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Seasonality, an exogenous driver, motivates the biological and ecological temporal
dynamics of animal and plant communities. Underexplored microbial temporal
endogenous dynamics hinders the prediction of microbial response to climate change.
To elucidate temporal dynamics of microbial communities, temporal turnover rates,
phylogenetic relatedness, and species interactions were integrated to compare those
of a series of forest ecosystems along latitudinal gradients. The seasonal turnover
rhythm of microbial communities, estimated by the slope (w value) of similarity-time
decay relationship, was spatially structured across the latitudinal gradient, which may
be caused by a mixture of both diurnal temperature variation and seasonal patterns
of plants. Statistical analyses revealed that diurnal temperature variation instead of
average temperature imposed a positive and considerable effect alone and also jointly
with plants. Due to higher diurnal temperature variation with more climatic niches,
microbial communities might evolutionarily adapt into more dispersed phylogenetic
assembly based on the standardized effect size of MNTD metric, and ecologically form
higher community resistance and resiliency with stronger network interactions among
species. Archaea and the bacterial groups of Chloroflexi, Alphaproteobacteria, and
Deltaproteobacteria were sensitive to diurnal temperature variation with greater turnover
rates at higher latitudes, indicating that greater diurnal temperature fluctuation imposes
stronger selective pressure on thermal specialists, because bacteria and archaea,
single-celled organisms, have extreme short generation period compared to animal and
plant. Our findings thus illustrate that the dynamics of microbial community and species
interactions are crucial to assess ecosystem stability to climate variations in an increased
climatic variability era.

Keywords: seasonal microbial dynamics, temporal turnover, phylogenetic relatedness, ecological network,
diurnal temperature variation, plants
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INTRODUCTION

Climate change involves changes in the variability or average state
of the atmosphere over time, which has profoundly disturbed and
will continue to affect natural ecosystems and human life styles
in the 21st century (Intergovernmental Panel on Climate Change
[IPCC], 2014). Global temperature has experienced diurnally
and seasonally asymmetric warming over the past decade with
induced frequencies of extreme climatic events (Karl et al., 1991;
Cohen et al., 2012). One of the grant challenges in ecology is to
understand the variability and stability of biological communities
in response to potential threats from climate change (Thomas
et al., 2004; Fussmann et al., 2014). Resistance and resilience are
usually estimated in relation to a community’s level of intrinsic
variability (Shade et al., 2012). Although potential impacts of
changes in average climatic conditions on the structure and
temporal dynamics of biological communities have attracted
attention worldwide (Woodward et al., 2010; Liang et al., 2015;
Zhou et al., 2016), ecologists have only begun to understand the
potential impacts of changes in climatic variability (Thompson
et al., 2013; Vázquez et al., 2015; Chan et al., 2016; Wang
and Soininen, 2017). It was stated that climatic variability
could impact distribution patterns of macroorganisms due to
their temperature tolerance and acclimation abilities. Given the
fundamental role in microbial communities in biogeochemical
cycling, their responses to climate change may be important
determinants of ecosystem response to global change (Singh et al.,
2010; Barberan et al., 2012). While microorganisms have short
generation periods, compositions of soil microbial communities
also varied seasonally (Habekost et al., 2008; Buckeridge et al.,
2013; Smith et al., 2015). However, little is known whether the
magnitude of climate variation selects for microorganisms, and
how their community structure and seasonal dynamics vary with
climate variation.

Although seasonal rhythm is fundamental to organisms
and may be one of the strongest indicators of climate
change, extensive study of seasonal variability on microbial
communities has been reported only in aquatic ecosystems
(Gilbert et al., 2012; Hatosy et al., 2013). Previous survey efforts
to determine the factors affecting seasonal microbial community
dynamics have mostly focused on the seasonal changes in
environmental variables such as day length (Gilbert et al.,
2012) or nutrient concentrations (Hatosy et al., 2013). Latitude,
covering pronounced climatic gradients, is also one of the most
intriguing factors possibly affecting the microbial community
diversity and dynamics (Liang et al., 2015; Wang et al., 2016).
Understanding the drivers of microbial community dynamics
is important for predicting community response to climate
change. However, seasonal dynamics of microbial communities
and impacts of climate variation across latitudinal gradients are
still understudied.

To study the impacts of climatic variability on soil microbial
community structure and dynamics, we investigated seasonal
variation of soil microbial communities and the underlying
mechanisms in the face of global climate change. We selected five
forest sites along a latitudinal gradient, spanning three different
geoclimatic regions with considerable climatic variability, and

compared the seasonal dynamics of microbial communities.
Studies of community dynamics typically employ the time-
decay relationship to characterize the temporal turnover rates.
Such compositional turnover can be used for comparing
microbial community resilience when challenged with different
disturbances (Shade et al., 2012). Previous reports have shown
that temporal turnover of biological communities may be driven
by multiple factors, such as climate regions (Shurin et al., 2007),
temporal (seasonal or annually) scales (Hatosy et al., 2013)
and disturbances (Werner et al., 2007; Svensson et al., 2009).
Furthermore, ecological networks among different species could
help sustain ecosystem complexity, resilience and stability, and
may affect ecosystem resistance to climate variation (Montoya
et al., 2006; Tu et al., 2015). Therefore, we also analyzed the co-
occurrence ecological network of microbial communities and the
response to climate change.

MATERIALS AND METHODS

Study Site and Sample Collection
Five forests with varied ecosystem types from subtropical
to temperate forest along a latitudinal gradient of eastern
China in long-term ecological research stations from
Chinese Ecosystem Research Network (CERN) were selected
(Supplementary Figure S1). These five forests are located in
different climatic regions. Dinghu Forest (DHF; 23◦10′30′′ N,
112◦33′12′′ E) and Jinggang Forest (JGF; 26◦40′01′′ N,
114◦23′34′′ E), located in southern China, are southern
subtropical forests and middle subtropical forests, respectively.
Baotianman Forest (BTM; 33◦33′34′′ N, 111◦42′29′′ E),
located in central China, is a transitional zone between warm
temperate forests and north subtropical forests. Dongling
Forest (DLF; 40◦02′03′′ N, 115◦27′41′′ E) and Changbai Forest
(CBF; 41◦59′17′′ N, 127◦56′19′′ E), located in northern China,
are warm temperate forests and typical temperate forests,
respectively. Detailed information about sampling sites and
these soil samples is listed in Supplementary Table S1. Soil
samples were collected from these forests over three seasons for
2 years from 2013 to 2014, (1) spring (April–May, abbreviated
“Sp”), (2) summer (July, abbreviated “Su”), and (3) autumn
(October, abbreviated “A”). At each site, 10 soil samples from 10
separate plots (10 m× 10 m) were collected. Within each plot, 25
upper 10-cm soil cores were randomly taken using a soil auger
(8 5 cm) to form one composite sample, which resulted in 60
soil samples for each forest site in the 2 years (300 soil samples
in total). Visible gravel or plant detritus were removed prior to
homogenizing each sample. Soil samples were sieved to 2 mm
for physiochemical and molecular analyses.

Climatic Variables
The climatic data were obtained from long-term monitoring
dataset provided by CERN1. The climatic variables included
were mean diurnal temperature range, mean temperature,
temperature range, sum of precipitation and standard deviation

1http://cerndis1.cern.ac.cn
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of precipitation at the time scale of week, month, and
season, respectively. Temperature measurements in our study
reflect the air temperature. One-week mean temperature and
sum of precipitation backward from the sampling date were
defined as weekly temperature and precipitation for each
season. Thirty-day mean temperature and sum of precipitation
backward from the sampling date were defined as monthly
temperature and precipitation for each season. Three-month
mean temperature and sum of precipitation were defined as
intra-seasonal temperature and precipitation for each season
(i.e., Spring: March–May; Summer: June–August; Autumn:
September–November). Weekly, monthly and intra-seasonal
temperature range was computed as the difference between
maximum and minimum temperature within a week, month,
and season, respectively. Diurnal temperature range at the
time scale of week, month, and season was computed as the
difference between daily maximum and minimum temperature,
then averaged within a week, month, and season, respectively.
In addition, niche breadth was calculated as the variance of
the standardized climatic variables (mean = 0; SD = 1) of
the seasonal samples across the latitudinal gradient (Wang and
Soininen, 2017). Niche breadth of temperature variation [DTR
(intra-seasonal mean diurnal temperature range) and TR (intra-
seasonal temperature range)] was calculated.

Plant Variables
Gross primary productivity (GPP) refers to the total biomass
fixed by the vegetation in an ecosystem during photosynthesis in
a unit area within a unit time. GPP is associated with changes
in plant phenology and climatic seasonality (Tomomichi et al.,
2004; Lucy et al., 2014), and probably related to root and exudates
turnover due to its allocation belowground (McCormack et al.,
2014; Abramoff and Finzi, 2016). Therefore, we included GPP
aspects to represent plant variables. GPP dataset was from the
land processes distributed active archive center (LP DAAC) of the
United States National Aeronautics and Space Administration
(NASA) Earth Observing System (EOS)2. MODIStsp (v1.3.3)
(Busetto and Ranghetti, 2016) was used to preprocess and
extract time series data (from 2013 to 2014) at five forest sites.
Monthly GPP averages were computed firstly, and intra-seasonal
mean and standard deviation (SD) of GPP for each season
(i.e., Spring: March–May; Summer: June–August; Autumn:
September–November) were then computed. In addition, leaf
area index (LAI, including tree, shrub and tree) and litterfall
(including branch, leaf, fruit, and bark) aspects were also obtained
to represent plant variables from long-term monitoring dataset
provided by CERN (see footnote 1). The intra-seasonal mean and
standard deviation (SD) of LAI and litterfall variables for each
season were included in the following statistical analyses.

Soil Physiochemical and
Molecular Analyses
For each sample, 500 g of soil sieved to 2 mm was stored
at 4◦C for physiochemical analysis, and 50 g of soil was kept
at −80◦C for molecular analysis. Soil geochemical properties

2https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table

were measured according to the methods as described in He
et al. (2017), including soil pH, WC (water content), TOC
(total organic carbon), TON (total organic nitrogen), TP (total
phosphorus), NH4

+ (ammonium), NO3
− (nitrate), and DOC

(dissolved organic carbon) (He et al., 2017). Soil molecular
analyses included DNA extraction, PCR amplification and 16S
rRNA gene sequencing. DNA was extracted from 0.5 g of frozen
soil samples using FastDNA R© SPIN Kit for Soil (MP Biomedicals,
Santa Ana, CA, United States) following the manufacturer’s
instructions. DNA quality was assessed by a NanoDrop ND-
2000c UV-Vis spectrophotometer (Thermo Fisher Scientific,
Pittsburgh, PA, United States) and used in the downstream
molecular analyses. The PCR amplification of the 16S rRNA
gene hypervariable region V4 was performed with the primers
515F and 806R (515F: 5′-GTGCCAGCMGCCGCGGTAA-3′;
806R: 5′-GGACTACHVGGGTWTCTAAT-3′). The 5′-end of the
reverse primers were fused to a sample barcode sequence.
Template preparation was performed using Ion PGMTM template
OT2 400 kit (catalog No. 4479879, 4479880; Life Technologies,
United States) according to the supplier’s instructions. Library
of DNA fragments was done by ligating the adapters to the
PCR products, and then clonally amplified onto the proprietary
Ion SphereTM particles by emulsion PCR. The particles
coated with template were then loaded onto the Ion chip.
The chip was placed on the Ion Torrent Personal Genome
Machine (PGM) system. The DNA sequences from each library
were processed and filtered with PGM software to remove
low-quality sequences. The preprocessing of the ion Torrent
sequencing data and the downstream analysis were performed
using Trimmomatic-0.33 (Bolger et al., 2014), Mothur (v.
1.36.0) (Schloss et al., 2009), QIIME (v. 1.8.0) (Caporaso
et al., 2010b) and an in-house Galaxy software platforms
(IEG sequence analysis pipeline3). The preprocessing of the
ion Torrent sequencing data and the downstream analysis
were as follows. All raw sequences were first converted to
fastq format using samtools (Li et al., 2009). Quality control
of the data was performed by filtering poor reads with a
quality score cutoff of 20, removing the reads contained
ambiguous bases or homopolymers greater than 8 bp in length
and trimming the reads shorter than 150 bp and longer
than 300 bp. Across all samples, a total of 6,331,592 high-
quality sequences were obtained, which ranged from 7,116
to 60,422 sequences per sample with the average length of
227 bp. Reads that passed quality control were imported
into Galaxy for the following analysis. In the Galaxy analysis
pipeline, chimeras were removed using UCHIME (Edgar et al.,
2011), and then chimera-free sequences were clustered to
generate operational taxonomic units (OTUs) with a cutoff
value of 97% sequence identity using UPARSE (Edgar, 2013).
The OTU table that has singletons removed was used for
the community analyses. Rarefaction curve was calculated
(Supplementary Figure S2) and different communities were
compared through equal amount of sampling size (subsampled
to 7,000 sequences per sample). Taxonomic classification
was performed in Galaxy with the RDP Classifier with a

3http://zhoulab5.rccc.ou.edu
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confidence threshold of 0.5 ( Wang et al., 2007). Representative
OTU sequences from UPARSE were aligned using PyNAST
(Caporaso et al., 2010a) with Greengenes database (DeSantis
et al., 2006), and then the Newick formatted phylogenetic
tree was built using FastTree (Price et al., 2010) for further
phylogenetic analysis.

Phylogenetic Community and
Diversity Analyses
To determine whether different samples formed unique
phylogenetically related clusters, principal coordinate analysis
(PCoA) of the weighted Unifrac distance matrices was
performed. UniFrac is a beta-diversity measure that uses
phylogenetic information to compare microbial community
composition among samples (Lozupone and Knight, 2005).
A two-dimensional PCoA plot was created in QIIME and
visualized by EMPeror (Vazquez-Baeza et al., 2013). Microbial
community diversity index (Chao1) (Chao et al., 2009) was then
calculated from the rarefied OTU profiles.

In order to measure the phylogenetic relatedness of microbial
communities, the level of phylogenetic clustering of soil microbial
communities in each forest ecosystem was tested. Mean nearest
taxon distance (MNTD) of all species pairs occurring in a
community based on the observed community dataset was
calculated to estimate the mean phylogenetic relatedness between
each OTU in a community and its nearest relative (Webb et al.,
2002; Wang et al., 2013). The differences in the phylogenetic
distances between the observed and randomly generated null
communities were further computed, and then standardized
using the standardized deviation of phylogenetic distances in
999 null communities (Webb, 2000). The obtained standardized
effect size (ses.MNTD) can be used to test for phylogenetic
clustering or overdispersion (Webb, 2000). Negative ses.MNTD
values and low quantiles (P < 0.05) indicate that co-occurring
species are more closely related than expected by chance
(clustering), while positive values and high quantiles (P > 0.95)
indicate less closely related species (overdispersion). These
analyses were performed by using “picante” package (v.1.6-2) in
R (v.3.0.14) (Kembel et al., 2010).

Co-occurrence Ecological Network
Construction and Analysis
In order to understand how microbial communities assemble
across the latitudinal gradient, co-occurrence ecological
networks were constructed and analyzed using an open-
accessible molecular ecological network analysis (MENA)
pipeline5. Seasonal samples within each forest were combined
for the analysis of co-occurrence network (networks were also
constructed in each year individually within each forest). As
previously applied, we focused on the core OTUs that were
detected in more than 50% of the samples across each forest
ecosystems (Deng et al., 2012). The same or very close threshold
was applied to construct microbial co-occurrence networks,

4http://r-forge.r-project.org
5http://ieg2.ou.edu/MENA

with the purpose of comparing different networks across a
latitudinal gradient. This approach is remarkable in that the
network is automatically defined and robust to noise, and the
whole process and details are given in a previous MENA study
(Deng et al., 2012). The network was visualized using Cytoscape
3.2.1 (Smoot et al., 2011).

Topological indexes for individual nodes in the network
were calculated using the MENA pipeline. This feature
set included node degree (the number of neighbors, also
called connectivity), betweenness centrality (the number
of shortest paths going through a node), stress centrality
(the number of geodesic path that pass through a node)
and clustering coefficient (the probability that the adjacent
nodes of a node are connected, also called transitivity).
The node betweenness centrality and stress centrality
features were used to measure the centrality of each node
in the network (Ma et al., 2016). Moreover, network-level
topological features were also calculated for each network
across latitudinal forest ecosystems. This feature set included
node numbers (Nodes), edge numbers (Links), average
clustering coefficient (avgCC), average path distance (GD),
modularity (M), centralization of betweenness (CB) and
centralization of stress (CS).

Statistical Analyses
Adonis test for permutational multivariate analysis of variance
based on weighted UniFrac distance was conducted to
evaluate significant differences in community composition
among seasons and between latitudinal forests. One-way
ANOVA was used for testing the significance of latitudinal
or seasonal differences in microbial data followed by a
Tukey HSD or Games-Howell test using SPSS Statistics
(20.0) Software (IBM). To test for differences in network
topological features between latitudinal forests, multiple
comparison of Kruskal–Wallis test was used. Multiple
comparison analyses were performed by using the “agricolae”
package in R. To compare the magnitude of variances of
ses.MNTD values for phylogenetic groups of microbial
communities between latitudinal forests, we performed
an F test in R.

The time-decay relationship is an important indicator of
the seasonal dynamics of microbial communities. To assess
the temporal turnover rate of microbial community, linear
regressions were used to examine the relationship between the
temporal distance among samples and similarity in microbial
composition. Temporal dynamics of the whole microbial
community and different phylogenetic groups were explored at
seasonal time scale (turnover rate was calculated in each year
individually, and also calculated in 2 years combined). Archaea
and major bacterial phyla were selected based on their relative
abundances higher than 1%. Proteobacteria phylum was divided
into different classes because of the high relative abundance and
different ecological functions of these classes. The phylogeny-
based weighted UniFrac distance was used as a metric of
differences in community composition. Arrhenius (log–log) plot
was used for modeling the species-time relationship in the form:
log10(Ss) = constant ± w log10(T), where Ss is the pairwise
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similarity in community composition, T is the time interval and
w is a measure of the rate of species turnover across time. Because
our data consisted of pairwise comparisons and thus were not
independent, bootstrapping (1,000 times) was used to test if the
slope of the regression (w value) was significantly different from
zero. A one-sample t-test between the original slope and a mean
of bootstrapped slopes by random pairing of the original set
(permuted 1,000 times) was conducted (Horner-Devine et al.,
2004; Xiong et al., 2015). The significance comparison of w values
among different estimations was also achieved by bootstrapping
(1,000 times), followed by a pairwise t-test.

To estimate the contribution of climate, plant, soil, and
spatial factors to microbial community structures and seasonal
dynamics, multiple ordinary least squares (OLS) regression
and the quantification of relative importance and variation
partitioning analysis (VPA) were used. Spatial variables were
obtained by principal coordinates of neighbor matrices (PCNM)
which precisely represents the spatial relationship between the
samples (Ramette and Tiedje, 2007). The first two spatial
scales (PCNM1 and PCNM2) with positive values of Moran’I
index were selected for multiple OLS regression and VPA
analyses. Seasonal turnover rates and network topological
features calculated in each year individually were used to
increase data points for better modeling. Environmental variables
were firstly selected for regression analyses. Strong correlated
variables were dereplicated according to their correlation (i.e.,
one of the two variables was selected if the Pearson correlation
is higher than 0.8). In multiple OLS regression analysis,
all of the microbial features and environmental variables
were standardized at a mean of 0 and SD of 1. Akaike’s
information criterion was used to identify the best model.
Multiple OLS regression analyses were performed by using
the “MASS” package in R. Then, each regressor’s contribution
to a multiple OLS regression model was quantified. The R
“relaimpo” package provides measures of relative importance
with the lmg method for each of the predictors in the
model. For VPA, climate, plant, soil and spatial variables were
forward selected by the “forward.sel” function with R “packfor”
package, respectively. VPA was carried out by using the R
“vegan” package. The Pearson correlation (two-tailed) was used
to identify the relationships between microbial features and
environmental variables in R.

RESULTS

Seasonal Changes of Environmental
Factors Across the Latitudinal Gradient
Climatic conditions at the time scale of season
were highly varied along the latitudinal gradient
(Supplementary Figure S3): intra-seasonal mean diurnal
temperature range (DTR) and intra-seasonal temperature range
(TR) increased significantly with increasing latitudes, whereas
intra-seasonal mean temperature (AT) and intra-seasonal
sum of precipitation (Precip) decreased significantly with
increasing latitudes; TR and AT showed periodic patterns
with a trough and peak in summer in all forests, respectively.

For plant variable, GPP was used. Monthly GPP averages
at northern latitudes had a stronger seasonal pattern, while
those at southern latitudes maintained higher levels across
all seasons though somewhat reduced during winter time
(Supplementary Figure S4). GPP had higher correlations with
climatic factors (temperature and precipitation) at northern
(P < 0.01) than southern latitudes (P > 0.05; Supplementary
Figure S4). For soil properties, soil pH value was lower at
southern than northern forests, and nutrient levels, such as
TOC, TN, DOC and available nitrogen including NH4

+ and
NO3

− were generally higher in northern than southern forests
(data not shown).

Microbial Community Structure Changes
Across the Latitudinal Gradient
We found clear differentiation in microbial community
composition between southern (DHF and JGF) and central
(BTM) and northern (DLF and CBF) latitudinal forests (adonis
test for permutational multivariate analysis of variance, F = 98.5,
P = 0.001; Figure 1A). Forest latitude, compared to seasonal
variation, was the major driver in microbial community
differentiations, with the former accounting for 90.81%
and the latter for 0.27% of total variation (Supplementary
Table S2). In addition, alpha diversity index (Chao1) was
significantly lower at southern latitudes (DHF and JGF) than
that at central (BTM) and northern (DLF and CBF) forests
(ANOVA, P < 0.05; Supplementary Figure S5a), and with
the greatest seasonal fluctuation in DLF (F = 17.68, P < 0.001;
Supplementary Figure S5b).

Temporal Turnover Rates of Microbial
Community Across the
Latitudinal Gradient
The time-decay relationship is an important indicator
of the seasonal dynamics of microbial communities. To
evaluate the differences in microbial temporal turnover
rates across latitudes, we estimated the slopes of microbial
time-decay relationship. Significant time-decay relationships
(P < 0.001) were observed for microbial communities at
all latitudes, but faster seasonal turnover rates were found
at northern latitudes (Figure 1B). Compared with central
latitude (BTM, w = 0.0048), the rates of temporal turnover
increased significantly toward higher latitudes (w = 0.0259 in
DLF and 0.0276 in CBF, P < 0.001), whereas they declined
significantly toward lower latitudes (w = 0.0011 in JGF and
0.0006 in DHF, P < 0.001) (Figure 1B). Similarly, the trend of
declining temporal turnover rates with decreasing latitudes was
also observed in each year individually (Supplementary
Figure S6). We also observed considerable variations
of turnover rates among different phylogenetic groups
(Supplementary Table S3). Several phylogenetic groups
exhibited distinct temporal turnover rates at northern versus
southern latitudes. Specifically, Archaea and the bacterial groups
of Chloroflexi, Alphaproteobacteria, and Deltaproteobacteria
had greater turnover rates at northern than southern latitudes,
whereas Verrucomicrobia had greater turnover rates at southern
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FIGURE 1 | Seasonal dynamics of microbial communities along the latitudinal forest ecosystems. Principal coordinate analysis (PCoA) plot of phylogenetic microbial
community using the weighted UniFrac distance metric (A). Microbial temporal turnover (B) and phylogenetic relatedness (ses.MNTD, (C). The turnover rate, w (the
regression slope), was estimated using a linear regression (log–log space approach) fit between the pairwise average similarity values and intervals of sampling time
at seasonal temporal scales across latitudinal forest ecosystems. The slopes of all lines were significantly different from zero and significantly different for pairwise
comparison. Solid lines indicate the predicted relationships are significant (P < 0.05) based on linear regression estimated using ordinary least squares. Linear
relationships at different latitudinal forests are indicated by color, and the shaded region represents the 95% confidence limits on the regression estimates. The
standardized effect sizes of MNTD (ses.MNTD) values were all significantly negative (P = 0.001). Pairwise comparison was performed between latitudinal samples.
Different letters (a, b, c) indicate a significant difference (P < 0.05) by ANOVA analysis. Forests along a latitudinal gradient from north to south include Changbai
Forest (CBF), Dongling Forest (DLF), Baotianman Forest (BTM), Jinggang Forest (JGF), and Dinghu Forest (DHF). N, northern sites; S, southern sites. Samples were
coded by sampling season and year. Sp, spring; Su, summer; A, autumn. The number 13 and 14 represents Year 2013 and 2014, respectively.

latitudes; the turnover rates of Bacteroidetes, Betaproteobacteria,
and Gammaproteobacteria were weakly associated with
latitudes (Supplementary Table S3).

Phylogenetic Relatedness of Microbial
Communities Across the
Latitudinal Gradient
In order to measure the phylogenetic relatedness of
microbial communities, we tested the level of phylogenetic

clustering of soil microbial communities in each forest
ecosystem. All the standardized effect sizes of mean nearest
taxon distance (ses.MNTD) were all significantly negative
(P = 0.001, Figure 1C), which indicated that microbial
communities had a tendency to be more phylogenetically
clustered than expected by chance. Moreover, this clustered
community assembly patterns tended to weaken significantly
(ANOVA, P < 0.05) at central and northern (BTM, DLF,
and CBF) than southern (JGF and DHF) latitudinal forests
(Figure 1C). We also compared variances of ses.MNTD
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FIGURE 2 | Node-level topological features in the network for the microbial community across latitudinal forest ecosystems. The topological features include
betweenness centrality (A), stress centrality (B), degree (C), and clustering coefficient (D). Data are means ± SE, n, node numbers. Pairwise comparison was
performed between latitudinal samples. Different letters (a, b, c) indicate a significant difference (P < 0.05) by Kruskal–Wallis test. N, northern sites; S, southern sites.

between latitudinal forests among different phylogenetic groups
(Supplementary Figure S7). Several phylogenetic groups,
namely, Archaea, Actinobacteria, Chloroflexi, Firmicutes,
and Deltaproteobacteria, exhibited considerable variances of
ses.MNTD at northern versus southern latitudes.

The Co-occurrence Networks of
Microbial Communities Across the
Latitudinal Gradient
In order to understand how microbial communities assemble
across the latitudinal gradient, co-occurrence networks were
constructed for microbial communities at each forest site
(Supplementary Figure S8). We then examined whether
microbial OTUs associated with a specific latitudinal region
exhibited unique node-level topological features. Firstly, we
examined node betweenness centrality and stress centrality
which are proxies for the location of this node in relation to
other nodes, and observed significantly higher betweenness
and stress centrality values (P < 0.05, Kruskal–Wallis test)

at northern than southern latitudes (Figures 2A,B). High
centrality values indicate a core location of this node in
the network, and nodes with high centrality values are
likely to have high influence on other interactions in the
community. This suggests that microbial communities from
the northern forest ecosystems were more often located
in core, central positions within the network and had a
higher interaction influence than those from the southern
forest ecosystems. Secondly, we showed that node degree
was slightly higher in one southern forest (DHF; P < 0.05,
Kruskal–Wallis test; Figure 2C), but clustering coefficient was
significantly lower at DHF (P < 0.001, Kruskal–Wallis test,
Figure 2D). Furthermore, most of network-level topological
features, such as average clustering coefficient (avgCC),
modularity (M) and centralization of betweenness (CB),
visually appeared relatively higher at northern than southern
forest ecosystems (Supplementary Figure S9). These indicate
that the network exhibited greater complexity and higher
connectivity in the northern forests (CBF and DLF). In contrast,
average path distance (GD) of the network was lower at
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FIGURE 3 | Pearson correlation coefficients (r) between temporal turnover rate for each phylogenetic group of microbial communities and climatic factors. The
significant (P < 0.05) correlation coefficients were indicated by filling the background of the grid with light blue. DTR, intra-seasonal mean diurnal temperature range;
TR, intra-seasonal temperature range; AT, intra-seasonal mean temperature; Precip, intra-seasonal sum of precipitation.

southern latitudes compared to that at northern latitudes
(Supplementary Figure S9 and Supplementary Table S4),
which suggests a closer relationship in the southern forests
(JGF and DHF). In addition, a few more node numbers, link
numbers as well as negative links were observed at southern
latitudes (JGF and DHF; Supplementary Figure S9 and
Supplementary Table S4).

Linking Microbial Communities and
Seasonal Dynamics to
Environmental Factors
For all taxonomic groups, microbial temporal turnover rate
had a significantly (P < 0.05) positive relationship with
temperature variation [i.e., intra-seasonal mean diurnal
temperature range (DTR) and intra-seasonal temperature
range (TR)] (Figure 3). Niche breadth of temperature
variation is positively associated with seasonal turnover
rates of microbial communities (Supplementary Figure
S10). In addition, greater seasonal dynamics of microbial
communities per unit variation of diurnal temperature were
observed at northern latitudes (Supplementary Figure S11).
For each phylogenetic group of microbial communities, the
temporal turnover rate showed differences in sensitivity to
temperature variation (Figure 3). Specifically, the turnover
rates of Archaea and the bacterial groups of Chloroflexi,
Alphaproteobacteria, and Deltaproteobacteria had significantly
(P < 0.05) positive correlation with temperature variation
(i.e., DTR and TR); the turnover rates of Bacteroidetes,
Betaproteobacteria, and Gammaproteobacteria were weakly
associated with temperature variation (Figure 3). Some
genera in the phylogenetic group of Alphaproteobacteria
that was sensitive to temperature variation had significant
correlation with temperature variation (Supplementary
Table S5). Specifically, the turnover rates of Rhizobium had
significantly (P < 0.05) positive correlation with DTR while the
rate of Bradyrhizobium and Rhizomicrobium had significantly

(P < 0.05) negative correlation with temperature variation
(i.e., DTR and TR).

Microbial community structures and seasonal variations
were significantly (P < 0.05) correlated with spatial distance,
climate, plant and soil variables (Supplementary Table S6).
We further used multiple OLS regression and quantification of
relative importance to estimate the contribution of individual
environmental variables to microbial features (Figures 4A–F
and Supplementary Figures S12a–d). DTR contributed the
largest importance for microbial temporal turnover rate
(18.3%), phylogenetic relatedness (ses.MNTD, 18.0%) and
network-level topological features such as avgCC (17.8%).
Precipitation (Precip) contributed the largest importance
for network-level topological features such as CS (18.0%).
DTR was an important variable for explaining mean pairwise
UniFrac similarity (10.0%), first axis of PCoA scores (15.1%),
gamma diversity (11.2%) and network topological features
such as GD (17.0%), CS (10.5%), and CB (15.7%). TR was
an important variable for explaining phylogenetic relatedness
(ses.MNTD, 11.6%), alpha diversity (10.8%) and CB (10.1%).
Moreover, plant variables (GPP, LAI of tree and shrub,
litterfall of branch and bark) and their seasonal variation were
important variables for explaining many microbial features. It
is worth mentioning that spatial distance (PCNM variable) also
contributed to the variation of some microbial features, such as
temporal turnover rate (15.5%), avgCC (17.5%), alpha diversity
(26.4%) and gamma diversity (15.3%). Furthermore, VPA was
subsequently performed to dissect the relative contributions of
spatial, climate, plant and soil variables to microbial features
(Figures 4G–L and Supplementary Figures S12e–h). The
interactions of those four groups of variables accounted for
a large amount of the total variation (14–53%) of almost
all of microbial features. Climate alone accounted for 10–
16% of the total variation of microbial network topological
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FIGURE 4 | Relative importance of environmental factors related to the microbial features. The relative importance was identified with a linear model based on
multiple ordinary least squares (OLS) regression (A–F) and variation partition analysis (VPA, (G–L). Microbial features include temporal turnover rate (w values, (A,G),
mean pairwise UniFrac similarity (B,H), phylogenetic relatedness (ses.MNTD, (C,I) and network-level topological features (GD, avgCC, and CS; (D–F,J–L). The
values of the relative importance (%) of each variable for each microbial metric in the model are shown as bar plots. The best models were identified using Akaike’s
information criterion. All of the environmental variables were standardized (mean = 0; SD = 1). The explanatory environmental variables were summarized based on
the results of multiple OLS regression (see Supplementary Table S6 for details). GD, average path distance; avgCC, average clustering coefficient; CS,
centralization of stress. Environmental factors are divided into groups of climate (DTR, intra-seasonal mean diurnal temperature range; TR, intra-seasonal
temperature range; Precip, intra-seasonal sum of precipitation), plant (GPP_avg, intra-seasonal mean of GPP; GPP_SD, intra-seasonal standard deviation of GPP;
LAI_tree_avg, intra-seasonal mean of tree leaf area index; LAI_tree_SD, intra-seasonal standard deviation of tree leaf area index; LAI_shrub_avg, intra-seasonal mean
of shrub leaf area index; LAI_shrub_SD, intra-seasonal standard deviation of shrub leaf area index; lf_leaf_avg, intra-seasonal mean of leaf litterfall; lf_leaf_SD,
intra-seasonal standard deviation of leaf litterfall; lf_branch_SD, intra-seasonal standard deviation of branch litterfall; lf_bark_SD, intra-seasonal standard deviation of
bark litterfall; lf_fruit_SD, intra-seasonal standard deviation of fruit litterfall), soil (pH, soil pH; WC, water content; C/N, the ratio of total organic carbon and nitrogen;
TN/TP, the ratio of total nitrogen and phosphorus; TOC/DOC, the ratio of total organic carbon and dissolved organic carbon; NH4

+/NO3
−, the ratio of ammonium

and nitrate), and spatial (PCNM2) variables. Asterisks represent significance level: ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05.

Frontiers in Microbiology | www.frontiersin.org 9 April 2019 | Volume 10 | Article 674

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00674 March 29, 2019 Time: 18:51 # 10

Hu et al. Latitudinal Patterns of Microbial Dynamics

features such as GD, avgCC, CS, and CB. Plant alone
accounted for 11–35% of the total variation of microbial
temporal turnover, phylogenetic relatedness and network
topological features. The interactions between climate and
plant variables had large effects (9.5–13%) on the total variation
of mean pairwise similarity and phylogenetic relatedness of
microbial communities. Here, however, spatial variables alone
explained slight variations of all of microbial features.

DISCUSSION

Dynamics properties of an ecological system is sometimes
assessed by the level of variability in community compositions
over time, as represented by temporal turnover rates (Gonze
et al., 2018). The temporal turnover of microbial communities has
been linked to a variety of factors such as latitude. We observed
higher seasonal turnover rates of microbial communities at
northern than southern latitudes. Temporal turnover has been
well documented in macroorganisms, but reports on microbial
temporal turnover remain limited (Shade et al., 2013). Latitude
is one of the most intriguing factors that affect the rate of
temporal turnover, yet there was not a consistent trend in
temporal turnover with latitude for macroorganisms according
to previous studies (Korhonen et al., 2010). For example,
slower temporal turnover was observed at high latitudes in
zooplankton communities (Shurin et al., 2007), whereas faster
turnover was found at high latitudes in British birds (Evans
et al., 2008). Temporal scale was also considered as one of
the most significant factors that affect the rate of temporal
turnover and previous research demonstrated that turnover in
aquatic species (larger organisms or eukaryotes) was faster at
lower latitude at intra-annual time scale, but the pattern was
reversed at interannual time scale, where turnover was faster
at high latitudes (Korhonen et al., 2010). Yet there was a
lack of studies on latitudinal patterns of temporal turnover at
different timescales for microbial communities (bacteria and
archaea). Thus, for the first time, we have highlighted significant
differences in latitudinal patterns of seasonal turnover rates for
soil microbial communities.

To better understand how microbial communities and
seasonal dynamics were spatially structured, we quantified the
relative effects of spatial, climate, plant and soil factors that best
explain the microbial variations. Microbial features could relate
noticeably to significant variation in pure climate or plant effect,
and to joint effect of the two groups of variables. It is worth
noting that a pure spatial effect was not expected to contribute to
the microbial variation, but rather through the shared effect with
environmental factors (i.e., climate, plant and soil factors). We
suggest that environmental factors were also spatially structured,
thus leading to similar spatial patterns in microbial community
structures and seasonal dynamics across latitudinal gradient.

We found that temperature variation rather than mean
conditions imposed stronger influence on seasonal fluctuations
of microbial communities across the latitudinal gradient.
The statistical analyses showed that DTR and TR were
important variables for explaining microbial seasonal dynamics.

Many studies previously discussed the effect of diurnal
(Ali and Subhasis, 2015) and seasonal temperature variation
(Chang et al., 2011a,b) on microbial community and activity.
They also found that temperature variations could induce a
change in soil microbial community structures and enhance
microbial activities, compared to a constant average temperature
mode. High latitudes are usually characterized by strong
seasonal acuity within a short seasonal period (e.g., larger
DTR and TR), which is concurrent with seasonal turnover
rhythm of microbial communities (Figure 3). Consistently,
a recent study documented that greater long-term (e.g.,
seasonal) climate variation was related to narrower community
geographical range of thermal specialists, as found for aquatic
species (macroinvertebrates, diatoms, and bacteria) (Wang
and Soininen, 2017). This finding is not supportive of a
temperature mechanism: organisms that experience greater
temperature variation and thus have broader physiological
thermal tolerances, tend also to be widely distributed as a
consequence (Janzen, 1967; Chan et al., 2016). Compared
with recent studies by Chan et al. (2016) and Wang and
Soininen (2017), we used shorter-term climate variation (DTR
and TR within a season rather than among seasons) due
to shorter generation span of soil microbes which are
ectothermic and thus perhaps more sensitive to the variation
in ambient temperature especially at shorter timescales. Our
observations showed that seasonal turnover rates for most
taxonomic groups, especially Archaea and the bacterial groups
of Chloroflexi, Alphaproteobacteria, and Deltaproteobacteria,
positively correlated with temperature variation (DTR and
TR) (Figure 3), indicating they were more sensitive to high
temperature variation in high latitude areas. Coincidentally,
microbial species within these four groups tend to be more
phylogenetically dispersed at northern latitudes based on the
variability in ses.MNTD values (Supplementary Figure S7).
Thus, greater temperature variation might have imposed stronger
selective pressure on thermal specialists, because they depend
on narrow environmental range and are more susceptible
to temperature variation (Vázquez et al., 2015), which is an
explanation for the positive effect of temperature variation (DTR
and TR) on microbial seasonal dynamics.

Seasonal changes of plants might be one of important
explanations for microbial seasonal dynamics in response to the
increased temperature variation. Plants, as primary producers,
transport a large proportion of fixed photosynthetic carbon to the
soil environment, and this partitioning of nutrients may directly
influence microbial associations (Kuzyakov and Domanski,
2000). Previous studies found that plant is an important driver of
seasonal microbial dynamics through belowground C allocation
(Kaiser et al., 2011). Plant phenology, the timing of biological
events, is intimately tied to the diurnal and seasonal variations
in climate (McClung, 2006; Visser et al., 2010; Helm et al.,
2013; Thackeray et al., 2016). Diurnal temperature variation
(DTR), associated with solar radiation and photoperiod, was
found to regulate plant functions, including central carbon
metabolism, stomatal opening, and the timing component of
photoperiodism, which regulate seasonal reproduction such as
flowering and the transition from vegetative to reproductive
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growth (Michael et al., 2003). For one thing, higher diurnal
temperature variation would promote net assimilation, i.e.,
increase photosynthesis during the light period and decrease
respiration during the dark period (Yang et al., 2016); for
another, increased day length during spring and summer (in
the northern hemisphere) would accelerate plant reproduction
phase, i.e., compress the length of growth cycle (Michael
et al., 2003). Evergreen trees at southern latitudes continue
photosynthesizing (though somewhat reduced) during winter
time, while deciduous trees at central and northern latitudes
have a stronger seasonal pattern in photosynthesis and its
allocation belowground due to much shorter phenological
growing periods (data not shown). At higher latitudes, stronger
seasonal belowground allocation of photosynthetic carbon might
be related to faster litterfall, root and exudates turnover,
probably leading to high variance in nutrient availability among
seasons (Burke and Raynal, 1994; McCormack et al., 2014),
resulting in a higher seasonal dynamics of microbial community
compositions consequently. Our results showed that plant alone
and the interactions among climate, plant and soil variables
were considerable explanations for faster temporal turnover
at higher latitudes. These further supported the idea that
microbial variation may be generated by an indirect effect of
temperature variation through seasonal patterns of plants besides
a direct effect.

The response of microbial communities directly and indirectly
to increased temperature variation could have implications on the
following aspects.

First, temperature variation is likely associated with
shifts in ecological niches (the particular set of resources
and environmental conditions that an individual species
exploits) (Prosser et al., 2007). Niche breadth of temperature
variation is consistent with microbial seasonal dynamics
(Supplementary Figure S10). Phylogenetic niche conservatism
hypothesis holds that close relatives occupy similar niches,
whereas distant relatives are more dissimilar (Wiens et al.,
2010). Microbial species tend to be more phylogenetically
clustered at southern latitudes, compared with those at
northern latitudes based on ses.MNTD values (Figure 1C).
These suggest more niches in northern forests due to more
variable temperature and faster turnover of plant (i.e.,
litterfall, root and exudates) conditions, which consequently
contribute to more highly dynamic microbial communities at
higher latitudes.

Second, microbial network structure and interaction has
been proposed as a determinant of community dynamics
(Faust et al., 2018). Microbial communities from the northern
forest ecosystems were more complex and had a greater
interaction influence than those from the southern forest
ecosystems based on node centrality values and network-
level topological features. Relationships (i.e., mutualism
or cooperation) between different microbial taxa with the
seasons could be strengthened by providing faster resources
turnover and more variable environmental conditions at
northern latitudes. The interdependencies on resources
and environmental conditions likely promoted beneficial
interactions among community members, and microbes could

thus extend their fundamental niches to adapt to dynamic
environments (Hassani et al., 2018). Complex interaction
networks may produce greater stability which could dampen
the rapid spread of disturbance in a community (Olesen et al.,
2007) and provide a buffer against environmental variation
(Konopka et al., 2014). Microbial network interactions
have been reported to be enhanced by environmental
fluctuations (Xiong et al., 2015). These imply that intensified
interactions of species co-occurrence might contribute to
community resistance to greater temperature variation in the
northern regions.

Third, in addition to community resistance, the
resiliency may also influence the response of microbial
communities to the increased climatic variation.
Higher latitudes had greater fluctuations of microbial
communities per unit variation of diurnal temperature
(Supplementary Figure S11). Compositional turnover
determined using similarity-decay approach can be used
for comparing microbial community resilience when challenged
with different disturbances (Shade et al., 2012). We infer that
microbial communities at higher latitudes might have greater
resiliency in response to the increased climatic variation.
In addition, our results showed higher microbial diversity
(Chao1; Supplementary Figure S5) and less phylogenetically
clustered microbial species (Figure 1C) at higher latitudes.
Ecosystem resilience is normally tied to the biodiversity;
that is, maintaining biodiversity is a key to maintaining
ecosystem resilience and avoiding thresholds at which
the ecosystem loses its capacity to recover (Thompson,
2011; Oliver et al., 2015).

CONCLUSION

The present study demonstrated that the seasonal turnover
rhythm of microbial communities was spatially structured across
the latitudinal gradient, which may be caused by a mixture
of both diurnal temperature variation and seasonal patterns
of plants. For the first time, to the best of our knowledge,
we showed that climatic variation was more important than
average environment drivers for determining the response of
soil microbial community dynamics to climate change. The
results might be supportive of an explanation that greater
temperature variation imposes stronger selective pressure on
thermal specialists; for instance, Archaea and the bacterial groups
of Chloroflexi, Alphaproteobacteria, and Deltaproteobacteria are
more sensitive to temperature variation. Plant, tied to the
seasonal variations in climate, was also a considerable explanation
for microbial seasonal dynamics in response to the increased
temperature variation probably through seasonal belowground
photosynthetic carbon flow. Furthermore, less clustering level of
phylogenetic structure of microbial communities and stronger
interaction intensity of species co-occurrence were potential
explanations for highly dynamic microbial communities with
greater resistance and resiliency in response to climatic variation
at high latitudes. Our findings provide evolutionarily and
ecologically mechanistic explanations on the community level,
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and have important implications for assessing ecosystem stability
to climatic variation caused by global warming.
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