
REVIEW

Depicting combinatorial complexity with the molecular
interaction map notation

Kurt W Kohn*, Mirit I Aladjem, Sohyoung Kim, John N Weinstein
and Yves Pommier

Laboratory of Molecular Pharmacology, Center for Cancer Research, National
Cancer Institute, NIH, Bethesda, MD, USA
* Corresponding author. Laboratory of Molecular Pharmacology, Center for

Cancer Research, National Cancer Institute, Building 37, Room 5068, NIH,
Bethesda, MD 20892, USA. Tel.: þ 1 301 496 2769; Fax: þ 1 301 402 0752;
E-mail: kohnk@dc37a.nci.nih.gov

Received 2.1.06; accepted 2.7.06

To help us understand how bioregulatory networks
operate, we need a standard notation for diagrams
analogous to electronic circuit diagrams. Such diagrams
must surmount the difficulties posed by complex patterns of
protein modifications and multiprotein complexes. To meet
that challenge, we have designed the molecular interaction
map (MIM) notation (http://discover.nci.nih.gov/mim/).
Here we show the advantages of the MIM notation for three
important types of diagrams: (1) explicit diagrams that
define specific pathway models for computer simulation;
(2) heuristic maps that organize the available information
about molecular interactions and encompass the possible
processes or pathways; and (3) diagrams of combinatorially
complex models. We focus on signaling from the epidermal
growth factor receptor family (EGFR, ErbB), a network that
reflects the major challenges of representing in a compact
manner the combinatorial complexity of multimolecular
complexes. By comparing MIMs with other diagrams of this
network that have recently been published, we show the
utility of the MIM notation. These comparisons may help
cell and systems biologists adopt a graphical language that
is unambiguous and generally understood.
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Introduction

A standard notation for biomolecular interaction networks is
urgently needed for three main purposes: (1) to define explicit
models for computer simulation; (2) to organize available
information about a network’s molecular interactions; and (3)
to diagram combinatorially complex processes. Although
several diagram notations have been proposed, it is important
to reach a consensus, so that diagrams can be widely
understood, as is the case for electronic circuit diagrams.

Two of the best developed notations are the molecular
interaction maps (MIMs) that we have described (Kohn,
1999, 2001; Kohn et al, 2006) and the ‘process diagrams’
described by Kitano et al (Kitano, 2003; Kitano et al, 2005). We
recently discussed the strengths and weaknesses of the various
notations that have been proposed (Kohn et al, 2006). These
include, in addition to the MIM and process diagram notations,
the computer-aided design (CAD)-like diagrams produced by
CellDesigner (Funahashi et al, 2003), a software suite called
CADLIVE (Kurata et al, 2003), the automated diagrams of
Cook et al (2001), and BIOCARTA’s connection diagrams
(http://www.biocarta.com).

Here, we compare the MIM and process diagram notations
in more detail and consider where each may be advantageous.
We have previously demonstrated the utility of the MIM
notation for computer simulation (Kohn, 1998, 2001; Kohn
et al, 2004) and for organizing information (Kohn, 1999, 2001;
Kohn and Bohr, 2002; Kohn et al, 2003, 2006; Pommier and
Kohn, 2003; Pommier et al, 2004, 2006; Aladjem et al, 2004;
Kohn and Pommier, 2005). We show here that the MIM
notation is suitable as a standard for both of these purposes,
and also for representation of complex combinatorial schemes.

Process diagrams show reactions in a manner that is direct
and intuitive, requiring little or no description in accompany-
ing text. MIM diagrams are also self-explanatory when one is
familiar with the notation. A detailed description of the MIM
notation with many examples was recently published and
could serve as a reference and tutorial (Kohn et al, 2006).

To compare the graphic notations, we present MIM versions
of recently published process diagrams of signaling from ErbB
receptors (Kitano et al, 2005; Oda et al, 2005) and discuss their
respective characteristics and advantages. This comparison
shows advantages and flexibility of the MIM notation that may
justify learning its nuances. It also illustrates how MIM
diagrams can represent signaling from multiple receptor
homo- and heterodimers, as well as the combinatorial
complexity of a network.

We also clarify what we previously described as a distinction
between ‘explicit’ and ‘heuristic’ MIMs (Kohn, 2001; Kohn
et al, 2006). Rather than representing different types of
diagrams, our current view, which we explain herein, is that
they are alternative interpretations of the notation. The way in
which an MIM is to be interpreted depends on the intended
application, and must be specified.

For readers’ convenience, we show the list of MIM symbols
in Figure 1 and the rules of the MIM notation in Box 1.

Three interpretations of MIMs: explicit,
heuristic, and combinatorial

The MIM notation allows three interpretations, each suited to
a different purpose. The examples in Figure 2 explain the
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distinctions between the ‘explicit’, ‘heuristic’, and ‘combina-
torial’ interpretations.

The ‘explicit’ interpretation is that an interaction line applies
only to the molecular species directly connected to it (Figure 2).
This type of MIM defines the reaction paths for a particular
model, explicitly depicting every reaction. In this way, it is like
the process diagrams of Kitano and co-workers (Kitano, 2003;
Kitano et al, 2005). The reactions shown in either of those two
types of diagram can be translated into input for computer

simulation (Figure 3 and Table I; further explanation is given in
the next section).

In ‘heuristic’ and ‘combinatorial’ interpretations, on the
other hand, an interaction line represents a functional
connection between domains or sites that (unless otherwise
indicated) is independent of the modification or binding states
of the directly interacting species (Figure 2). Therefore, an
interaction line in heuristic or combinatorial interpretation
may define a large class of interactions, such as defined by
Blinov et al (Blinov et al, 2005; Faeder et al, 2005).

The ‘heuristic’ interpretation serves as a compact informa-
tion organizer, showing the possible reaction paths. It depicts
what is known and reveals what still remains to be
determined, thereby ‘helping to discover or learn’ (a meaning
of ‘heuristic’ given in Webster’s Unabridged Dictionary, 2nd
edition, 1979). The influences of indirect interactions, so far
as they are known, can be shown by means of contingency
symbols (Figure 1).

The ‘combinatorial’ interpretation is that all of the possible
interactions do in fact occur, subject only to any restrictions
indicated by contingency symbols (Figure 2D). The combina-
torial interpretation shows implicitly the large number of
reaction paths that can take place concurrently in the actual
expression of a network. This corresponds closely to the
‘reaction class’ or ‘rule-based’ convention described by
B Goldstein, WS Hlavacek and co-workers (Blinov et al,
2005; Faeder et al, 2005; ML Blinov, personal communication;
further explanation in a later section below). The combinator-
ial interpretation of MIMs and the ‘rule-based’ description of
combinatorial networks both define large numbers of con-
current reaction paths for computer simulation. Interactions in
combinatorially interpreted MIMs, like ‘rules’, can in principle
serve as generators of reaction events and molecular species
(Blinov, personal communication).

Reaction symbols

Non-covalent binding (reversible)

Stoichiometric conversion

Transcription

Cleavage of a covalent bond.

Contingency symbols

Stimulation

Requirement

Inhibition

Enzymatic catalysis

Degradation

Covalent bond

Figure 1 MIM symbols used in this paper. For a complete list of symbol, see
Kohn et al (2006) or http://discover.nci.nih.gov/mim/.

Box 1 Rules and definitions of the MIM notation

1. A named molecular species generally appears in only one place on a map. (Exempt from this rule are molecules, such as GTP or ubiquitin,
that act in a similar manner in a large number of different reactions. For clarity, the named species and its interactions must sometimes be
duplicated upon translocation from one cell compartment to another.)

2. Interactions between molecular species are shown by different types of connecting lines, distinguished by different arrowheads or other
terminal symbols (Figure 1).

3. Interaction lines can change direction (but not by more than 901 at a corner—this restriction prevents ambiguities at branch points).
4. When lines cross, it is as if they do not touch.
5. Symbol definitions are not affected by color. Color is optional: it can be used as an independent visual parameter to guide the eye and/or

emphasize particular features of the network. We use red for inhibitions and other negative actions; the net effect of a sequence of
interactions (whether positive or negative) can then be determined by whether the number of red-colored steps is even or odd. We use
green for stimulatory or catalytic actions, blue for covalent modifications, and purple for transcription/translation.

6. A small filled circle (‘node’) on an interaction line indicates the consequence or product of the interaction. Thus, the consequence of
binding between two molecules is production of a dimer, which is represented by a node on the binding interaction line. The consequence
of a modification (e.g., phosphorylation) is production of the modified (e.g., phosphorylated) molecule; the phosphorylated product is
represented by a node placed on the modification line.

7. Multiple nodes on an interaction line represent exactly the same molecular species. To avoid ambiguity, a node should not be placed at a
line crossing.

8. An isolated node (a node that is not on a line) is an abbreviation that represents another copy of the same molecular species that is defined
at the other end of the line pointing to the node (to avoid ambiguity, only one arrow should point to an isolated node).

9. Molecular interactions are of two types, reactions and contingencies, as listed in Figure 1. Reactions operate on molecular species;
contingencies operate on reactions or on other contingencies.

10. A line without arrowheads is a ‘state-combination’ symbol. A node on this line represents the combination of states defined by the symbols
at the two ends of the line. For example, in the upper left of Figure 3, there is an arrowless line connecting a node representing the
EGF:EGFR complex with a node representing phosphorylated-EGFR; the node within this line represents the EGF:phosphorylated-EGFR
complex. The dimer of this complex is designated species 5. (Note that for convenience, there are two nodes on the dimerization line, both
of which refer to species 5. Also note that in the text, we use a colon to indicate binding.)

11. MIMs may be interpreted as ‘explicit’, ‘heuristic’, or ‘combinatorial.’

For a more detailed description with examples, see Kohn et al (2006) or http://discover.nci.nih.gov/mim/.
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For any MIM, one must state whether it should be
interpreted as explicit, heuristic, or combinatorial. In order
to make the distinctions clear, we next refer to the examples
shown in Figure 2.

In explicit interpretation, an interaction involves only the
species that are connected directly to a particular interaction
line, subject to any contingencies impacting on that line. For
example, in Figure 2D, a binding interaction line connects
species A and B. But there is a contingency on this line,
specifying that binding requires phosphorylation of B. There-
fore, A:pB is permitted, but not A:B (pB¼phosphorylated B).
A binding line connects B and C, with contingency that
phosphorylation of B inhibits. Therefore, B:C is permitted,
but not pB:C.

Combinatorial interpretation includes interactions regard-
less of the states of binding or modification of the directly
interacting species. For example, in Figure 2A, where explicit
interpretation allows only A:B and B:C, combinatorial inter-
pretation allows A bound to B, regardless of whether B is
phosphorylated and/or bound to C (we call this property
‘transitive’, because the interaction symbol applies indirectly
to species ‘down the line’). The indirect interactions however
may affect the reaction rate constants quantitatively; such
indirect quantitative effects can be explained in text annota-
tions or in a reaction class table, such as Tables 1 and 2 of
Blinov et al (2006a).

Heuristic interpretation is definitive for those interactions
that would be allowed by explicit interpretation, but is non-

Figure 2 Examples to illustrate the ‘explicit’, ‘heuristic’, and ‘combinatorial’ interpretations of MIMs. For any MIM, the interpretation that applies to it must be stated. In
the ‘heuristic’ column, some molecular species are marked ‘maybe’, which means that either it is not known whether those species form or that further information is
provided in the text annotations. The meaning of each panel is defined in the table below each diagram. The tables list the molecular species that are included, excluded,
or left indeterminate by each interpretation.
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committal for the indirect interactions allowed by the
combinatorial interpretation. In Figure 2, these indirect
interactions are assigned the value ‘maybe’ in the heuristic
column: each of the combinatorial possibilities may or may not
occur, either because of lack of knowledge, or because
contingency symbols have been omitted to avoid excessive
crowding of the diagram. These uncertainties may then be
clarified in text annotations.

It may be useful to note some additional points from the
examples in Figure 2. Figure 2B shows the case in which C can
bind B or pB explicitly. Figure 2C asserts that A and B can bind
to form A:B and that A:B (indicated by the node on the
interaction line) can bind C. Direct binding of C to A or B is
excluded in the explicit or combinatorial interpretations.
However, these bindings are not excluded in the heuristic
interpretation, because the binding site for C might be on A or
B (or both). Figure 2D illustrates how known contingencies
can be indicated by means of symbols for stimulation,
requirement, or inhibition.

Figure 2E shows the interesting case of a cycle of binding
interactions. The explicit interpretation is clear. The heuristic
and combinatorial interpretations however include the possi-
bility that a cycle can begin and end at different copies of the
same molecular species. Thus, they include linear or cyclic
multimers of the form yA:B:C:A:B:C. Molecular rings or
chains of this kind have also been considered in ‘rule-based’
iterations (ML Blinov, personal communication). Such multi-
mer structures may be what gives rise to the discrete bodies
or foci commonly seen in cell nuclei.

An explicit MIM, like a process diagram,
defines a model for computer simulation:
signaling from the EGF receptor, ErbB1

Process diagrams represent network models that show every
reaction explicitly and that can in principle be simulated
(Kitano, 2003; Kitano et al, 2005); this can be performed also
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Figure 3 Explicit MIM of signaling from the epidermal growth factor receptor (EGFR, ErbB1). With few minor exceptions, this diagram shows exactly the same
reactions as in the process diagram in Figure 1b of Kitano et al (2005). Molecular species are numbered in red and reactions are numbered in green italics. A detailed
description of the MIM can be found in Supplementary information or at http://discover.nci.nih.gov. The meaning of each reaction can also be seen from the connection
table (Table I). (Species numbers 14, 21, and 23 in the MIM do not appear in Table I, because they serve only to help with the explanation in Supplementary information.
Species 14 is part of species 15 and 16; 21 is part of 22 and 25; and 23 is part of 24 and 25.) Modified with permission from Kohn and Aladjem (2006).
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with the explicit form of MIMs (Kohn, 1998, 2001; Kohn et al,
2004). In order to compare the two diagram notations directly,
we discuss here an explicit MIM version (Figure 3) of a process
diagram of EGF receptor signaling from Figure 1b in Kitano
et al (2005). We show how the MIM defines the topology
(Table I) of the network and defines a set of differential
equations (Supplementary Table 1) that could be used for
simulation.

To show that the explicit MIM in Figure 3 is an unambiguous
description of the network model’s topology, we express its
component reactions in a connection table (Table I) that
contains all the information that a computer program needs
(other than rate constant values and initial conditions) to
simulate the network. Table I is made up of the reaction and
species numbers assigned to the symbols in Figure 3. This
representation is suitable for ‘micro-world models’, which
consist solely of mass action terms (Kholodenko and Westerh-
off, 1995; Kohn, 2001). Micro-world models have no stimula-
tion or inhibition terms and no Michaelis–Menten terms. Thus,
everything is modeled as direct molecular events: binding,
dissociation, or stoichiometric conversion/translocation. We
have used this modeling procedure in two published computa-
tional studies (Kohn, 1998; Kohn et al, 2004).

The MIM notation compresses the association and dissocia-
tion reactions of reversible binding into a single symbol (a
double-arrowed line). The two reactions are represented in the
connection table (Table I) by the interaction number shown
in Figure 3, followed by an ‘a’ or ‘b’ suffix, respectively.

The notation compresses enzyme action into a single
symbol that represents three component reactions: (a) binding
between enzyme and substrate; (b) dissociation of the
enzyme:substrate complex; and (c) conversion of the enzy-
me:substrate complex to products. This manner of represent-
ing enzyme actions in three component reactions has two
advantages: First, it makes the connection table homogeneous
in that all reactions are simple mass action terms. Second,
it avoids the assumption of a quasi-steady-state inherent in
Michaelis–Menten expressions.

The three component reactions of an enzyme action in
Table I are labeled with suffixes ‘a’, ‘b’, and ‘c’ placed after the
number assigned to the enzyme action symbol in Figure 3. For
example, the three component reactions of the enzyme action
‘9’ in Figure 3 are labeled 9a for enzyme:substrate binding, 9b
for enzyme:substrate dissociation, and 9c for conversion to

Table I Connection table of the reactions in the explicit MIM shown in Figure 3

Rxn Reactants Products Rxn Reactants Products

1a 1 2 3 16a 25 26 26a
1b 3 1 2 16b 26a 25 26
2a 3 3 4 16c 26a 25 27
2b 4 3 3 17a 27 28 28a
3 4 5 17b 28a 27 28
4a 5 6 7 17c 28a 27 29
4b 7 5 6 18a 29 29 30
5 7 8 18b 30 29 29
6a 5 9 8 19 30 31
6b 8 5 9 20a 31 32 32a
7a 10 11 12 20b 32a 31 32
7b 12 10 11 20c 32a 31 33
8a 8 12 13 21a 29 34 34a
8b 13 8 12 21b 34a 29 34
9a 13 15 15a 21c 34a 29 35
9b 15a 13 15 22 35 36
9c 15a 13 16 23a 36 37 38
10 16 15 23b 38 36 37
11a 16 17 18 24 37 39
11b 18 16 17 25a 36 39 40
12a 18 19 18a 25b 40 36 39
12b 18a 18 19 26 38 40
12c 18a 19 22 27 40 41
13a 19 24 24a 28 41 42
13b 24a 19 24 29a 42 43 43a
13c 24a 19 25 29b 43a 42 43
14a 18 20 18b 29c 43a 42 44
14b 18b 18 20
14c 18b 20 24
15a 20 22 22a
15b 22a 20 22
15c 22a 20 25

The numbers refer to the reaction and species identification numbers in Figure 3.
For reversible binding, the letter ‘a’ or ‘b’ is appended to refer to association
and dissociation, respectively. For enzyme reactions, suffixes ‘a’ and ‘b’ refers to
production and dissociation of the enzyme–substrate complex, respectively;
suffix ‘c’ refers to conversion of the enzyme–substrate complex to products. A
letter suffix added to a reactant or product species refers to the enzyme–substrate
complex (whose existence is implied by the enzyme reaction symbol in the
MIM).

Table II Reaction classes defined by Blinov et al (Blinov, 2006 #2766) and
shown or implied in the combinatorial MIM (Figure 5)

Step Reaction class Implied

1 Ligand–receptor binding
2 Receptor dimerization
3 Receptor tyrosine phosphorylation
4 Receptor tyrosine dephosphorylation
5 Binding of PLCg to Y992
6 Transphosphorylation of PLCg
7 Binding of PLCgP to Y992 5(6)
8 Dephosphorylation PLCgP
9 Binding of Grb2 to pY1068
10 Binding of Sos to Grb2-pY1068 12(9)
11 Binding of Sos-Grb2 to pY1068 9(12)
12 Binding of Sos to Grb2
13 Binding of Shc to pY1148/1173
14 Phosphorylation of Shc (13)
15 Binding of ShcP to pY1148/1173 13(14)
16 Dephosphorylation of ShcP
17 Binding of Grb2 to ShcP-pY1148/1173 21(15)
18 Binding of Grb2-ShcP to pY1148/1173 13(21)
19 Binding of Sos to Grb2-ShcP-pY1148/1173 12(17 or 18)
20 Binding of Sos-Grb2-ShcP to pY1148/1173 15(22 or 23)
21 Binding of Grb2 to ShcP
22 Binding of Sos to Grb2-ShcP 12(21)
23 Binding of Sos-Grb2 to ShcP 21(12)
24 Binding of Sos-Grb2 to ShcP-pY1148/1173 21(12 and 15)
25 Inactivation of PLCgP

The steps that do not have an entry in the ‘Implied’ column in the table appear
as direct interactions in the MIM in Figure 5. The meaning of the entries in the
‘Implied’ column is as follows: the first number (which is not enclosed in
parentheses) indicates the step that defines the direct binary interaction; the
numbers in parentheses indicate the steps that must precede the direct
interaction step; these interactions are implied in the combinatorial MIM
(Figure 5) without having to be shown explicitly. For example, step 22 involves
the binding of SOS to Grb2, where Grb2 has already bound ShcP. We denote this
reaction symbolically as 12(21), because step 12 is SOS binding to Grb2 and step
21 is Grb2 binding ShcP. Similarly, step 23 (binding of ShcP to Grb2, where Grb2
has already bound SOS) is denoted by 21(12). The advantage of this symbolic
notation is that it indicates the order of events and also tells us which molecules
interact directly. In a further example, step 20 refers to binding of ShcP to ErbB1
phosphotyrosine-1148/1173, where the ShcP already exists in the ternary
complex, ShcP–Grb2–SOS. This ternary complex however can form in two ways:
by way of step 22 or 23. Therefore, we write 15(22 OR 23), meaning that the
direct binary step is 15, and the pre-existing reactions are step 22 or 23.
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products. Enzyme–substrate complexes are not shown ex-
plicitly in Figure 3, but are included in the connection table,
where they are assigned the species number of a reactant
followed by a letter (thus, the enzyme–substrate complex for
enzyme action ‘9’ in Figure 3 is marked ‘15a’ in Table I).

The connection table (Table I) defines a set of differential
equations, listed in Supplementary Table 1. This example
illustrates how an explicit MIM defines a set of ordinary
differential equations suitable as a basis for simulation.
Actually carrying out such a simulation study however still
requires choice of rate constant parameters and/or exploration
of parameter space for parameter sets that confer plausible
behavior (Kohn et al, 2004). The rate constant selections must
be thermodynamically consistent to avoid violations of the
second law when the network contains closed loops or when
two paths lead co-energetically from one point to another.
It will be useful to develop facilities to translate the graphical
interactions into a textual form, or systems biology markup
language (SBML), that can generate a stoichiometry matrix
to assure consistency. In the network depicted in Figure 3,
however, there are no thermodynamic problems, because
there are no closed loops or parallel paths (other than the two
paths for production of doubly phosphorylated Raf-1, which
involve ATP hydrolysis and therefore are energetically
independent).

One may question whether microworld models that assume
mass action behavior in a homogeneous system can ade-
quately represent processes occurring within the grossly
inhomogeneous structure of the cell. Moreover, rate constants
determined in chemical systems may differ greatly from those
existing in the cell, where molecular crowding can markedly
affect activity coefficients (Ellis, 2001; Minton, 2001; Hancock,
2004). Molecular crowding also enhances protein–protein
binding interactions and may contribute to the formation of
various types of nuclear bodies (Hancock, 2004), functionally
integrated chromatin-associated foci (Pilch et al, 2003; Au and
Henderson, 2005), and clusters of membrane-associated
proteins on membrane rafts (Cary and Cooper, 2000; Parton
and Hancock, 2004; Rajendran and Simons, 2005). Molecular
crowding however may be uneven in the cell, and micro-world
models may yield useful approximations if most of the
reactions take place in relatively uncrowded regions. These
models have particular clarity, and it may be premature to give
up on them. Even so, the integrated behavior of multi-
molecular systems such as those that control transcription or
translation may require statistical mechanical expressions,
such as developed by Shea and Ackers (Shea and Ackers, 1985;
Wolf and Eeckman, 1998). Simulation of such structures may
require additional facilities, such as those provided by SBML
(Finney and Hucka, 2003; Hucka et al, 2003; Machne et al,
2006). The issues involved in the simulation of cell-signaling
dynamics were thoroughly reviewed recently by Kholodenko
(2006).

Heuristic MIMs and process diagrams as
information organizers

Comprehensive process diagrams—such as signaling from
EGF receptors—are too complicated for meaningful simulation

at this time; they can however serve to organize large amounts
of information about molecular interactions (Oda et al, 2005).
Heuristic MIMs are also effective information organizers, but
in a different way (Kohn, 1999, 2001; Kohn et al, 2006). Process
diagrams are equivalent to explicit MIMs, as discussed above.
As information organizers, however, heuristic MIMs have the
advantage of ‘transitivity’ (as already explained in Figure 2 and
associated text). Process diagrams specify particular reaction
sequences or pathways, show all of the direct reactions, and
include symbols for each and every reactant and product.
Heuristic MIMs, on the other hand, focus on the interactions
between sites, independent of other binding or modification
states of the directly interacting molecules. Therefore, heur-
istic MIMs include by implication many possible reaction
sequences occurring simultaneously, whereas process dia-
grams depict a narrow subset of the possible reactions. We will
compare these two types of information-organizing diagrams
directly in Figures 4 and 5. First, however, we will point out
the main differences.

In contrast to process diagrams or explicit MIMs, an
interaction between molecular species or domains in heuristic
MIMs may apply regardless of the binding or modification
states of the directly interacting molecules. Because a binding
or modification site often cannot ‘see’ what is happening in
other sites or domains of the same molecule, the heuristic MIM
interpretation assumes that a direct interaction between sites
or domains may occur regardless of bindings or modifications
that may exist at other sites of the directly interacting
molecules. As already explained in Figure 2 and associated
text, heuristic and combinatorial MIM interpretations differ
only in that the heuristic interpretation is non-committal with
respect to the possible indirect interactions, whereas the
combinatorial interpretation asserts that all of them do occur.
When binding or modification states are known to affect each
other—by stimulation or inhibition—this is indicated by
means of contingency symbols (Figures 1 and 2; for further
examples, see Kohn et al, 2006).

Another property of heuristic or combinatorial MIMs is that
they can be ‘canonical’ (‘generic’ may be a better term),
meaning independent of cell type or cell state, and inclusive of
multiple event sequences occurring in parallel. These MIMs
show the interactions that can occur if the potentially
interacting molecules are in the same place at the same time:
they show what each domain or site can ‘see’. (For an example
of the generic property and how alternative pathways can be
shown on the same MIM by highlighting, see Figure 14 of Kohn
et al, 2006.) An MIM can be made specific to a particular cell
type or cell state by deleting the molecules that are not
expressed and the interactions that do not occur owing to lack
of colocalization in time or place.

The process diagram notation defines a variety of symbols
for different types of elementary state nodes. In MIM diagrams,
it is not necessary to specify so many different symbols,
because the nature of a molecular species is adequately
defined by the interactions in which it engages. This is possible
in MIM diagrams because all of the interactions of a given
molecular species connect to the same symbol.

Process diagrams use a special symbol to indicate the
activated state of a molecular species. The MIM notation does
not explicitly indicate activation, because a given molecular
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species may be active with respect to one action, while being
inactive with respect to another. MIMs thus rely on the
interaction patterns themselves to define activity state.

Kitano et al (2005) presented a graph-theoretic description
of their process diagrams. Explicit MIMs can be described in a
similar way. Our ‘molecular species’ correspond to their ‘state
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nodes’; our ‘reactions’ correspond to their ‘transition nodes’;
our ‘complex species’ (represented as a filled circle on an
interaction line) correspond to their ‘complex state nodes’.
Edges would be defined in the same way for both notations
(Aguda and Sauro, 2004). The full description of a reaction in
both methods is ‘one or more state nodes connected by edges
connected through a reaction node’.

In summary, heuristic MIMs show the interactions that can
occur if the potentially interacting molecules are in the same
place at the same time, or more precisely, if the relevant
domains or sites can access each other. Such MIMs are
independent of cell type or cell state (‘generic’ property), and
have a generality that can encompass abnormal or uncertain
conditions (‘heuristic’ property) as well as combinatorial

Figure 5 A heuristic MIM version of a process diagram of NFkB-related interactions. The process diagram was presented as Supplement Figure 3 in Kitano et al
(2005). (A) Process diagram reproduced with numbers added corresponding to identification numbers of the interactions in panel B. (B) Heuristic MIM version.
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complexity (‘transitive’ property). An MIM specific to a
particular cell type or cell state can be derived from a heuristic
or combinatorial MIM by deleting the molecules that are not
expressed and the interactions that do not occur because the
potential reactants do not occur at the same time and place.

A heuristic MIM of signaling from the EGF
receptor family

The limitations of process diagrams, particularly in regard to
the difficulty posed by the inherent combinatorial complexity
of the networks, were recently discussed by Blinov et al
(2006a, b), who use the ‘rule-based’ method to meet this
difficulty. We will show how this difficulty is also overcome by
the heuristic and combinatorial interpretations of MIMs.

To compare the process diagram and heuristic MIM
notations with respect to their ability to organize large
amounts of molecular interaction information, we prepared
a heuristic MIM corresponding to a portion of the reactions
shown in the large EGFR network diagram recently presented
by Oda et al (Oda et al, 2005) (their Figure 1; our Figure 4). The
MIM contains a subset of the reactions so as to fit legibly
on one page and yet include most of the best established
pathways. A similar comparison between MIM and process
diagram is provided for the NF-kB signaling pathway in
Figure 5.

The process diagram of the EGFR network depicts separately
and in full the molecular species in each and every reaction
(Oda et al, 2005). A given molecular species or complex
therefore often appears several times in different places in this
diagram. To gain a comprehensive view of the interactions of a

particular molecular species, one must therefore survey all of
its occurrences wherever it may be located on the diagram. In
the MIM notation, on the other hand, each molecular species
generally is depicted in only one place on the map, so that all of
the interactions involving this species can be traced from a
single location (Figure 4).

As a named molecular species is in only one place on an
MIM, it can easily be found, even in a complicated map, by
way of an index of map coordinates (Kohn, 1998) or a search
function that identifies the single location. Moreover, its icon
(cartouche) on an on-line map (eMIM) can link to information
about that species in other databases (http://discover.nci.
nih.gov/mim/).

Figure 4 reveals another capability of the MIM notation: the
ability to represent the complexity of EGFR family homo- and
heterodimer actions in a compact manner. This is very difficult
to show clearly in a compact manner using other notations,
such as process diagrams (Oda et al, 2005).

An important feature of heuristic and combinatorial MIMs,
as already mentioned, is that a given binding or modification
symbol on a map may apply to many multimolecular
complexes, differing with respect to the binding and modifica-
tion states of the directly interacting species, sites, or domains
(‘transitive’ property). Such MIMs therefore encompass the
combinatorial complexity of a network, as we will discuss in
the next section.

Whereas the process diagram of the EGFR network (Oda
et al, 2005) specifies a particular set of interaction paths, the
MIM in Figure 4 encompasses a large number of possible
pathway combinations. That is, the process diagram specifies
a particular model. In contrast, the heuristic MIM shown in
Figure 4 encompasses several possible models (specific
models could be distinguished by highlighting, as in Figure
14 of Kohn et al, 2006).

It may be useful to reiterate in a more specific way these
subtle, but important, differences between the process
diagram of Oda et al and the corresponding heuristic MIM in
Figure 4. A major difference is that the interactions in a
heuristic MIM are interpreted in a transitive manner (defined
above), whereas this is not the case for process diagrams (nor
for explicit MIMs). An example from Figure 4 will further
clarify what we mean. The double-arrowed line that signifies
reversible binding between SOS and Grb2 implies at least 16
binding interactions. (The actual number is substantially
larger, but to simplify the example, we count association/dis-
sociation as a single interaction, we count binding to different
phosphotyrosines in the same molecule as a single interaction,
and we ignore the multiplicity of receptor monomer and dimer
states.) With this simplification, the 16 interactions implied
by the binding interaction line connecting Grb2 and SOS in
Figure 4 are

(1) SOS:Grb2
(2) SOS:(Grb2:ErbB1-P)
(3) SOS:(Grb2:ErbB2-P)
(4) SOS:(Grb2:Shc)
(5) SOS:(Grb2:(Shc:ErbB1-P))
(6) SOS:(Grb2:(Shc:ErbB2-P))
(7) SOS:(Grb2:(Shc:ErbB3-P))
(8) SOS:(Grb2:(Shc:ErbB4-P))
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Figure 5 Continued.
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and a similar set of eight interactions with phosphorylated SOS
(SOS-P) instead of unphosphorylated SOS. (We use a colon to
represent binding.) This example also illustrates how the MIM
notation can deal with interactions involving alternative
receptor family members.

In summary, the direct interactions for the heuristic MIM
(Figure 4) were taken from the process diagram of Oda et al,
but the interpretation of the heuristic MIM differs from that of
the process diagram in that the heuristic MIM includes the
combinatorial complexity of the network.

Contingencies implied by colocalization

We said that heuristic MIMs by default assume that inter-
actions involving a particular molecule occur independently
of each other, unless contingency symbols are applied to
indicate otherwise. Sometimes however, contingencies may
be obvious enough to allow contingency symbols to be
omitted, thereby simplifying the diagram. This happens
when potentially interacting species are brought together to
the same place; then the default assumption is that the actions
that cause these species to colocalize stimulate their inter-
action. In Figure 4, for example, Shc is shown binding to
ErbB1 (Y1148 or Y1173) and to be phosphorylated by ErbB1
(homodimer or ErbB1:ErbB2 heterodimer). The binding
brings together (colocalizes) the phosphorylatable site(s)
of Shc and the kinase domain of ErbB1 (or ErbB2). In the
absence of a contingency symbol to indicate the contrary,
the default assumption is that the colocalization brought
about by the binding stimulates the phosphorylation. In
another example from the same figure, SOS is shown
catalyzing guanine nucleotide exchange in Ras; Ras is
shown binding to plasma membrane, and SOS can be recruited
to the plasma membrane via its binding through Grb2 to the
ErbBs (or more indirectly via Shc). The default assumption
then is that the consequent colocalization at the plasma
membrane favors the SOS action. Although symbols can be
added to make these contingencies explicit, diagrams are often
simpler and easier to read without them. This is especially true
in Figure 4 for the action of SOS on Ras, because SOS can be
recruited to the plasma membrane by way of many different
adapter–receptor combinations (this will be discussed further
in the following section in the context of combinatorial
complexity).

Further examples in Figure 4 of stimulation implied by
colocalization are the actions of PI3K:p38 and PCLg on
phosphatidylinositols at the plasma membrane. These con-
tingencies could be shown by adding appropriate symbols, but
it would complicate the diagram unnecessarily.

A few known contingencies however are shown explicitly.
For example, a contingency symbol indicates that p85
stimulates the activity of the kinase domain of PI3 K. On the
other hand, no such symbol appears for the binding of Grb2 to
SOS, because the domain of SOS that binds Grb2 does not
materially alter the intrinsic activity of the catalytic domain:
Grb2 enhances the action of SOS solely by bringing SOS to the
plasma membrane, where its substrate is located. This
convention is consistent with the principle that heuristic
MIMs show what each interacting domain ‘sees’: the kinase

domain of PI3 K senses the binding of p85, whereas the
catalytic domain of SOS does not sense the binding of Grb2.

Combinatorial complexity

A protein molecule may exist in many different complexes
that are composed of a variety of molecules in a variety
of modification states. A given protein site or domain may
therefore function in the context of many different complexes.
Blinov et al (2006a) recently studied the effect of this diversity
in a computational model of a small part of the EGFR network,
particularly the early events in signaling from the receptor. The
model included many of the possible molecular complexes
and their interactions and was a generalization of the model
analyzed by Kholodenko et al (1999), from which the rate
constants were taken. To make the computation feasible,
Blinov et al grouped the reactions into classes with rate
constants dependent upon the directly interacting sites, but
independent of many of the modifications and bindings at
other sites.

The model of Blinov et al is a highly branched network so
complicated that its full graphical representation, even in this
relatively simple case, was impractical. Receptor dimerization,
for example, including ligands associated with two phosphor-
ylation sites in various combinations, comprised B600
different reactions (even though interactions at Y992 were
not included in this enumeration).

The full repertoire of reactions in this networks can however
be represented in a combinatorial MIM (Figure 6). This is
made possible by the assumption of transitivity: that is, that
unless otherwise indicated, a binary interaction symbol
includes all of the possible modification and binding patterns
of the directly interacting pair (or of the interacting species
defined in a ‘reaction class’). For a ‘rule-based’ model, such as
used by Blinov et al (Blinov et al, 2005, 2006a; Faeder et al,
2005), the rate constants can be associated with the binding or
enzyme action symbols on an MIM, as we have carried out in
Figure 5 and Table II, and as we will explain further in the next
section. An essential feature of the combinatorial model of
Blinov et al is that domain bindings or site modifications are
assumed to affect each other only in well-defined cases, which
are grouped as reaction classes (Table II). In the combinatorial
MIM (Figure 6), the identification number assigned to each
reaction class listed in Table II is marked next to the
corresponding interaction line.

In Figure 6, we show an MIM corresponding to the
combinatorial model of the early events in EGFR signaling
studied by Blinov et al (2006a). Blinov et al divided the
reactions into 25 classes, listed in Table II. Each numbered step
is a reaction class, consisting of many different reactions, all of
which are assigned the same rate constant in their rule-based
model. In their tables, Blinov et al (2006a) show the number of
reactions in each class and the assigned rate constants. When
all the combinatorial possibilities of the 25 reaction classes are
included, the total number of reactions added up to 3749!

Interaction-1 in Figure 6 (Blinov’s step 1) represents ligand–
receptor binding (and dissociation, as the interaction is taken
to be reversible). Interaction-1 includes reversible binding of
ligand to receptor in any of its modification states, and in
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complex with any of the combination of molecules that its
cytoplasmic domain may bind. As Blinov et al assume that
receptor dimers can dissociate even when phosphorylated
and/or bound to cytosolic proteins, interaction-1 includes
bindings and modifications of receptor monomer, as well as
dimer. In all, Blinov et al enumerate 48 binding reactions in
this class.

Interaction-2 represents reversible dimerization between
ligand and receptor. Dimerization is assumed to require that
both molecules of receptor have bound ligand, but that all
other combinations of possible bindings or modifications are
included. According to Blinov’s count, this step comprises a
total of 600 reactions. (The double-arrowed line connecting
the ligand:receptor node to the isolated node means that
ligand:receptor in any cytoplasmic state can bind to another
copy of ligand:receptor in any of these states.)

Interaction-3 refers to receptor tyrosine phosphorylations,
including phosphorylation of any site without regard to the
status of the other sites on both members of the homodimer.
As the reaction occurs in trans (one member of the dimer
phosphorylating the other), we show the reaction to be
catalyzed by the homodimer.

Interaction-4 refers to dephosphorylation of any site on
the receptor, regardless of other phosphorylations and/or
bindings.

The SH2 sites of Grb2 can bind phosphotyrosine-1068 of
ErbB1 (monomer or dimer) (interaction-9), and the SH3 site of
Grb2 can bind cytosolic SOS (interaction-12). These two

bindings can coexist, as there are no contingency symbols in
Figure 5 to indicate otherwise. Moreover, the two bindings can
form in either order. Blinov et al assigned each order of
formation to a separate reaction class with separate rate
constants (their steps 10 and 11; the same numbers identify the
reactions in Figure 6 and Table II). Reaction class 10 is Sos
binding to the SH3 site of Grb2 (step 9) after the SH2 sites of
Grb2 have bound to pY1068 of ErbB1 (step 12). The reaction
class includes all possible modification or binding states other
than those specified in other reaction classes or otherwise
excluded in the specification of a particular model.

The specification of the other reaction steps or classes can be
gleaned from Table II and Figure 6, which use the same step
numbers.

In their simulations, Blinov et al treat the interactions
involving PLCg at ErbB1 phosphotyrosine-992 differently from
the interactions at the other ErbB1 sites. They carry out
simulations in which the interactions of PLCg are included or
not. Figure 6 includes all of the interactions, and therefore is
generic with respect to how the reaction subsets are segregated
into classes in a particular model.

Conclusions

The MIM notation has the characteristics and flexibility
required for a standard diagram representation of complex
biological networks. Here, we have demonstrated how MIMs
can represent networks in three demanding types of applica-
tions, in each case drawn from recently published network
studies. These demonstrations argue that the MIM notation
is suitable to become a standard graphic notation (1) for
definition of complex models to be used in computer
simulation of bioregulatory networks, (2) for compact,
detailed, and illuminating representation of available informa-
tion about molecular interactions in a complex network, and
(3) for representation of the combinatorial complexity of
network models. The advantages of the MIM notation, we
think, justify the effort to learn the rules of the notation.

Supplementary information

Supplementary information is available at the Molecular
Systems Biology website (www.nature.com/msb).
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