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Background: Minimally invasive approaches have been a standard choice of surgery for noninvasive 
thymic epithelial tumors (TETs), but we sometimes experience cases requiring combined resection of 
adjacent structures. We develop and validate machine learning models to predict combined resection based 
on preoperative contrast-enhanced computed tomography (CT).
Methods: This study included 212 patients with TETs (140 in the training cohort and 72 in the validation 
cohort) who underwent radical surgery. Radiomics features were extracted from contrast-enhanced CT and 
predicted with five feature selection methods and seven machine learning models in nested cross validation. 
The clinical utility of the models was analyzed by a decision curve analysis (DCA).
Results: Fifty-five patients in the training cohort and 28 in the validation cohort required combined 
resection. The classifiers random forest (RF), gradient boosting (GB), and eXtreme Gradient Boosting (XGB) 
indicated high predictive performance, with the XGB classifier based on features selected by GB performing 
the best, with an area under the curve (AUC) of 0.797. In the validation cohort, the classifier had an AUC 
of 0.817. The DCA showed the validity of the model with a threshold range of 15–72%. When restricted to 
combined pulmonary and pericardial resection, the respective AUCs were 0.736 and 0.674 for the training 
cohort and 0.806 and 0.924 for the validation cohort.
Conclusions: The machine learning model based on preoperative CT images was able to diagnose TETs 
requiring combined resection with high accuracy. The DCA demonstrated a wide range of model validity 
and may aid in surgical approach selection.
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Introduction

Thymic epithelial tumors (TETs) account for about half of 
resected mediastinal tumors, with thymoma being the most 
common at approximately 85% (1). Thymic carcinomas 
and neuroendocrine tumors have a poor prognosis, with a 
5-year survival rate of approximately 60% (2,3). In contrast, 
thymomas have an oncologically low to intermediate grade 
and are histopathologically classified as types A, AB, B1, 
B2, or B3 with varying clinical courses (4). Surgery is the 
first choice for treatment of TETs, and complete resection 
is required for improving the overall survival and reducing 
the recurrence rate (5,6). Since complete resection may 
require combined resection or reconstruction, depending 
on the extent of tumor invasion and adhesion to adjacent 
structures, detailed preoperative surgical planning is 
essential. 

In terms of the surgical approach, the conventional 
standard approach for TETs has been sternotomy or lateral 
open thoracotomy. In recent years, several new approaches 
have been used, such as video-assisted thoracic surgery 
(VATS) including a uniport (7,8), and robot-assisted 
thoracic surgery (RATS) (9,10). Minimally invasive surgery 
(MIS) for locally invasive thymoma has been performed in 
some centers (8,9), but no oncologic consensus has yet been 
reached concerning these approaches, and it is not always 
easy to convert to thoracotomy during an operation. 

Previous reports have identified a large tumor size, 
lobulated tumor contour, presence of calcifications and 
pulmonary changes adjacent to the tumor on computed 
tomography (CT) (11,12) as factors associated with tumor 
invasiveness. We previously reported that fluorine-18-

fluorodeoxyglucose positron emission tomography coupled with 
CT (18F-FDG-PET/CT) is useful for predicting the malignancy 
grade, staging, and invasiveness of TETs (13). However, PET/
CT, although useful, is not routinely performed for TETs. 
Traditionally, the combination of these risk factors has been 
used to assess tumor invasiveness, and the surgical approach 
has been determined but they do not have satisfactory 
predictive performance.

The field of radiomics, which quantitatively captures 
imaging findings, has been developed in recent years, and 
several studies have reported the usefulness of radiomics 
for evaluating TETs. Most predicted pathological low- 
and high-risk thymomas using radiomics and machine 
learning models with CT imaging (14-16). A small number 
of models have also been developed to predict the residual-
factor, which is indicative of complete resection (17). 
However, models predicting the surgical T-factor, which 
is directly related to the surgical procedure, have not been 
constructed. 

Machine learning for radiomics is usually performed 
in two steps. First, radiomics features are selected to 
improve the accuracy of the classifier and to reduce the 
amount of calculation. Next, a machine learning model 
is built based on the selected features. Feature selections 
are performed selecting features based on the relationship 
between individual variables and the objective variable, 
learning and selecting features using a subset of features 
such as recursive feature elimination (RFE) (18), and 
feature selection simultaneously with model learning such 
as least absolute shrinkage and selection operator (LASSO) 
and machine learning models (19). While all have proven 
effective, the model that fits each task needs to be validated 
individually, and multiple methods of analysis were tested. 
Various machine learning models have been devised, classically 
logistic regression (LR), support vector machine (SVM) (20,21), 
k-nearest neighbor (KNN) (22), Naïve Bayes (NB) (23), etc., 
and more recently random forest (RF) (24), gradient boosting 
(GB) (25), and eXtreme Gradient Boosting (XGB) (26). 
LR is an analytical method often used in statistics, with an 
emphasis on prediction in machine learning. SVM maps 
data into a high-dimensional space and divides it by finding 
optimal boundaries between different classes. KNN uses 
majority voting to determine which group the unknown 
data fall into. NB is an algorithm based on Bayes’ theorem, 
which uses a probabilistic approach to learn. LR, SVM, 
KNN, and NB have been developed decades ago and have 
been validated in many studies. RF builds multiple decision 
trees based on the data extracted by bootstrapping and 
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outputs predictions by ensembling the results. GB and XGB 
are ensemble learning algorithms, but they differ from RF 
in that they train a new decision tree based on the gradient 
of the loss function for the weak model created. XGB is an 
efficient implementation of GB. A simplified figure is shown 
in Figure S1. In the present study, radiomic features were 
extracted and selected from tumors in contrast-enhanced 
CT scans, and we investigated whether machine learning 
models could diagnose tumors requiring combined resection 
of adjacent structures (TCRs). We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://jtd.amegroups.com/article/view/10.21037/jtd-23-
1840/rc).

Methods

Patients

This was a three-center retrospective study. The training 
cohort consisted of patients who underwent thymectomy 
at Chiba University Graduate School of Medicine from 
January 2009 to October 2022 and were diagnosed with 
TET by pathology. The validation cohort included patients 
with the same conditions at other two hospitals (Chiba 
Cancer Center and Kimitsu Chuo Hospital) from January 
2006 to October 2022 and January 2011 to October 2022. 
Exclusion criteria were as follows: (I) contrast-enhanced 
CT with slice thickness ≤5 mm not taken within 90 days 
prior to surgery; (II) contrast-enhanced CT obtained other 
than 60 seconds after contrast injection; (III) preoperative 
chemotherapy conducted. Ultimately, 140 patients in the 
training cohort and 72 patients in the validation cohort 
were included in the study (Figure 1). TCR was defined 
as cases requiring combined resection equivalent to T2, 
T3, or T4 based on the tumor, node, metastasis (TNM) 
classification. Tumors other than TCR were defined as the 
control group. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). The 
study was approved by institutional ethics board of Chiba 
University Graduate School of Medicine (No. M10536), 
and Chiba Cancer Center and Kimitsu Chuo Hospital were 
informed and agreed with this study. Individual consent for 
this retrospective analysis was waived.

Feature extraction and selection

Contrast-enhanced CT images were loaded with an open-
source 3D slicer software program (version 4.11) and 

used for segmentation of TETs. For segmentation, we 
used the grow from seeds algorithm implemented in the 
3D slicer program and manually checked and adjusted. 
The Pyradiomics software package (version 3.0.1; https://
github.com/Radiomics/pyradiomics) was used to extract 
radiomics features for the segmented tumors. The voxels 
were resampled to a uniform voxel size of 1.0×1.0×1.0 
and discretization of CT images was set to a bin width of 
25. The filters used were square, square root, logarithm, 
exponential, gradient, wavelet, and Laplacian of Gaussian. 

Ultimately, a total of 1,795 features were extracted and 
were standardized in the training set. The feature selection 
methods used were LASSO, RFE, RF, GB, and Boruta. 
LASSO adds a regularization term to the least squares 
method, and many coefficients are compressed to 0 (19). 
RFE is a method of selecting features up to an arbitrary 
number of features by repeatedly constructing the model 
and deleting features (18). RF and GB are commonly used 
machine learning models, and the variable importance 
can be used to determine which variables contributed to 
the model construction. Boruta selects features based on 
variable importance by comparing shadow variables with 
actual variables. The parameters of the feature selection 
methods are shown in Table S1.

Machine learning model construction and validation

Seven machine learning models were used to predict 
TCR. The models used were LR, SVM, KNN, NB, RF, 
GB, and XGB. The hyperparameters tuned are listed in  
Table S2. The machine learning model was built using 
nested cross validation. The training cohort was divided 
into five parts, four of which were assigned to the training 
set and the remaining one to the test set. In the training 
set, features were selected, and the model was constructed 
by five-fold cross validation. All parts were assigned once 
to the test set. The prediction probability in the validation 
cohort was calculated as the average of the five patterns 
of feature selection and the model constructed in the 
training cohort. A decision curve analysis (DCA) was also 
performed to measure the clinical utility of the model (27). 
A DCA calculates the net benefit of the model based on 
the relationship between the risk of false positives and false 
negatives of the model. 

Statistical analyses

Statistical analyses were performed using Fisher’s exact test 

https://cdn.amegroups.cn/static/public/JTD-23-1840-Supplementary.pdf
https://jtd.amegroups.com/article/view/10.21037/jtd-23-1840/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-23-1840/rc
https://github.com/Radiomics/pyradiomics
https://github.com/Radiomics/pyradiomics
https://cdn.amegroups.cn/static/public/JTD-23-1840-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JTD-23-1840-Supplementary.pdf
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Patients who undergone radical resection for 

thymic epithelial tumor at CUH between 

January 2009–October 2022 (n=288)

Patients who undergone radical resection for 

thymic epithelial tumor at CCC between 

January 2006–October 2022 (n=74)

Patients who undergone radical resection for 

thymic epithelial tumor at KCH between 

January 2011–October 2022 (n=48)

1.	 Contrast-enhanced CT not taken within 90 days 

prior to surgery (n=122)

2.	 Contrast-enhanced CT obtained other than 60 

seconds after contrast injection (n=22)

3.	 Preoperative chemotherapy were conducted (n=4)

1.	 Contrast-enhanced CT not taken within 90 days 

prior to surgery (n=34)

2.	 Contrast-enhanced CT obtained other than 60 

seconds after contrast injection (n=6)

3.	 Preoperative chemotherapy were conducted (n=0)

1.	 Contrast-enhanced CT not taken within 90 days 

prior to surgery (n=10)

2.	 Contrast-enhanced CT obtained other than 60 

seconds after contrast injection (n=0)

3.	 Preoperative chemotherapy were conducted (n=0)

Training cohort (n=140)

External validation cohort 1 (n=34)

External validation cohort 2 (n=38)

A

B

C

Figure 1 The flow chart of patient selection. (A) For the training cohort, a total of 288 patients underwent thymectomy in CUH, and 140 
met the criteria. (B,C) For the validation cohort, a total of 122 patients underwent thymectomy in CCC and KCH, and 72 met the criteria. 
CUH, Chiba University Hospital; CT, computed tomography; CCC, Chiba Cancer Center; KCH, Kimitsu Chuo Hospital.

and the Mann-Whitney U test appropriately. All analyses 
were two-tailed, and P<0.05 was considered significantly 
different. Statistical analyses and the DCA were performed 
using the R software program (version 3.6.3, http://www.
R-project.org). Machine learning was performed and 
evaluated using Python (version 3.7) and the scikit-learn 
package (version 1.0.2).

Results

Patient characteristics

One hundred and forty patients were ultimately included in 
the training cohort and 72 patients in the validation cohort, 
and the numbers of TCRs were 55 and 28, respectively. 

Patient characteristics are shown in Table 1. Gender 

http://www.R-project.org
http://www.R-project.org
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tended to be male in the training cohort (P=0.02). Tumor 
size was significantly different in the training cohort 
(P=0.02) and validation cohort (P=0.006), with a trend 
toward larger tumors in the TCR group. Regarding tumor 
characteristics, there was a significant difference in edge 
irregularity (P<0.001, P<0.001), tumor heterogeneity 
(P=0.003, P=0.01), respectively. Tumor calcification was 
significantly different in the training cohort, with a trend 
toward more calcification in the TCR group (P=0.007). The 
most common approach was sternotomy in both cohorts. 
Blood loss was higher in the TCR group in both cohorts 
(P<0.001, P<0.001), and the operative time was longer in 
the TCR group as well (P<0.001, P<0.001). The number 
of years of experience of the surgeons tended to be longer 
in the TCR group in the training cohort (P=0.02) than in 
control group. The clinical T-factor was higher in the TCR 
group in both cohorts (P<0.001 and P<0.001, respectively) 
than control group. Of the TCRs, 32 were cT1, of which 
9 (28.1%) were pT1. Conversely, 51 patients had cT2 or 
higher, of which 40 (78.4%) had pT2 and T3. There was 
no difference in the prevalence of myasthenia gravis in both 
cohorts. Postoperative complications were more common 
in the TCR group in the training cohort (P<0.01) than 
control group, and there were no complications of grade 
3 or higher at Clavien-Dindo in the control group in the 
validation cohort. There was no difference in the follow-
up period between the two cohorts. Histologic types were 
more common with high-grade in the TCR group in both 
cohorts (P<0.001, P=0.005, respectively). In the training 

cohort, the lung was the most frequently resected structure 
(44 cases, 80.0%) and the pericardium was resected in 33 
cases (60.0%); in the validation cohort, 21 cases (75.0%) 
and 14 cases (50.0%), respectively, were resected.

Machine learning construction and prediction

The results for the training cohort are shown in Table 2. 
The best performing combination was the method with 
GB feature selection and XGB model construction, with 
an area under the curve (AUC) of 0.797 [95% confidence 
interval (CI): 0.721–0.873]. The method using GB for 
feature selection had a slightly higher AUC than that using 
Boruta for feature selection, so GB-XGB was used for 
further analyses. RF and GB with Boruta had AUCs of 0.794 
(95% CI: 0.720–0.868) and 0.785 (95% CI: 0.707–0.862), 
respectively, followed by LR and KNN with GB for feature 
selection with AUCs of 0.768 (95% CI: 0.688–0.849) and 
0.776 (95% CI: 0.698–0.854), respectively. SVM and NB 
had AUCs of 0.748 (95% CI: 0.665–0.832) and 0.705 
(95% CI: 0.613–0.797), respectively, when RFE was used 
for feature selection. The receiver operating characteristic 
(ROC) curves for the best-performing feature selection and 
machine learning models are shown in Figure 2A. SVM, 
RF, and XGB performed well in the validation cohort with 
AUCs of 0.829, 0.822, and 0.817, respectively (Figure 2B). 
Individual hospital results in the validation cohort are 
shown in Figure S2.

The number of machine learning models that predicted 

Table 1 Patients’ characteristics

Characteristics

Training cohort (n=140) Validation cohort (n=72)

TCR (n=55)
Control group 

(n=85)
P value TCR (n=28)

Control group  
(n=44)

P value

Age (years) 58.6±15.3 58.0±14.5 0.44 63.2±10.8 58.7±13.8 0.14

Gender, male/female 35/20 37/48 0.02 17/11 24/20 0.63

CT findings

Tumor size (mm) 58.0 [44.4–71.2] 46.8 [35.2–60.9] 0.02 60.1 [42.9.5–75.1] 45.5 [36.0–52.4] 0.006

Edge irregular/regular 30/25 24/61 <0.001 16/12 7/37 <0.001

Heterogeneity 35/20 32/53 0.003 15/13 10/34 0.01

Calcification 16/39 9/76 0.007 8/20 6/38 0.14

Table 1 (continued)

https://cdn.amegroups.cn/static/public/JTD-23-1840-Supplementary.pdf
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Table 1 (continued)

Characteristics

Training cohort (n=140) Validation cohort (n=72)

TCR (n=55)
Control group 

(n=85)
P value TCR (n=28)

Control group  
(n=44)

P value

Surgical procedure 0.22 0.41

Thymectomy 37 48 23 32

Extended thymectomy 18 37 5 12

Surgical approach 0.002 –

Sternum 42 43 24 22

Thoracotomy 6 7 3 7

VATS 6 32 1 14

RATS 1 3 0 1

Bleeding (mL) 200 [85–370] 70 [5–140] <0.001 294 [194–450] 80 [15–149] <0.001

Surgery time (min) 208 [169–255] 151 [123–200] <0.001 256 [207–297] 158 [131–221] <0.001

Years of surgeon (years) 15 [12–18] 13 [10–15] 0.02 12 [9–15] 10 [6–16] 0.29

Clinical classification

cT1/2/3/4 21/3/31/0 71/3/11/0 <0.001 11/10/7/0 38/4/2/0 <0.001

cN0/1/2 55/0/0 85/0/0 – 28/0/0 44/0/0 –

cM0/1 54/1 85/0 – 26/2 44/0 –

MG +/− 14/41 21/64 >0.99 2/26 4/40 >0.99

Clavien-Dindo ≥3 13 7 0.01 4 0 –

Follow-up period (days) 2,181 [955–3,066] 1,842 [1,141–3,269] 0.91 1,879 [1,376–2,612] 2,307 [1,296–3,417] 0.44

Tumor histology <0.001 0.005

A/AB/B1 2/7/7 1/36/13 5/3/2 3/18/9

B2/B3/carcinoma 13/12/14 26/5/4 3/4/11 6/2/6

Pathological classification

pT1/2/3/4 8/13/34/0 85/0/0/0 – 12/3/13/0 44/0/0/0 –

pN0/1/2 52/2/1 85/0/0 – 25/2/1 44/0/0 –

pM0/1 51/4 85/0 – 22/6 44/0 –

Residual tumor 10 2 0.002 7 4 0.10

Combined resection – –

Lung 44 (80.0) 0 21 (75.0) 0

Pericardium 33 (60.0) 0 14 (50.0) 0

SVC or BV 11 (20.0) 0 9 (32.1) 0

Phrenic nerve 13 (23.6) 0 7 (25.0) 0

Data are presented as mean ± SD, number, median [IQR], or n (%). TCR, tumors requiring combined resection of adjacent structure; CT, 
computed tomography; VATS, video-assisted thoracic surgery; RATS, robot-assisted thoracic surgery; MG, myasthenia gravis; SVC, 
superior vena cava; BV, brachiocephalic vein; IQR, interquartile range; SD, standard deviation. 
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Table 2 The results of machine learning

Model
Feature selector

LASSO RFE RF GB Boruta

LR 0.710 (0.622–0.799) 0.757 (0.673–0.840) 0.729 (0.642–0.816) 0.768 (0.688–0.849) 0.759 (0.677–0.840)

SVM 0.670 (0.579–0.761) 0.748 (0.665–0.832) 0.702 (0.614–0.789) 0.729 (0.646–0.811)) 0.693 (0.604–0.783)

KNN 0.704 (0.615–0.792) 0.733 (0.648–0.818) 0.724 (0.638–0.811) 0.776 (0.698–0.854) 0.715 (0.629–0.801)

NB 0.666 (0.573–0.758) 0.705 (0.613–0.797) 0.696 (0.604–0.788) 0.666 (0.574–0.758) 0.668 (0.573–0.763)

RF 0.778 (0.699–0.856) 0.772 (0.694–0.850) 0.785 (0.710–0.861) 0.780 (0.701–0.859) 0.794 (0.720–0.868)

GB 0.732 (0.641–0.822) 0.733 (0.648–0.817) 0.747 (0.664–0.830) 0.772 (0.689–0.855) 0.785 (0.707–0.862)

XGB 0.771 (0.691–0.852) 0.751 (0.669–0.834) 0.778 (0.700–0.856) 0.797 (0.721–0.873) 0.797 (0.723–0.871)

Data are presented as AUC (95% CI). LASSO, least absolute shrinkage and selection operator; RFE, recursive feature elimination; RF, 
random forest; GB, gradient boosting; LR, logistic regression; SVM, support vector machine; KNN, k-nearest neighbor; NB, Naïve Bayes; 
XGB, eXtreme Gradient Boosting; AUC, area under the curve; CI, confidence interval.

Figure 2 The prediction results for TCR. (A) ROC curves show the results of each machine learning model with the best performing 
feature selection. (B) The results of predicting TCR in the validation cohort. (C) Combining the training and validation cohorts and 
showing how many models predicted as TCR when the cut-off of the machine learning model was set to 0.5. (D) Results of a DCA based 
on the predicted probability of TCR for all patients. LR, logistic regression; SVM, support vector machine; KNN, k-nearest neighbor; NB, 
Naïve Bayes; RF, random forest; GB, gradient boosting; XGB, eXtreme Gradient Boosting; TCR, tumors requiring combined resection of 
adjacent structure; ROC, receiver operating characteristic; DCA, decision curve analysis.
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as TCRs in all cases and the actual number of TCRs are 
shown in Figure 2C. With a cut-off of 0.5, the percentage of 
correct responses was higher when all were predicted to be 
negative or positive than the others. The overall accuracy 
was 75.0% but was 84.2% for all model-matched cases. The 
predictive probability of the model was analyzed by a DCA 
with GB-XGB and showed the usefulness of the model in 
the threshold range of 15–72% (Figure 2D). Representative 
cases were shown in Figure 3.

Prediction of the surgical invasiveness of lung and 
pericardium

A new model was built using a combination of GB-XGB 
classifier, to predict the need for combined pulmonary and 
pericardial resection, respectively. The performance of the 
respective constructed models was AUC 0.736 (95% CI: 
0.639–0.833) for lung resection and AUC 0.674 (95% CI: 

0.556–0.793) for pericardial resection. The same model 
was fitted to the validation cohort and predicted AUCs of 
0.806 for lung resection and 0.924 for pericardial resection 
(Figure 4A,4B). The DCA analysis of the combined training 
and validation cohort patients demonstrated the usefulness 
of the model, with a threshold range of 14–61% for the 
lung and 10–48% for the pericardium (Figure 4C,4D).

Discussion

In the present study, TETs were segmented from 
preoperative contrast-enhanced CT images, and radiomic 
features were extracted. Based on the extracted features, 
TCRs were predicted by combining multiple feature 
selection methods and machine learning models.

For predicting TCRs, the model using GB as the feature 
selection and XGB as the classifier performed best with 
an AUC of 0.797 (95% CI: 0.721–0.873) for the training 
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Figure 3 Representative cases. (A) Case 1 is an 84-year-old woman. The tumor was 7.5 cm in diameter with a smooth surface and uniform 
interior. Thymectomy was performed through a median sternotomy approach, but no adhesion or invasion was observed. The predicted 
probability of TCR was 6.2% for XGB. (B) Case 2 is a 72-year-old man. The tumor was 7.0 cm with irregular margins and internal 
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vein, and pulmonary artery. Therefore, additional left fourth intercostal thoracotomy was performed. The brachiocephalic vein and 
transverse nerves had to be reconstructed. The predicted probability of TCR was 98.2% by XGB. LR, logistic regression; SVM, support 
vector machine; KNN, k-nearest neighbor; NB, Naïve Bayes; RF, random forest; GB, gradient boosting; XGB, eXtreme Gradient Boosting; 
TCR, tumors requiring combined resection of adjacent structure.
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Figure 4 The prediction results for combined resection of lung and pericardium. (A) ROC curves show the results of the GB feature selector 
and XGB classifier for lung and pericardium. (B) The results of prediction in the validation cohort. (C) Results of a DCA based on the 
predicted probability of lung. (D) Results of a DCA based on the predicted probability of pericardium. XGB, eXtreme Gradient Boosting; 
ROC, receiver operating characteristic; GB, gradient boosting; DCA, decision curve analysis.

cohort and an AUC of 0.817 for the validation cohort. It is 
generally acknowledged that gradient boost performs well 
on tabular data, and in this study, GB and XGB performed 
well, regardless of the feature selection method used. In 
contrast, LR, KNN, SVM, and NB performed inadequately 
on the average. For the task of predicting TCRs in TETs, 
RF, GB, and XGB are considered as preferrable. Several 
studies have constructed multiple machine learning 
models based on radiomics to make predictions. Shang  
et al. predicted histology in TETs with five feature selection 
methods and seven classifiers, with the model using SVM-
GB achieving an AUC of 0.876 (15). For a similar purpose, 
Dong et al. compared five classifiers with LASSO and 
obtained the highest AUC of 0.819 for LR (16). Since 
different machine learning models are suitable for different 
tasks, it is considered important to build multiple models.

Thymectomy through median s ternotomy has 

traditionally been the gold-standard approach, but in 
recent years, MIS have been devised. The International 
Thymic Malignancy Interest Group states that MIS should 
be converted to thoracotomy if oncologic principles, 
such as capsule destruction, incomplete resection, risk of 
discontinuous resection, are not followed (28). For TETs, 
the CT findings such as the tumor diameter and edge 
irregularity, are used to determine the surgical procedure. 
Conventional methods of determining procedure are 
reasonably reliable, as MIS have achieved low conversion 
rates. Burt et al. reported that of 943 patients undergoing 
surgery for stage I or II thymoma, 295 (31.3%) were 
resected with MIS, of which only 2.6% were converted to 
open thoracic surgery (29). Conversely, 68.7% of patients 
underwent thoracotomy, which may include some cases 
where a MIS could have been selected. Thus, although 
conventional image evaluations have been shown to be 
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statistically useful to some extent (11,12), to our knowledge, 
no machine learning model has been constructed that 
directly predicts the surgical T factor. 

The efficacy of the model in identifying tumor 
invasiveness in relation to surgery has been demonstrated 
in multiple organs. A SVM classifier using LASSO feature 
selection to predict local invasiveness of craniopharyngioma 
was reported to have an AUC of 0.79 (30). Zheng et al. 
also constructed a nomogram with LASSO to discriminate 
muscular invasiveness of bladder cancer from non-invasive 
cancer achieving an AUC of 0.876 (31). Given these present 
and previous findings, the analysis of radiomic features 
appears highly effective in predicting its relationship 
with adjacent structures. By combining machine learning 
models that predict the malignancy of TETs that have been 
accumulated to date and using machine learning models, 
it may be possible to construct a prediction model that is 
more valuable for actual clinical settings.

The present study also included a DCA, which showed 
that the model was valid over a wide threshold range for 
diagnosing TCR, but the threshold range of validity was 
narrower for predicting lung and pericardium alone. This 
may be due to the low value of the AUC in the training 
cohort, resulting in insufficient predictive accuracy. The 
reason for the reduced prediction accuracy may be that 
only the tumor was segmented and predicted, and the 
relationship with the adjacent structures was not quantified. 
Even for similar tumors, the likelihood of invasion may vary 
depending on the area in contact with adjacent structures.

Several limitations associated with the present study 
warrant mention. First, the conditions under which contrast 
CT was performed were not strictly defined to collect as 
many cases as possible. Our model was constructed and 
evaluated based on contrast-enhanced CT images acquired 
with a variety of models, so differences in individual models 
and imaging conditions may have introduced bias. Second, 
tumors were segmented using semi-automatic methods. To 
ensure reproducibility, it is desirable to eliminate manual 
operations as much as possible and perform automatic 
segmentation. Third, this study predicted the surgical 
invasiveness of tumors with surgery in mind. The ability 
to dissect adhesions depends largely on the skill of the 
surgeon, which is a surgeon-dependent factor. In the 
training cohort, more skilled surgeons operated on TCR 
cases. The influence of the surgeon was not included in the 
analysis and may be a bias.

Conclusions

In conclusion, the radiomics machine learning model based 
on preoperatively obtained contrast CT images of TETs 
was able to predict TCRs and control cases with high 
accuracy. The model using XGB as the classifier with GB 
feature selection showed the best performance with an AUC 
of 0.797 in the training cohort and an AUC of 0.817 in the 
validation cohort. Machine learning models using contrast-
enhanced CT scans can provide accurate information for 
predicting combined resection of adjacent structures in 
surgery and may be useful for determining the surgical 
procedure and approach.
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