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The connection between cytoplasmic protein aggregates and 
degenerative neuromuscular diseases has long fueled assump-
tions that these aggregates are inherently toxic and are primary 
drivers of pathogenesis. In disease, pathological aggregates 
accumulate and persist in affected cells. However, we discov-
ered that amyloid like, cytoplasmic, ribonucleoprotein (RNP) 
assemblies form and are cleared during differentiation and 
regeneration of healthy skeletal muscle cells. This unexpected 
finding suggests that protein assemblies typically associated 
with disease are not toxic, but, in fact, may be beneficial and 
may perform a critical, non-pathological role during skeletal 
muscle cell maturation.

The RNA-binding protein TDP-43 is essential for skel-
etal muscle regeneration as deletion of a single allele of the 
Tardbp gene impairs muscle regeneration.1 In mature muscle, 
as in most cell types, TDP-43 is primarily nuclear and con-
tributes to transcriptional regulation, splicing, and RNA sta-
bility.2 However, following muscle injury, cytosolic TDP-43 
transiently increases forming higher order, amyloid-like 
assemblies called myo-granules. With sizes ranging from 50 
to 250 nm, myo-granules are large and enriched for RNA-
binding proteins and mRNAs encoding sarcomeric struc-
tural proteins.1 Unlike pathological aggregates, which persist 
in cells, myo-granules are cleared from differentiating mus-
cle cells within 10 days following muscle injury,1 demon-
strating that myofibers effectively clear these amyloid-like 
oligomeric assemblies.

Exciting possibilities arise from the discovery that myo- 
granules form and are cleared in healthy muscle. The existence 

of myo-granules, a previously unknown feature in skeletal mus-
cle formation, disputes the assumption that amyloid-like oli-
gomers are inherently pathological, and thus, myo-granules 
critically connect physiology and pathophysiology. Clarifying myo- 
granule biology will increase our understanding of skeletal  
muscle regeneration, neuromuscular diseases, and neuronal degen-
erative diseases with large cytoplasmic protein aggregates.

Myo-granules may help orchestrate sarcomere formation 
and organization during muscle formation. Sarcomeric pro-
teins, which make up more than 60% of myofiber protein 
content,3 must be produced and organized to establish func-
tional sarcomeres, the contractile unit of skeletal and cardiac 
muscle. Aberrations in sarcomere composition or organiza-
tion impair muscle function.4 Transcripts encoding sarcom-
eric proteins are extremely long. While the average human 
mRNA is 3.3 kilobases (kb) long,5 myosin heavy chain tran-
scripts are twice that6 and other sarcomeric transcripts are far 
larger: nebulin transcripts are approximately 25 kb,7 and the 
massive titin mRNA is more than 100 kb.8 Localized transla-
tion used by neurons and myofibers9,10 may permit translation 
of sarcomeric proteins at growing sarcomeres. The logistical 
challenge of packaging and transporting these large mRNAs 
to the appropriate subcellular locations may be solved by 
myo-granules (Figure 1). Myo-granules contain mRNA-
binding proteins, proteins that repress translation, and many 
of the large mRNAs encoding sarcomeric proteins.1 Moreover, 
myo-granules surround sites of newly forming sarcomeres 
during muscle regeneration, and thus, myo-granules may 
transport and repress sarcomeric mRNA translation serving a 
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similar role as neuronal messenger ribonucleoprotein (mRNP) 
transport granules.11

Muscle biopsies from patients with inclusion body myositis 
(IBM),12 oculopharyngeal muscular dystrophy (OPMD),13 
amyotrophic lateral sclerosis (ALS),14 and multisystem pro-
teinopathy15 contain large TDP-43-containing cytoplasmic 
protein aggregates. A comparison of myo-granule composition 
in normal muscle formation with aggregates in diseases will 
determine whether normal myo-granules are related to dis-
ease-associated aggregates. Because isolated myo-granules 
share structural characteristics with disease-associated amyloid 
oligomers and spontaneously assemble into large amyloids,1 
myo-granules may seed aggregates found in diseases through a 
combination of increased myo-graule generation and decreased 
myo-granule clrearance (Figure 2).

One potential mechanism to account for aggregate accu-
mulation in myopathies is that they accumulate as a conse-
quence of the iterative rounds of degeneration and regeneration 
occurring to repair muscle in degenerative muscle diseases. 
The asynchronous regeneration occurring in diseased muscle 
interferes with the immune response, resulting in a proinflam-
matory positive feedback loop that amplifies disease-associ-
ated fibrosis.16 Because myo-granules form in regenerating 
myofibers, ongoing regeneration could perturb myo-granule 

clearance, increasing myo-granules concentration, which pro-
motes nucleation into larger, pathological aggregates.

Cytoplasmic protein aggregates are observed in many dis-
eased organs including skeletal muscle, kidney, brain, heart, and 
the eye. In some cases, similar genetic mutations manifest in 
different organs in different patients,17 indicating that com-
mon mechanisms may be responsible for disease progression in 
different organs. Cytoplasmic TDP-43 aggregates are not 
exclusive to muscle formation, neurodegenerative diseases, or 
progressive neuromuscular diseases.12,18-20 TDP-43 transiently 
relocalizes to the cytoplasm of neurons following traumatic 
brain injury,21 hinting that amyloid-like oligomers may have a 
similar roles in neuronal and skeletal muscle recovery. Although 
we do not know the extent to which myo-granules and neu-
ronal aggregates are analogous, similar mechanisms may gov-
ern their formation and clearance. Understanding how 
clearance pathways operate in skeletal muscle may lead to 
therapies aimed at preventing or clearing pathological aggre-
gates in muscle and other tissues.

The discovery of myo-granules as a previously unrecog-
nized feature of skeletal muscle formation provides new 
knowledge to develop tools for deepening our understanding 
of skeletal muscle formation and challenges the accepted view 
that amyloid assemblies are inherently pathological. Examining 

Figure 1.  TDP-43 and myo-granule functions in myofibers. In skeletal muscle, TDP-43 regulates transcription, participates in RNA splicing, and promotes 

mRNA stability. In addition, we suggest that, as a myo-granule component, TDP-43 is involved in mRNA transport to locations of sarcomere formation.

Figure 2.  Myo-granules in healthy muscle and pathological amyloid formation: (1) in healthy muscle, myo-granules form following injury and are cleared 

as the myofiber matures. Large amyloid aggregates form in pathology and could result from (2) increased myo-granules production, (3) decreased 

myo-granule clearance, (4) increased production and decreased clearance as the result of iterative injury, and (5) the pathological amyloids may be 

unrelated to myo-granules and myo-granules may form and be cleared normally in pathology.



Cutler et al	 3

myo-granule formation, composition, and clearance will clar-
ify whether myo-granules directly contribute to large aggre-
gate accumulation in neuromuscular diseases. Finally, 
elucidating the processes regulating myo-granules and amy-
loid aggregates in muscle may enhance our understanding of 
neuronal aggregates and provide translational applications for 
neuromuscular diseases.
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