoid 
bioavailability from plant foods through the weakening of carotenoid- 
protein complexes (de Oliveira et al., 2020) and solubilizing cell wall 
pectin with subsequent softening of the tissue, thus making compounds 
more accessible to absorption (Neves et al., 2021). 

Bugianesi et al. (2004) investigated the effect of domestic cooking 
(100 ◦C, 15 min) on the subsequent absorption of naringenin and 
chlorogenic acid from cherry tomatoes. They found enhanced poly-
phenol bioavailability after the consumption of cooked cherry tomatoes 
in comparison to the consumption of their fresh counterparts. They 
concluded, as in the case of the carotenoids, that mechanical and heat 
treatments may provide the energy necessary to break the matrix in-
teractions of polyphenols, thus, improving their bioaccessibility in vivo. 
Kurilich et al. (2005) also reported an improved urinary recovery of 
nonacylated anthocyanins (by about 36 % increase) after a cooking 
treatment was applied to purple carrots, but there was no significant 
effect of cooking on acylated anthocyanins. 

The bioavailability of isoflavones from untreated, enzyme-treated 
and fermented soymilk was compared using human subjects. Although 
the total isoflavone content hardly differed between these three sources, 
the proportion of isoflavone aglycones was substantially higher in 

Table 4 
Processing effects on isomerization, in vivo and in vitro bioavailability of dietary antioxidants.  

Food product Processing conditions Type of study Impact on antioxidant bioavailability References 

Tomato Moderate intensity PEF (4, 80, 320 µs, 0.1 Hz, 1 kV/ 
cm), blanching (90 ◦C, 2 min), US (20 %, 7 min), 
high intensity PEF (1500 µs, 35 kV/cm) combinations 

Isomerization ↑ Lycopene bioaccessibility (9.6 % with 4 µs PEF)  

↑ trans- and cis-lycopene (4.01 and 5.04 µg/g, 
respectively with blanching/PEF combination) 
↑ Total lycopene bioaccessibility (15.6 %) 

Jayathunge et al. 
(2017) 

Dried tomato pulp HT (120, 150 ◦C, 1 h) Isomerization ↑ cis-isomers (10 and 56.2 % for 120 and 150 ◦C HT) Honda et al. 
(2017a) 

Tomato paste with 5 % 
oil 

HT (120 ◦C, 30 min) Isomerization ↑ cis-isomerization ratio (in a range of 39.2–50.7 %) Honda et al. 
(2017b) 

Tomato puree with 
onion 

HT (90 ◦C, 2 h) Isomerization ↑ 5-cis-lycopene (20 % of total isomers, correlated with 
onion concentration) 

Yu et al. (2019a) 

Tomato puree with 
onion 

Microwave heating (250 W, 20 min) Isomerization ↑ cis-isomerization ratio (in a range of 66–99 %) Yu et al. (2019b) 

Purified lycopene HT (50 ◦C, 24 h) 
Fluorescent light irradiation (4, 25 and 40 ◦C, 30 days) 

Isomerization ↑ cis-isomers (56.01 % with HT) 
all-trans configuration with fluorescent light 

Murakami et al. 
(2018) 

Carrot Cooked, pureed vs raw, chopped carrots in vivo ↑ Plasma β-carotene levels (65 % vs 41 %) Livny et al. (2003) 
Cherry tomato Domestic cooking (100 ◦C, 15 min) in vivo ↑ in vivo absorption of naringenin and chlorogenic acid Bugianesi et al. 

(2004) 
Purple carrot Cooking in vivo ↑ Urinary recovery of nonacylated anthocyanins (36 

%) 
Kurilich et al. 
(2005) 

Corn Cooking (100 ◦C, 15 min) in vitro ↑ in vitro bioavailability of carotenoids (0.9-fold for 
lutein and 1.2-fold for zeaxanthin). 

Liu et al. (2004) 

Fresh pastes of tomato, 
lettuce, zucchini, 
and green and red 
pepper 

US (40 kHz, 250 W, 4 ◦C for 20 min) in vitro ↑ Bioaccessibility of phenolic compounds (for lettuce 
and green pepper, in a range of 11 to 150 %) 

Lafarga et al. 
(2019) 

Smoothies of fresh fruit 
juices 

Mild and intense HT (90 ◦C and 120 ◦C, 20 s)US  
(bath, 60 ◦C, 20 min) 

in vitro ↑ Bioaccessibility; 
β-Cryptoxanthin (10% with intense HT and US) 
α-carotene (30–70% with mild/intense HT) 
β-carotene (35–70% with mild/intense HT) 
Lutein (20% with mild HT) 

Buniowska et al. 
(2019) 

Red-flesh apple Thermal (hot air-drying-60 ◦C/80 min – 70 ◦C/40 min, 
and purée pasteurization-94 ◦C 10 min) and non- 
thermal (freeze-drying) treated 

in vitro ↑ Polyphenol bioavailability (120, 70 and 40% with 
pasteurization, hot air-drying and freeze drying, 
respectively). 

Yuste et al. (2020) 

Camu-camu juice Cold plasma processing (10–30 min 30 mL/min plasma 
flow rate 

in vitro ↑ Bioavailability of ascorbic acid (in a range of 5–20%) Castro et al. 
(2020) 

Black plum fruit Drying (40 ◦C) and juice processing (pasteurized at 90 
◦C, 1 min, further concentrated at 40 ◦C to 15 ◦brix) 

in vitro ↑ Bioaccessibility (330 and 250% with drying and 80 
and 100% with juice processing for β-carotene and 
lycopene, respectively). 

Kumari & 
Gunathilake 
(2020) 

Carrot PEF (5 pulses of 3.5 kV/cm) treatment in vitro ↑ Bioaccessibility of total phenolic and carotenoid 
(20.8 and 11.9%, respectively). 

López- 
Gámez et al. 
(2021) 

PEF: Pulsed electric field; HT: Heat treatment; HPH: High pressure homogenization; US: Ultrasound; HPP: High pressure processing. 
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enzyme-treated and fermented soymilk (greater than90 %) than in un-
treated soymilk (<1%), which determined to give rise to significantly 
higher isoflavone bioavailability from the enzyme-treated and fer-
mented products (Kano, Takayanagi, Harada, Sawada, & Ishikawa, 
2006). The predominant presence of aglycone forms of isoflavones in 
enzyme-treated and fermented soymilk could be the reason for this 
higher isoflavone bioavailability in processed soy products in this study 
since it is known that the isoflavone glycosides are not directly 
bioavailable and need to be hydrolyzed to release the aglycones to be 
able to be absorbed (Setchell et al., 2002). 

4.3. In vitro bioavailability 

Although carefully-controlled investigations using human subjects 
are necessary for accurate determination of in vivo bioavailability of food 
components, in vitro models which are designed to simulate different 
phases of digestion, are also widely used. In vitro simulated digestion 
methods have the advantages of being cost-effective and, in general, 
rapid methods for predicting nutrient bioavailability (Van Buggenhout 
et al., 2010). Furthermore, they provide the opportunity of a higher rate 
of control of the system being examined. 

In terms of carotenoid bioavailability, latest research focused on 
enhancing the bioavailability of lycopene, as the most abundant carot-
enoid in tomato, through its structural isomerisation from all-trans- 
lycopene (that comprises around 80–97 % of total lycopene content in 
tomato) to cis-lycopene which is well-accepted to be more bioavailable 
than all-trans-isomers by the fact that serum and tissue lycopene is more 
than 50 % cis-lycopene (van Breemen et al., 2002). For this purpose, 
Jayathunge et al. (2017) investigated various thermal and non-thermal 
processing methods applied to tomato juice for their effects on lycopene 
isomerization and hence, on its bioavailability. As a result of the applied 
combinations of blanching (90 ◦C for 2 min), ultrasonication (20 % 
amplitude for 7 min) and high intensity pulsed electric field treatments 
(1500 µs, 35 kV/cm) to tomato juice, these authors reported significant 
increases in trans- and cis-lycopene contents as a result of blan-
ching/pulsed electric field combination which further contributed to a 
15.6 % increase in total lycopene bioaccessibility (Jayathunge et al., 
2017). 

Liu et al. (2004) compared the carotenoid bioavailability in cooked 
and raw whole foods using an in vitro simulated gastrointestinal diges-
tion coupled to an in vitro Caco-2 cell culture model and determined that 
cooking (100 ◦C water bath for 15 min) provided significant increases in 
the bioavailability of carotenoids, included lutein (0.9-fold increase) 
and zeaxanthin (1.2-fold increase). Similarly, using these coupled in 
vitro models, all-trans-, 13-cis- and 15-cis-β-carotene isomers sourced 
from cooked (boiled/pureed and boiled only) carrots were found to be 
taken up to a greater extent compared to those from raw carrots. 
Moreover, uptake of all-trans- and 13-cis-β-carotene was significantly (p 
< 0.05) higher from boiled-and-pureed carrots than from raw or boiled 
carrots (Aherne, Daly, Jiwan, O’Sullivan, & O’Brien, 2010). 

In recent years, many in vitro bioavailability studies have also been 
conducted in order to assess and examine the effects of novel processing 
techniques on the bioavailability of antioxidative compounds. A study 
that investigated the effect of ultrasonication (40 kHz, 250 W, 4 ◦C for 
20 min) on the bioaccessibility of antioxidant compounds in fresh pastes 
of tomato, lettuce, zucchini, and green and red pepper reported that the 
bioaccessibility of phenolic compounds in lettuce and green pepper was 
significantly increased by sonication by 11 % to 150 % higher values 
concerning the gastric and/or intestinal phases. However, this treatment 
had no influence on the in vitro bioavailability of phenolics in tomato, 
red pepper and zucchini (Lafarga, Rodríguez-Roque, Bobo, Villaró, & 
Aguiló-Aguayo, 2019). Stimulated acute intake of puree samples treated 
with pasteurization (94 ◦C for 10 min), hot air-drying (60 ◦C for 80 min 
or 70 ◦C for 40 min) (70 % increment) or freeze-drying processes 
determined to exert a higher in vitro bioavailability of polyphenols for 
each of the treatment with the values of 120 %, 70 %, and 40 % 

increases, respectively, in comparison to the values observed for un-
treated purees, clearly emphasizing the impact of processing on phe-
nolics absorption (Yuste et al., 2020). The in vitro bioavailability of 
ascorbic acid in camu-camu (Myrciaria dubia) juice treated with cold 
plasma processing for 10, 20, or 30 min was measured to be enhanced 
for all different processing times applied, with increases of 5, 8 and 20 
%, respectively (Castro et al., 2020). Drying (at 40 ◦C to reach a constant 
weight) and juice processing (squeezing followed by pasteurization at 
90 ◦C for 1 min, filtering, and further concentrating at 40 ◦C) of black 
plum (Syzygium caryophyllatum) fruit were both reported to result in a 
decrease in the bioaccessibility of total phenolics (around 80 %), and 
similarly, the bioaccessibility of total flavonoids was measured to be 
reduced by 57 and 35 % after drying and juice processing treatments, 
respectively. In contrast, significant increases in the bioaccessibility 
values of β-carotene and lycopene were recorded after drying (330 % 
and 250 %, respectively), and juice processing (80 % and 100 %, 
respectively) treatments. On the other hand, none of the treatments 
affected the bioaccessibility of monomeric anthocyanins (Kumari & 
Gunathilake, 2020). In another study, a significant increase (by 20.8 %) 
in the bioaccessibility of total phenolics was observed for fresh carrot 
treated with pulsed electric field (5 pulses of 3.5 kV/cm). An increase in 
carotenoid bioaccessibility was also recorded in the same study (López- 
Gámez, Elez-Martínez, Quiles-Chuliá, et al., 2021). Recently, a very 
clear overview has been presented by Thakur et al. (2020) where they 
highlighted that the bioaccessibility of polyphenols and carotenoids in 
fruits and vegetables increased mainly following thermal treatments 
such as cooking, frying and pasteurization. Freezing was evaluated to 
produce contradictory results; while among the non-thermal techniques, 
high pressure-processing was indicated as the most promising technol-
ogy for enhancing bioaccessibility of bioactive compounds such as 
tocopherols. 

5. Concluding remarks and recommendations for future 
research 

From the above overview, it can be concluded that although many 
studies have been performed for the purpose of determining the changes 
in the content, profile, and bioavailability of dietary antioxidants 
resulting from different processing methods, the findings obtained may 
often not be comparable since different approaches, contrasting plant 
materials, and different methods and analyses are often used. The fates 
of bioactive components may differ in different foods/matrices, even 
when the same processing conditions have been used. It is therefore not 
easy to dissociate processing effects from food matrix effects. In addi-
tion, the degradation of antioxidants is not only a function of the pro-
cessing conditions (i.e. temperature, degree of heating, etc.) applied, but 
also may depend on other specific parameters, including pH, chemical 
properties of the compound of interest and presence/absence of oxygen. 
Furthermore, there are many published techniques for assessing indi-
vidual antioxidants or the total phenolic/flavonoid contents and anti-
oxidant capacities in processed products. However, wide variations in 
analytical techniques make comparisons between different studies 
difficult and also raise the question whether conflicting results may be 
associated with non-standardized assay techniques. Especially, with 
regard to antioxidant capacity methods, it is not expected that a single 
protocol can determine all the antioxidant compounds and it is apparent 
that each method may have its own advantages and disadvantages. The 
principles of these methods, such as the radical that is generated, the 
end-point of detection, or the required reaction time, can vary to a great 
extent. The formation of radicals, and their solubility in different solvent 
systems, also might differentiate. Consequently, it is highly recom-
mended to conduct several test procedures to obtain a full evaluation of 
antioxidants and their activity. 

It has been clearly demonstrated that the physical state and pro-
cessing history of a food item have a marked effect on the availability of 
dietary antioxidants for absorption by the human body. Although it is 
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still difficult to make general statements regarding the effects of pro-
cessing strategies on bioavailability, several studies have supported the 
concept that the disruption of the food matrix by heat, homogenization 
or both, has a positive effect by making compounds more accessible. 
These findings therefore, do not support the concept that heat-processed 
foods provide lower nutritional values than fresh products, but rather 
suggest that processing sometimes might be nutritionally beneficial for 
certain products. Moreover, any treatment that alters the glycosidic 
structure of flavonoids, i.e., leading to deglycosylation, is also prone to 
modulate their bioavailability. 

It must be particularly considered that plants show a large variation 
in terms of the composition of their bioactive components linked to their 
specific variety, region of origin, climate, phytosanitary protocols, har-
vest history etc. This itself may already explain a large part of the var-
iations observed. In addition, aspects like the food matrix, other 
components that were ingested simultaneously within the complex 
meals can be additional determinant factors. Finally, in terms of bio-
logical relevance, the high inter-individual variability of human meta-
bolism with high levels of complexity makes general predictions 
regarding the bioavailability and bioefficiency of dietary antioxidants 
for individuals very challenging and require situation-specific ap-
proaches/evaluations. 
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bioactive compounds of eggplant. Food Chemistry, 268, 602–610. https://doi.org/ 
10.1016/j.foodchem.2018.06.093 

Hackett, M. M., Lee, J. H., Francis, D., & Schwartz, S. J. (2004). Thermal Stability and 
Isomerization of Lycopene in Tomato Oleoresins from Different Varieties. Journal of 
Food Science, 69(7), 536–541. https://doi.org/10.1111/j.1365-2621.2004.tb13647.x 

Hanson, C., Lyden, E., Anderson-Berry, A., Kocmich, N., Rezac, A., Delair, S., … Obaro, S. 
(2018). Status of Retinoids and Carotenoids and Associations with Clinical Outcomes 
in Maternal-Infant Pairs in Nigeria. Nutrients, 10(9), 1286. https://doi.org/10.3390/ 
nu10091286 

Hashemi, S. M. B., Pourmohammadi, K., Gholamhosseinpour, A., Es, I., Ferreira, D. S., & 
Mousavi Khaneghah, A. (2019). Fat-soluble vitamins. In F. J. Barba, J. M. A. Saraiva, 
G. Cravotto, & J. M. B. T.-I. T. and N.-T. P. Lorenzo Bioaccessibility and 
Bioavailability of Nutrients and Bioactive Compounds (Eds.), Woodhead Publishing 
Series in Food Science, Technology and Nutrition (pp. 267–289). Woodhead Publishing. 
https://doi.org/https://doi.org/10.1016/B978-0-12-814174-8.00009-3. 

Heaney, R. P. (2001). Factors influencing the measurement of bioavailability, taking 
calcium as a model. The Journal of Nutrition, 131(4 Suppl), 1344S–1348S. https:// 
doi.org/10.1093/jn/131.4.1344S 

Holst, B., & Williamson, G. (2008). Nutrients and phytochemicals: From bioavailability 
to bioefficacy beyond antioxidants. Current Opinion in Biotechnology, 19(2), 73–82. 
https://doi.org/10.1016/j.copbio.2008.03.003 

Honda, M., Murakami, K., Watanabe, Y., Higashiura, T., Fukaya, T., Wahyudiono, … 
Goto, M. (2017). The E/Z isomer ratio of lycopene in foods and effect of heating with 
edible oils and fats on isomerization of (all-E)-lycopene. European Journal of Lipid 
Science and Technology, 119(8), 1600389. https://doi.org/10.1002/ejlt.201600389 

Honda, M., Watanabe, Y., Murakami, K., Takemura, R., Fukaya, T., Wahyudiono, … 
Goto, M. (2017). Thermal isomerization pre-treatment to improve lycopene 
extraction from tomato pulp. LWT, 86, 69–75. https://doi.org/10.1016/j. 
lwt.2017.07.046 

Huang, D. (2018). Dietary Antioxidants and Health Promotion. Antioxidants, 7(1), 9. 
https://doi.org/10.3390/antiox7010009 

Jahns, L., Conrad, Z., Johnson, L. K., Whigham, L. D., Wu, D., & Claycombe-Larson, K. J. 
(2018). A diet high in carotenoid-rich vegetables and fruits favorably impacts 
inflammation status by increasing plasma concentrations of IFN-α2 and decreasing 
MIP-1β and TNF-α in healthy individuals during a controlled feeding trial. Nutrition 
Research, 52, 98–104. https://doi.org/10.1016/j.nutres.2018.02.005 

Jayathunge, K. G. L. R., Stratakos, A. C., Cregenzán-Albertia, O., Grant, I. R., Lyng, J., & 
Koidis, A. (2017). Enhancing the lycopene in vitro bioaccessibility of tomato juice 
synergistically applying thermal and non-thermal processing technologies. Food 
Chemistry, 221, 698–705. https://doi.org/10.1016/j.foodchem.2016.11.117 

Johra, F. T., Bepari, A. K., Bristy, A. T., & Reza, H. M. (2020). A Mechanistic Review of 
β-Carotene, Lutein, and Zeaxanthin in Eye Health and Disease. Antioxidants, 9(11), 
1046. https://doi.org/10.3390/antiox9111046 

Kamiloglu, S., Boyacioglu, D., & Capanoglu, E. (2013). The effect of food processing on 
bioavailability of tomato antioxidants. Journal of Berry Research, 3, 65–77. https:// 
doi.org/10.3233/JBR-130051 

Kano, M., Takayanagi, T., Harada, K., Sawada, S., & Ishikawa, F. (2006). Bioavailability 
of Isoflavones after Ingestion of Soy Beverages in Healthy Adults. The Journal of 
Nutrition, 136(9), 2291–2296. https://doi.org/10.1093/jn/136.9.2291 

Khan, M. K., Ahmad, K., Hassan, S., Imran, M., Ahmad, N., & Xu, C. (2018). Effect of 
novel technologies on polyphenols during food processing. Innovative Food Science & 
Emerging Technologies, 45, 361–381. https://doi.org/10.1016/j.ifset.2017.12.006 

Kim, H., Koo, K. A., Park, W. S., Kang, D., Kim, H. S., Lee, B. Y., … Ahn, M. (2020). Anti- 
obesity activity of anthocyanin and carotenoid extracts from color-fleshed sweet 
potatoes. Journal of Food Biochemistry, 44(10). https://doi.org/10.1111/jfbc. 
v44.1010.1111/jfbc.13438 

Kiokias, S., Proestos, C., & Oreopoulou, V. (2018). Effect of Natural Food Antioxidants 
against LDL and DNA Oxidative Changes. Antioxidants, 7(10), 133. https://doi.org/ 
10.3390/antiox7100133 

Knorr, D., Augustin, M. A., & Tiwari, B. (2020). Advancing the Role of Food Processing 
for Improved Integration in Sustainable Food Chains. Frontiers in Nutrition, 7, 34. 
https://doi.org/10.3389/fnut.2020.00034 

Krga, I., & Milenkovic, D. (2019). Anthocyanins: From Sources and Bioavailability to 
Cardiovascular-Health Benefits and Molecular Mechanisms of Action. Journal of 
Agricultural and Food Chemistry, 67(7), 1771–1783. https://doi.org/10.1021/acs. 
jafc.8b0673710.1021/acs.jafc.8b06737.s001 

Kumari, G. U. W. U. P., & Gunathilake, K. D. P. P. (2020). In vitro bioaccessibility and 
antioxidant activity of black plum (Syzygium caryophyllatum). Journal of Food 
Biochemistry, 44(12), Article e13499. https://doi.org/10.1111/jfbc.13499 

Kurilich, A. C., Clevidence, B. A., Britz, S. J., Simon, P. W., & Novotny, J. A. (2005). 
Plasma and urine responses are lower for acylated vs nonacylated anthocyanins from 
raw and cooked purple carrots. Journal of Agricultural and Food Chemistry, 53(16), 
6537–6542. https://doi.org/10.1021/jf050570o 

Lafarga, T., Rodríguez-Roque, M. J., Bobo, G., Villaró, S., & Aguiló-Aguayo, I. (2019). 
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Hernando, I., & Soliva-Fortuny, R. (2021). Effect of pulsed electric fields on 
carotenoid and phenolic bioaccessibility and their relationship with carrot structure. 
Food & Function, 12(6), 2772–2783. https://doi.org/10.1039/D0FO03035J 

Lourenço, S. C., Moldão-Martins, M., & Alves, Vítor. D. (2019). Antioxidants of Natural 
Plant Origins: From Sources to Food Industry Applications. Molecules, 24(22), 4132. 
https://doi.org/10.3390/molecules24224132 

Mahieddine, B., Amina, B., Faouzi, S. M., Sana, B., & Wided, D. (2018). Effects of 
microwave heating on the antioxidant activities of tomato (Solanum lycopersicum). 
Annals of Agricultural Sciences, 63(2), 135–139. https://doi.org/10.1016/j. 
aoas.2018.09.001 

Makroo, H. A., Rastogi, N. K., & Srivastava, B. (2017). Enzyme inactivation of tomato 
juice by ohmic heating and its effects on physico-chemical characteristics of 
concentrated tomato paste. Journal of Food Process Engineering, 40(3), Article 
e12464. https://doi.org/10.1111/jfpe.12464 

Maleki, S. J., Crespo, J. F., & Cabanillas, B. (2019). Anti-inflammatory effects of 
flavonoids. Food Chemistry, 299, Article 125124. https://doi.org/10.1016/j. 
foodchem.2019.125124 

Mao, Q.-Q., Xu, X.-Y., Cao, S.-Y., Gan, R.-Y., Corke, H., Beta, T., & Li, H.-B. (2019). 
Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods, 
8(6), 185. https://doi.org/10.3390/foods8060185 

Matsumoto, M., Waki, N., Suganuma, H., Takahashi, I., Kurauchi, S., Sawada, K., … 
Nakaji, S. (2020). Association between Biomarkers of Cardiovascular Diseases and 
the Blood Concentration of Carotenoids among the General Population without 
Apparent Illness. Nutrients, 12(8), 2310. https://doi.org/10.3390/nu12082310 

Mayeaux, M., Xu, Z., King, J. M., & Prinyawiwatkul, W. (2006). Effects of Cooking 
Conditions on the Lycopene Content in Tomatoes. Journal of Food Science, 71(8), 
C461–C464. https://doi.org/10.1111/j.1750-3841.2006.00163.x 

Minatel, I. O., Borges, C. V., Ferreira, M. I., Gomez, H. A. G., Chen, C.-Y. O., & Lima, G. P. 
P. (2017). Phenolic Compounds: Functional Properties, Impact of Processing and 
Bioavailability. Phenolic Compounds - Biological Activity, 1–24. https://doi.org/ 
10.5772/66368. 
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Rodrigo, M. J., Cilla, A., Barberá, R., & Zacarías, L. (2015). Carotenoid bioaccessibility in 
pulp and fresh juice from carotenoid-rich sweet oranges and mandarins. Food & 
Function, 6(6), 1950–1959. https://doi.org/10.1039/C5FO00258C 

Rodríguez-García, C., Sánchez-Quesada, C., & Gaforio, José. J. (2019). Dietary 
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