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Immune Repertoire Diversity 
Correlated with Mortality in Avian 
Influenza A (H7N9) Virus Infected 
Patients
Dongni Hou1,*, Tianlei Ying2,*, Lili Wang2,*, Cuicui Chen1,*, Shuihua Lu3,*, Qin Wang1,*, 
Eric Seeley4,†, Jianqing Xu3,†, Xiuhong Xi3, Tao Li3, Jie Liu1, Xinjun Tang1, Zhiyong Zhang3, 
Jian Zhou1, Chunxue Bai1, Chunlin Wang5, Miranda Byrne-Steele5, Jieming Qu6, Jian Han5 & 
Yuanlin Song1,3,7

Specific changes in immune repertoires at genetic level responding to the lethal H7N9 virus are still 
poorly understood. We performed deep sequencing on the T and B cells from patients recently infected 
with H7N9 to explore the correlation between clinical outcomes and immune repertoire alterations. 
T and B cell repertoires display highly dynamic yet distinct clonotype alterations. During infection, 
T cell beta chain repertoire continues to contract while the diversity of immunoglobulin heavy chain 
repertoire recovers. Patient recovery is correlated to the diversity of T cell and B cell repertoires in 
different ways – higher B cell diversity and lower T cell diversity are found in survivors. The sequences 
clonally related to known antibodies with binding affinity to H7 hemagglutinin could be identified 
from survivors. These findings suggest that utilizing deep sequencing may improve prognostication 
during influenza infection and could help in development of antibody discovery methodologies for the 
treatment of virus infection.

Influenza A (H7N9) is an emerging virus of avian origin that has caused three waves of infections since February 
2013. As of February 2015, a total of 571 laboratory-confirmed cases have been reported to WHO, including 212 
deaths1. New cases were notified in 2016 from China. H7N9 infection induced lethal complications like severe 
pneumonia and acute respiratory distress syndrome, and currently no specific treatment is available for this 
highly contagious viral infection2–4.

Effective humoral and cellular immune responses in influenza infection are critical for patient recovery from 
H7N9 infection5–8. Quantitative and qualitative analysis of antiviral immunity may aid in understanding the state 
of immune system and guide the therapeutics. Immune repertoire analysis based on next-generation sequencing 
(NGS) is a novel approach to analyze alterations during the antiviral immune response9–11. Many studies have 
reported the overwhelmingly diverse and dynamic property of immune repertoire changes in response to the 
antigen stimuli such as vaccination or allergy12–14. However, the changes of immune repertoire in clinical infec-
tions caused by lethal pathogens and their influence on patient recovery remain unknown.

In this study we explored alterations in the human immune repertoires after H7N9 infection. Specifically, 
we compared the dynamic behavior of T cell and B cell repertoires and analyzed signatures of these highly con-
vergent immune repertoires. Also we identified antibody sequences from these NGS data. These results provide 
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direct insights into the immune response, especially distinct features of T cell and B cell repertoire behaviors, 
after human influenza A (H7N9) infection and suggest potential implications in antibody development and 
prognostication.

Results
Next-generation sequencing results. Our study utilized peripheral blood samples collected at multiple 
time points from patients infected with H7N9 virus in 2013. Among these patients, 10 of 15 (66.7%) recovered from 
infection. From a total of 35 samples, deep sequencing based on Illimina MiSeq platform produced 150 base pairs 
surrounding the CDR3 of each T cell receptor β  chain (TRB), and 250 base pairs covering CDR1 ~ 3 and begin-
ning of C region of each Ig chain. Sequencing depth was comparable among samples (Supplementary Table S3).  
Because of the limited quantity of extracted RNA from blood samples, no reads of IGL or IGK were obtained from 
a non-survivor (patient J) and a survivor (patient C). These two samples were excluded from all analysis.

Ig heavy chain repertoire showed highly dynamic changes over time in a survived individual.  
An important feature of the immune response to foreign pathogens is clonal expansion of specific T and B cells 
and their subsequent contraction. To track the longitudinal immune repertoire dynamics in response to H7N9, 
we tried to collect sequential samples from these patients. For one of these patients, a total of four samples at 
different time points (11, 18, 25, and 42 days, respectively) were collected, while three or less were collected from 
others. During the disease progression, IGH repertoire of patient H showed typical alterations that are also found 
in other patients. The IGH sequences exceptionally high variation between time points (Fig. 1a), which shared 
sequences consisted only 0.6 ~ 20% of the whole repertoire. In addition, the dominant clones of IGH repertoires 
changes overtime (Fig. 1b), indicating that the consistent part of the IGH repertoire was very limited. In contrast, 
the TRB repertoires presented a more stable pattern, with dominant clones conserved and constant part during 
the infection made up 23 ~ 61% of the whole repertoires (Fig. 1c,d). These results reveal the overwhelming varia-
tion as a property of IGH repertoire after H7N9 virus infection that differs from TRB repertoire.

Diversity of Ig heavy chain repertoire increases and is positively related to patient prognosis.  
Variation in immune response efficiency results in different infection severity and outcome. A proper diversity 

Figure 1. Dynamic change of IGH and TRB repertoires in an influenza A (H7N9) virus infected patient. 
(a,c) shows the overlap of IGH and TRB CDR3 sequences at different time points—11, 18, 25 and 42 days after 
symptom onset in patient H (survivor). (b,d) shows the dynamic changes of fractions of dominant IGH and 
TRB clones. Each CDR3 used a unique color. Width of each CDR3 clones stands for the fraction of this clone at 
each time point. CDR3 clones ranked top 5 in IGH repertories or top 20 in TRB were selected as representative 
dominant clones.
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of the immune repertoire is crucial in order to mount an efficient adaptive immune response15. The overall D50 
value of TRB and IGH in patients ranges from 0 ~ 5, indicating the repertoires are highly skewed (Fig. 2). For IGH 
repertoire, interestingly, the D50 values after 15 days were higher than the previous sample in all but one individ-
ual (Fig. 2a), suggesting an increasing tendency in IGH diversity. This is also the time point of neutralizing anti-
body (Nab) titers increasing in serologic measurements16 (Supplementary Figure S2). In contrast, the diversity 
of TRB repertoires did not increase over time. To simplify data analysis, we used the last sample of each patient, 
and the disease phase of these samples were comparable between groups (15–40 days in non-survival group and 
15–46 days in survival group after onset). Importantly, D50 values of IGH repertoires were significantly lower 
in non-survivors than in survivors (P =  0.02, Student’s t test) (Fig. 2b), as were the Nab titers (Mann-Whitney U 
test, P =  0.04). On the contrary, survivors had lower D50 values of TRB repertoire than non-survivors (P =  0.02, 
Student’s t test) (Fig. 2b). As for IGL and IGK, the D50 values were comparable between the two groups (data not 
shown). For a more intuitive comparison of V-J rearrangement diversity of these repertoires, we performed 3D 
mapping of V-J pairing of two patients with different outcomes as examples (Fig. 3, Supplementary Figure S3).  
It is evident that the IGH repertoire of the non-survivor was significantly more convergent to several par-
ticular IGHV-IGHJ gene pairs than the survivor. On the contrary, the diversity of TRBV-TRBJ gene pairs in 
non-survivors was higher than that in the survivors. V-J pairs in IGK repertoire also skewed in the non-survivor 
(Supplementary Figure S3). These results, along with the finding that the IGH repertoire changed constantly over 
time in a single individual, indicate that as compared to other repertoires, the IGH repertoire diversity might be 
more associated with the patients’ recovery and the lower TCR diversity is related to the better outcome.

Recombination patterns of V and J gene segments showed conserved patterns among patients.  
To further investigate H7N9-specific alterations of immune repertoire during infection, we questioned if there 
was distinct V or J gene or V-J pairing bias in survivors. For IGH repertoires, most of the IGHV and IGHJ genes 
and pairs were comparable across different patients (Fig. 4a, Supplementary Figure S4a). There were some IGHV 
and IGHJ genes of low frequency identified more in non-survivors than in survivors (Fig. 4b). These signa-
tures are similar with previously reported antibody repertoires after vaccination17. In IGH repertoires, the V and 

Figure 2. D50 values of IGH and TRB repertoires in H7N9 infected patients. (a) shows the logged relative 
ratios of IGH (green) and TRB (red) D50 values of samples collected from each patient. The D50 values > 15 
days were divided by D50 value < 15 days and the logged result were drown as vertical axis values. Every pair of 
green and red bars represented an individual. (b) is the boxplot of the D50 value of IGH and TRB repertoires in 
15–42 days after onset by group.
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J gene usage distribution pattern was similar in each unique CDR3 and all CDR3 clones (r =  9.59, p <  0.001) 
(Supplementary Figure S4b). This suggests that the biased usage of V and J genes was not only a result of the high 
expression level of some clones but also the expansion of particular cell clones in IGH repertoire. Frequency of 
TRBV and TRBJ genes are also not significant between survivors and non-survivors (Fig. 4c,d), indicating that 
V-J gene usage is biased in patients but not related to their prognosis.

Immune repertoires showed less CDR3 overlap in Ig repertoire across different individuals.  
Trimming and addition during combination effects the length of CDR3s, because the length of CDR3 loop 
influences its shape and ability to fold both on itself and in the company of others loops such as the CDR1 and 
CDR218,19. We found that in some patients, amino acid lengths of unique IGH CDR3s using IGHV1-69 gene 
were skewed to a particular length, resulting in a significant perturbation of overall distribution (Supplementary 
Figure S5).

We compared the sequence identity of IGH CDR3s in response to H7N9 across different individuals. Overlap 
between different patients was very limited, even in intergroup pairs (data not shown). In addition, we failed in 

Figure 3. Comparison of overall diversity of V-J gene pairing in IGH and TRB repertoires between. 
(A,B) were representative IGH repertoires from a non-survivor and a survivor, respectively. (C,D) were TRB 
repertoires from the same patient as A and B at the same time point. Diversity of IGH repertoires was higher in 
survivor, while that of TRB repertoires was lower in survivor (Supplementary Figure S3).



www.nature.com/scientificreports/

5Scientific RepoRts | 6:33843 | DOI: 10.1038/srep33843

identifying any IGH sequences differently expressed in two groups. However, we found some TRB, IGL and IGK 
CDR3 sequences shared among most of the patients. Interestingly, survivors shared many TRB CDR3 sequences 
that found to be absent or expressed at a much lower level in non-survivors (p <  0.05) (Fig. 5). These shared 
sequences in TRB were predominately not dominant clones but of high similarity, which indicates that these 
sequences may have similar function and are related to recovery from infection. For IGK and IGL, patients with 
different prognosis expressed comparably high level of same or similar CDR3 sequences, including dominant 
clones (Supplementary Figure S6).

Identifying broadly-neutralizing and antigen-specific antibody sequences from Ig repertoires.  
Although our results suggest that the diversity of IGH repertoire was associated with prognosis in H7N9 patients, 
it remains a significant challenge to understand the immunological basis of this observation. It has been reported 
that the human antibody repertoire becomes highly skewed in response to influenza vaccination with some  
B cell clones expanding in the setting of decreased diversity20, which may suggest that the immune system was 
primed to produce specific influenza-specific antibodies. However, we found that the diversity of IGH repertoire pre-
sented a rising trend during H7N9 infection, accompanied by the increase of Nab titer (Supplementary Figure S2).  
In addition to this, the survivors present the higher diversity and Nab titers compared to non-survivors, sug-
gesting that the extensive B cell clonal expansion is not necessarily correlated with improved outcomes, and that 
human immune system follows a different pattern in response to natural infection as compared to vaccination.

To examine whether the highly diverse IGH repertoires in some H7N9 patients correlate with the presence of 
neutralizing antibodies, we firstly compared our deep sequencing data to the reported influenza bnAbs sequences. 
Surprisingly, we found a panel of clones that have almost identical IGH CDR3 with a previously reported 
pan-influenza A neutralizing antibody, FI39021. As shown in Fig. 6a, one of these clones, N2_3050, shared ~92% 
identity with FI390, with a difference of only seven residues in all three CDR regions. This convergence is remark-
able considering that IGH repertoires are very diverse among different people, and not a single shared IGH 
CDR3 sequence can be found in the H7N9 patients investigated here. All these clones were from the samples of 
two survivors, collected during the convalescent phase (P2, N2). These results suggest that bnAbs may have been 
elicited in some patients.

We next sought to identify H7N9-specifc lineage members from IGH repertoires. We recently identified a 
human neutralizing antibody (Supplementary Table S5) from a non-immune human antibody library, which 
specifically neutralizes H7N9 influenza virus. We searched our deep sequencing database on the basis of in the 
last blood sample from all patients for sequences that could be clonally related to this antibody as they share the 

Figure 4. V and J gene usage in H7N9 infected patients by outcome. (a) shows frequency of IGHV gene 
usage in patients from non-survival group (red) and survival group (green). IGHV3-23 (9.73%), IGHV4-59  
(8.76%) and IGHV3-30 (8.33%) were the three most frequent IGHV genes. (b) shows IGHJ gene usage 
frequency among patients. Expressing of IGHJ4 composed 44 ~ 64% of the repertoires. (c,d) show frequencies 
of TRBV and TRBJ genes usage. TRBV28 (14.28%), TRBV27 (12.69%) and TRBV20-1 (10.77%) accompanied 
by TRBJ1-1 (18.23%), TRBJ2-1 (16.31%) and TRBJ 2-3 (15.67%), were the three most frequent TRBV and TRBJ 
genes. Data are represented as mean ±  SEM (See also Supplementary Figure S2).
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same IGHV1-69 and IGHJ1 germline families with a 14 amino acid long HCDR3. Interestingly, a number of 
clonally related sequences have been successfully identified in 8 of 10 H7N9 survivors, but have not been found 
in any of the non-surviving patients. Similarly to bnAb-related clones identified in patients P and N (survival 
group, 0.002–0.008% of the B-cell repertoires), these possible H7N9-specific lineage members represent a minor 
population (0.0001–0.01%) within the B-cell repertoire of each patient.

To further validate the functions of identified sequences in vitro, we synthesized some clonally related 
sequences, expressed the antibodies in scFv format, and measured their binding affinities to H7N9 HA (Table 1). 
5 VHs that have similar sequences to our previous identified H7N9 antibody, 3 VHs that have similar sequences 
to another recently reported H7N9 human antibody22, as well as the VH of clone N2_3050 that shares 92% iden-
tity with the previously reported influenza A neutralizing antibody FI390, were fused with an identical VL to 
produce the scFv antibodies. We found that 5 of these 9 constructs could be solubly expressed in E. Coli, while the 
other 4 scFv only formed inclusion bodies. We next measured their binding to H7N9 HA using a SPR assay. As 
shown in Fig. 6b, we found that although scFvs e3b3 and m2a1 did not bind H7N9 HA, all the other three scFvs, 
N2_3050, o1b1 and l1b1, showed evident binding with different affinities (2.7 ×  10−7, 2.0 ×  10−7 and 5.9 ×  10−8, 
respectively). The relatively low affinity is probably due to the fact that it was impossible to predict the natu-
rally occurring VLs that were paired to VHs in these scFvs. Despite this, these results suggest that functional 
H7N9-specifc lineage members could be predicted from IGH repertoires.

Taken together, these results may suggest that a higher B-cell repertoire diversity in H7N9 infected patients is 
associated with the efficient production of neutralizing antibodies and, in turn, a better clinical outcomes.

Discussion
New research has highlighted alterations in the T cell and B cell repertoires following vaccination and natu-
ral infection with the influenza virus17,23,24. Here we analyzed TRB and Ig repertoires of patients infected with 
influenza H7N9 virus in 2013, reported their diverse signatures, and examined their relationship with outcome. 

Figure 5. Shared TRB CDR3 sequences expressed at different levels between survivors and non-survivors. 
Comparison of the expression level of the shared sequences was performed using Wilcoxon Test, and the 
representative sequences expressed significantly different between survivors and non-survivors were drawn 
(p <  0.05). Each Colum is for one patient and the annotation bar represents the outcome of the patient (green 
for non-survival group, purple for survival group). Color of each rectangle stands for logged reads of the clone 
noted at right sided of the panel (blue as lowest, red as highest).
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Furthermore, we report the development of antibodies specific to H7N9 and suggest that their presence may 
correlate with higher IGH diversity and favorable outcomes.

Figure 6. Identification of broadly neutralizing antibody (bnAb) and H7N9 specific antibody in Ig 
repertoires of H7N9 infected patients. (a) Alignment of previously reported bnAb sequence (FI390) and the 
antibody sequence found in H7N9 patient. FI390 was as a bnAb against influenza virus reported by Pappas 
L. N2_3050 was the IGH sequence found in two recovered H7N9 patients with identical CDR3 amino acid 
sequence as FI390. Alignment was performed using Clustal W2. (b) Binding kinetics of scFvs N2_3050, o1b1 
and l1b1 to H7N9 HA antigen using Surface Plasmon Resonance assays. Different concentrations (10 uM, 
2 uM, 400 nM, 200 nM, 100 nM and 50 nM for N2_3050 and c1b1; 1 uM, 500 nM, 250 nM, 125 nM, 62.5 nM and 
31.5 nM for l1b1, respectively) is used in the test. Calculated KD values are shown in the table presenting binding 
affinity of each scFvs.

Sequence ID V gene D gene J gene CDR3 Expression Function

N2_3050 IGHV1-69*09 IGHD6-19*01 IGHJ4*02 ARASRYSSGWYYFDY Yes Yes†

o1b1 IGHV1-69*01 IGHD1-20*01 IGHJ3*02 ARSNYNPLLAAFDI Yes Yes

l1b1 IGHV1-69*01 IGHD5-18*01 IGHJ5*02 ARGYSYGLREWFDP Yes Yes

e3b1 IGHV1-69*09 IGHD7-27*01 IGHJ4*02 ARDAGSTWGIYFDS No* No

e3b3 IGHV1-69*02 IGHD2-21*02 IGHJ3*01 ARDPAGGDRDAFDV Yes No

c1b1 IGHV1-69*09 IGHD4-17*01 IGHJ5*02 ARGLNYGDVGWFDP No No

m2a1 IGHV4-31*03 IGHD3-3*01 IGHJ6*03 ARDGPYYDFWSGREPDV Yes No

p2a1 IGHV4-31*03 IGHD4-17*01 IGHJ6*02 ARANYGDRHTYYYGMDV No No

p2a3 IGHV4-31*03 IGHD4-17*01 IGHJ6*02 ARGDYGDRYYYYYGMDV No No

Table 1.  Expression and HA7 binding affinity of sequences clonally related to H7N9 antibodies. IGH- 
immunoglobulin heavy chain; TRB – T cell receptor beta chain. *No Expression means scFv only formed 
inclusion bodies. †Antibodies with KD(M) <  10−7 are considered to be functional.
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During acute viral infection, the immune system is activated with clone expansion, resulting in a more olig-
oclonal library25. In this study we used a novel index for describing and compare the diversity between immune 
repertoires—D50. In contrast to the previously reported Shannon index and Simpson index, the D50 value is under-
standable and direct. Meanwhile, relevance between these two indexes is impressive (Supplementary Table S3).  
Diversity of IGH was positively correlated with outcome. Effective somatic hyper-mutation and affinity matu-
ration of B cells may be a possible mechanism for the high diversity and better outcome in survivors. Moreover, 
combined with the serologic studies, the IGH diversity showed increasing trend overtime accompanied with 
the increase of the Nab titer, indicating a more diverse IGH repertoire might be associated with the capacity for 
producing protective antibodies.

How TCR diversity impacts effective immunity remains unclear. Our results suggest that compared to Ig 
repertoire, which benefits patients by maintaining the diverse to generate antibodies with higher affinity, distinct 
correlation of T cell diversity and prognosis attributes to their difference in antiviral mechanisms. Without the 
somatic hyper-mutation process in B cells, T cell diversity depends on baseline diversity of T cell before infec-
tion and level of clonal expansion after antigen simulation. As TCR diversity is thought to be a prerequisite for 
immune system to recognize various foreign antigens, some earlier studies have suggested that the acquisition 
of cytotoxicity is independent of TCR usage and its diversity26,27. However, an early and robust H7N9-specific T 
cell response is critical for quick recovery from infection8. A recent study shows that, impairment of T cell pro-
liferation and survival, not activation or effector function, results in prolonged virus infection in mice because 
of lacking sufficient antiviral T cells28. The relatively low T cell diversity of H7N9-infected survivors implies a 
more intense T cell expansion that contributes to virus elimination. This T cell response may be attenuated in the 
non-survivors. Thus, manipulating the expansion of T cells can be anticipated as a potential therapeutic interven-
tion to benefit these patients29.

Identical TRB sequences between two individuals range from 1–10%30,31. The presence of these public 
sequences is suggestive to selective pressures of thymic selection and environmental exposure30. We noted that 
there are more shared CDR3 sequences were highly expressed in survivors, even though they were challenged 
by the same pathogen as non-survivors. This prognosis associated overlap suggests the effective TRB repertoire 
response is another possible mechanism for generating public CDR3s.

Importantly, our results provide evidence that functional neutralizing antibodies against the H7N9 virus could 
be identified using NGS methods. It has been recently recognized that different people may have convergent 
IGH gene rearrangements in their response to influenza vaccination20. In this study, we found that a number of 
sequences with stereotypical features of neutralizing antibodies can be identified from their B cell repertoires. 
We expect that the further improvement of deep sequencing related techniques, as well as a more comprehensive 
understanding of human antibodies, will enable a novel strategy to identify functional antibodies via immunoge-
netic analysis without the need of extensive in vitro screening procedures.

Notably, we have successfully identified a panel of sequences that could be clonally related to a previously 
reported bnAb. To the best of our knowledge, this is the first time that a bnAb against H7N9 virus has been 
identified in individuals without documented vaccination records. Recently, the discovery of bnAbs has renewed 
the interest in designing vaccines to elicit similar pan-influenza neutralizing antibodies in vivo21,32–34. However, 
the elicitation of these bnAbs has been found to be extremely challenging, because they only naturally arise in a 
small fraction of individuals after years of viral infection, and are highly divergent from their putative germline 
predecessors21. Therefore, a current priority is to understand how these antibodies have been elicited and mature 
in vivo, and translate this information into vaccine design. Interestingly, our results highlights the capability of 
deep sequencing techniques to identify and track the nAbs-related B cell clones in vivo, which will provide a 
foundation for understanding the mechanism of bnAb development and facilitate the development of possible 
“universal” influenza vaccines.

Our study has several limitations. Blood samples were taken from limited number of patients receiving stand-
ard treatment upon first pandemic of H7N9 virus. Some of them were treated with antibiotics, glucocorticoids, 
or anti-viral agents according to guidelines. However, the effects of these agents on immune repertoires have 
not been reported. Because H7N9 is a novel avian-origin influenza virus that had not been detected in humans 
previously, diagnosis in few patients was delayed, and thus immune repertoire changes at early stage of infection 
remain unclear. Despite of these, our results demonstrated a correlation between T cell and B cell diversity and 
patient outcome, suggesting a potential role of immune repertoire in influenza infection recovery.

This work represents the first time NGS has been used to analyze the immune repertoires of patients infected 
with the H7N9. The results reveal specific changes in human immune repertoires in response to H7N9 and pro-
vide insights into the immune repertoires that might provide improved antiviral immunity and thus improved 
recovery from infection. With further research in the field of immune repertoires, these results may have utility in 
assessing vaccine responses, and also in identifying antigen exposure or clinical diagnosis and evaluation, as well 
as antibody and vaccine development.

Methods
Patients. From March 2013 to June 2013, 18 individuals were diagnosed with H7N9 infection by viral isola-
tion from throat swabs. Due to patient mortality and difficulty in providing follow-up, a total of 15 patients were 
enrolled in this study. Clinical characterization of these patients was presented in Supplementary Table S1 in the 
online data supplement, and management of individuals has been reported in our previous work4. All patients 
received anti-viral treatment. Among these patients, 5 died and the others survived to hospital discharge. The 
age, gender, and rate of complications are comparable between survivors and non-survivors. Blood samples were 
collected at multiple time points during critical illness. This study was approved by institution review board at 
Shanghai Public Health Clinical Center. All patient managements and blood sample collection were carried out 
in accordance with the relevant guidelines. Informed consents were obtained from all patients.
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Neutralizing antibody assays. We used the previously describedvpseundovirus with non-replicative 
human immunodeficiency virus backbone carrying influenza A H7 and H9 to measure the neutralizing antibody 
titers of patient serum35. The highest serum dilution that gave ≥ 80% inhibitory concentration of the luciferase 
signal in virus-infected MDCK cells was defined as neutralizing titer.

Isolation of T cells and B cells and extraction of RNA. From anticoagulated whole blood, peripheral 
blood mononuclear cells (PMBCs) were obtained by Ficoll-gradient according to the manufacturers’ instruction, 
and the isolated cells were resuspended in RNA protect reagent (Qiagen).

Establishment of immune repertoires. We performed arm-PCR technology to amplify the cDNA 
semi-quantitatively according to the manufactures’ instructions (iRepertoire, Inc.) as has been described else-
where36. Briefly, in the first few cycles, we used nested primers (Fo, Fi, Ro, Ri), which were designed specifically 
for every V and J (or C) genes and shared a common tag sequence. After that, the nested primers were removed 
from PCR products by exonuclease, and a pair of communal primers, called “superprimer”, was added to pair 
with the common tag sequence in the products and accomplish the exponent phase. Unique barcoded primers 
were used to distinguish each sample. After gel purification, the library constructed by previous steps was pooled 
and underwent high-throughput sequencing based on Illumina MiSeq platform according to the manufactures’ 
protocol.

Alignment of CDR3 sequences. Complimentary determining regions (CDR3s) were identified as the 
interval between two conserved amino acid sequences—Y[YFLI]C at the 3′  end of the V gene segment and [FW]
GXGT (X stands for 1 of 20 amino acids) within the J segments. Raw data was analyzed by iRepertoire using the 
previously described IRmap program36. The best matches of germline V and J gene were searched by determining 
alignments between Illumina platform product and germline sequences in the IMGT/GENE-DB database.

D50 value for diversity comparison. To make the diversity comparison easier and to analyze diversity 
statistically, we used a new index – D50 value in our work. It is the calculated percentage of dominant unique 
clones, accumulative reads of which made up for 50% of the total (ranges from 0 to 50 in theory) (Supplementary 
Table S2, Supplementary Figure S1). To stress clone expansion, avoid the bias from sequencing depth and reduce 
noise, we used the sequences ranked within 10000 when calculating and excluded others. D50 value of a specific 
repertoire is positively related to diversity.

Antibody expression. The scFv gene were synthesized by Genscript (Piscataway, NJ) and cloned into 
pComb3x vector. The plasmids were transferred into HB2151 cells, and freshly single colonies were inoculated 
into SB medium and induced by 1 mM isopropyl-1-thio-β -D-galactopyranoside for large-scale expression. The 
antibodies were purified by nickel-nitrilotriacetic acid resin (Qiagen, Valencia, CA) according to the manufac-
turer’s protocols. Protein purity was estimated as > 90% by SDS–polyacrylamide gel electrophoresis, and protein 
concentration was measured spectrophotometrically (NanoVue, GE Healthcare).

Surface Plasmon Resonance binding experiments. The binding experiments were performed using 
a ProteOn XRP36 system (Bio-Rad, Hercules, CA) to determine the kinetics of scFvs N2_3050, o1b1 and l1b1 
to H7N9 HA antigen (Sino Biological Inc.). H7N9 HA was immobilized on the ProteOn GLM biosensor chip 
using standard amine coupling chemistry (300 nM in 10 mM sodium acetate buffer, pH 5.0). The surface of 
sensor chip was activated by 200 mM 1-ethyl-3-dimethyl aminopropylcarbodiimide hydrochloride and 50 mM 
N-hydroxysulfosuccinimide. O1b1 and l1b1 were prepared in phosphate buffer saline (pH 7.4) containing 0.005% 
Tween-20 and injected at 50 μ l/min for 120 s at different concentrations (10 uM,2 uM, 400 nM, 200 nM, 100 nM 
and 50 nM for N2_3050 and c1b1; 1 uM, 500 nM, 250 nM, 125 nM, 62.5 nM and 31.5 nM for l1b1, respectively). 
The dissociation phase was followed for 600 s. The chip surfaces were regenerated by injecting 10 mM glycine 
HCl, pH 2.0, 100 μ l/min for 18 s. The data were analyzed using ProteOn Manager 3.1 software and fitted to a 1:1 
interaction model.

Data analysis. When comparing the reads between samples, we used fraction or normalized the reads 
to a total of 10,000,000 to avoid any bias caused by sample size. The comparison of D50 index was performed 
using Student’s t test. Expression level of each sequence or V-D-J gene and was compared by Wilcoxon test or 
Mann-Whitney U test, respectively. Statistical analysis was conducted using SPSS software (version 21.0) and 
R (3.1.2). Structured Query Language (SQL) was used for immunogenetic analysis. Sequence alignments were 
made with ClustalW2.
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