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Classifying diseases by using 
biological features to identify 
potential nosological models
Lucía Prieto Santamaría1,2*, Eduardo P. García del Valle1, Massimiliano Zanin3, 
Gandhi Samuel Hernández Chan4, Yuliana Pérez Gallardo2 & Alejandro Rodríguez‑González1

Established nosological models have provided physicians an adequate enough classification of 
diseases so far. Such systems are important to correctly identify diseases and treat them successfully. 
However, these taxonomies tend to be based on phenotypical observations, lacking a molecular 
or biological foundation. Therefore, there is an urgent need to modernize them in order to include 
the heterogeneous information that is produced in the present, as could be genomic, proteomic, 
transcriptomic and metabolic data, leading this way to more comprehensive and robust structures. 
For that purpose, we have developed an extensive methodology to analyse the possibilities when it 
comes to generate new nosological models from biological features. Different datasets of diseases 
have been considered, and distinct features related to diseases, namely genes, proteins, metabolic 
pathways and genetical variants, have been represented as binary and numerical vectors. From those 
vectors, diseases distances have been computed on the basis of several metrics. Clustering algorithms 
have been implemented to group diseases, generating different models, each of them corresponding 
to the distinct combinations of the previous parameters. They have been evaluated by means of 
intrinsic metrics, proving that some of them are highly suitable to cover new nosologies. One of the 
clustering configurations has been deeply analysed, demonstrating its quality and validity in the 
research context, and further biological interpretations have been made. Such model was particularly 
generated by OPTICS clustering algorithm, by studying the distance between diseases based on gene 
sharedness and following cosine index metric. 729 clusters were formed in this model, which obtained 
a Silhouette coefficient of 0.43.

Nosology can be defined as the branch of medicine dedicated to classify and describe diseases. Unavailable in 
traditional medicine systems, disease classification became important in the eighteenth century1. It has evolved 
over the years, starting from Linneo, who in 1763 classified diseases as exanthematics, phlogistics and dolorous2, 
and through Wilbur’s Manual of International List of Causes of Death, which in 1909 still lacked distinction 
between nowadays differentiated diseases, such as type I and type II diabetes3. Among others, some of the 
common and most used at the present time standard disease classification systems would be the International 
Classification of Diseases (ICD)4, Medical Subject Headings (MeSH)5 or the Disease Ontology (DO)6. Disease 
taxonomy systems are improved and refined along time as human knowledge about diseases expands7. Human 
disease classification these days relies on the observational correlation between pathologic analysis and clinical 
syndromes. Disease characterization in such way, from a very phenotypical point of view, has established a useful 
nosology for physicians. However, it has significant limitations regarding modern medicine, including a lack of 
sensitivity when identifying preclinical disease states, and a lack of specificity in defining diseases unequivocally. 
A human disease classification combining conventional reductionism with systems biomedicine non-reductional 
approach is required in order to include the high volume and heterogeneous genomic, proteomic, transcriptomic 
and metabolic data not taken into account thus far8.

In line with this idea, a call to reform disease taxonomy in order to promote the inclusion of last scientific 
advances was made in 20119. At the same time, USA National Academy of Sciences (NAS) formed a committee 
to analyse the feasibility and necessity of a “new taxonomy of the human disease based in molecular biology”10. 
Both manifests are an evidence of the importance of supplying disease classifications with an underlying structure 
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that is based not only in the phenotypical biomedical knowledge, but also in the molecular and biological diseases 
traits. The relevance of having an updated system stems from the fundamental role that disease taxonomy plays 
when defining diagnosis, treatments and mechanisms of molecular pathology. If this classification is modernized 
incorporating the known or inferred disease molecular information, the classification would not only provide 
the classical structure built on disease physiology, but would also provide insights about the associations between 
disease groups to specific diagnostics and treatments. Some works have dealt with such a challenge, inferring new 
diseases hierarchies11 or developing a New Classification of Disease (NCD) by integrating both phenotypical and 
molecular networks12,13. Other works have gone deeper in apparently arbitrary clinical search features such as 
ROS (reactive oxygen species) dysregulation triggering diseases, which can be enlightening when establishing 
groups and classes of the diseases14. Also, by measuring similarities among diseases based on their associated 
genes and proteins interactions networks, new models could be obtained15. Moreover, disease-related transcrip-
tome datasets can be useful in the task of discovering relevant endo-pathophenotypes, which can also be taken 
into account in the generation of more appropriate nosologies16.

The present work aims to provide an approach to analyse the different models that can be generated by per-
forming clustering to group diseases based on their biological features. In a previous work, a narrow set of the 
options displayed now here was studied17, even though the results were not accurate enough. The current paper 
deeply investigates by means of an extensive methodology, the novel disease groups to be obtained by applying 
different techniques (as distance computation or clustering algorithms implementation) on disease molecular 
data. The paper is organized as follows: “Results” section explains the different outputs obtained when generating 
the models and focuses on two models selected as best given different evaluation considerations. “Discussion” 
section interprets such results indicating the limitations and conclusions of the work. “Methods” section describes 
the entire pipeline that was performed throughout the analysis, including all the methodology that has been used.

Results
The present work has researched in the generation of potential nosological models by performing clustering on 
diseases. For such a purpose, we have built different diseases sets associated to different biological features (genes, 
proteins, metabolic pathways and variants), and computed distance matrices regarding binary and numeric vec-
tors. Moreover, different distance metrics have been considered for each type of vector and several clustering 
algorithms have been implemented. The evaluation and validation of the generated models has been performed 
according to intrinsic metrics (number of clusters, Silhouette coefficient, Calinski–Harabasz index, etc.) and to 
the domain knowledge. The methodology followed has been comprehensively described in “Methods” section, 
and consisted of five main subsections: “Datasets, disease features and vector types” section (where the data 
typology is detailed and fully explained, as well as the motivation of the different configurations considered); 
“Computing diseases distances” section (where all the metrics used to measure the distance between pairs of 
diseases regarding the different types of biological features are explained); “Clustering methods and algorithms” 
section (where the different algorithms employed to group diseases are detailed); “Evaluation” section (where 
we included the specifications of the intrinsic evaluation methods used); and “Validation” section (where we 
described how we validated the obtained results).

The results from the different configurations are detailed in the file ‘all_results.csv’ of the repository (see “Data 
availability” section). In it, all the established combinations of the considered factors and parameters are shown, 
as well as the outcomes for the evaluation metrics. The algorithms that can be found in this file are DBSCAN, 
HDBSCAN, OPTICS and KMeans (see “Clustering methods and algorithms” section). The used datasets were 
the ‘complete’ (for each feature) and ‘inner’ (for all features) lists of diseases, whereas the vectors were of binary 
(‘bool’) or of numeric (‘real’) type (see “Datasets, disease features and vector types” subsection). The distance 
metrics were ‘dice’, ‘hamming’, ‘jaccard’ and ‘sokalsneath’ for binary vectors and ‘correlation’, ‘cosine’, ‘euclidean’ 
and ‘minkowski’ for numerical vectors (see “Computing diseases distances” section and “Supplementary Infor-
mation - S2. Formal distance metrics definitions” subsections for further explanations). Every combination was 
repeated for each feature: ‘gene’, ‘protein’, ‘pathway’ and ‘variant’ for binary and ‘gene’ and ‘variant’ for numerical 
vectors. In the case of DBSCAN, the different combinations of ‘Epsilon’ and ‘MinPts’ were included. For each 
generated model, the number of clusters (‘clusters’), the number of outliers if possible (‘noise’), ‘Silhouette’, ‘SSE’ 
(only for KMeans and meaning the Sum of Square Errors), ‘Calinski–Harabasz’ and ‘Davies–Bouldin’ scores were 
indicated (for more information, see “Evaluation” and “Validation” sections).

These results were filtered to obtain a narrower set of clustering models. The highest Silhouette models for 
each combination of the factors and parameters were selected. Additionally, only those models with values of 
Silhouette score greater or equal to 0.3 and with a minimum of 10 clusters formed were maintained. First filtering 
is justified on the ground that clustering models with a Silhouette score under 0.3 are usually interpreted as not 
showing a substantial structure. Biologically, this can be deciphered as follows: arrangements presenting scores 
under 0.3 would not be presenting groups with diseases as molecularly close to the other diseases within their 
cluster. That is, the clustering result could be bundling diseases with no molecular resemblance, thus providing 
less accurate models from the biological point of view. Second filtering is justified on the ground that models with 
less than 10 clusters tend to aggregate too many diseases inside each cluster, which would become garbled. For 
this reason, some of the combinations are not presented and HDBSCAN (as did not generate models with such 
conditions) is not shown. These best results models are included in ‘best_results.xlsx’ at the repository, along with 
the highest Silhouette results with respect to the different algorithms, the different distance metrics and the differ-
ent features. Table 1 contains such results of DBSCAN, Table 2 does likewise for OPTICS and Table 3 for KMeans.

Agglomerative hierarchical clustering was not optimized (and therefore not included in the previous tables) 
but graphically represented by dendrograms to have a view of the relationships established between diseases 
from the hierarchical point of view. Such visual representations were considered much more interesting in this 
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Table 1.   Best results obtained when performing DBSCAN in the different datasets, with the different types of 
vectors and measuring diseases distance according to different metrics.

Algorithm Dataset Vector Distance Feature Clusters Noise Silhouette
Calinski–
Harabasz Davies–Bouldin

DBSCAN

Complete

Binary

Dice Pathway 833 2236 0.4 14.49 1

Hamming Pathway 22 420 0.56 538.49 2.42

Jaccard Pathway 832 2108 0.44 17.34 1.03

Sokalsneath Pathway 786 1847 0.48 28.82 1.04

Numeric

Correlation Gene 1760 4152 0.4 10.82 1.03

Cosine Gene 1760 4148 0.4 10.78 1.03

Euclidean Gene 92 552 0.34 140.27 5.69

Inner

Binary

Dice Pathway 462 1052 0.31 22.24 1.18

Hamming Pathway 11 413 0.59 843.7 2.75

Jaccard Pathway 513 1314 0.37 16.86 1.12

Sokalsneath Pathway 515 1486 0.4 19.81 1.03

Numeric

Correlation Gene 683 1343 0.38 8.04 1.32

Cosine Gene 684 1337 0.38 8.03 1.32

Euclidean Gene 33 268 0.33 146.57 3.47

Minkowski Gene 33 268 0.33 146.57 3.47

Table 2.   Best results obtained when performing OPTICS in the different datasets, with the different types of 
vectors and measuring diseases distance according to different metrics.

Algorithm Dataset Vector Distance Feature Clusters Noise Silhouette
Calinski–
Harabasz Davies–Bouldin

OPTICS

Complete

Binary

Dice Pathway 1111 1645 0.47 14.22 1.21

Hamming Pathway 1001 2048 0.39 6.47 1.56

Jaccard Pathway 1101 1677 0.49 14.47 1.12

Sokalsneath Pathway 1087 1722 0.51 17.16 1.11

Numeric
Correlation Gene 2213 3095 0.45 10.4 1.14

Cosine Gene 2199 3026 0.46 10.9 1.14

Inner

Binary

Dice Pathway 749 1157 0.39 10.64 1.25

Jaccard Pathway 741 1187 0.41 10.98 1.14

Sokalsneath Pathway 729 1228 0.43 13.19 1.12

Numeric
Correlation Gene 892 1195 0.45 8.94 1.23

Cosine Gene 887 1175 0.46 9.2 1.22

Table 3.   Best results obtained when performing KMeans in the different datasets, with the different types of 
vectors and measuring diseases distance according to different metrics.

Algorithm Dataset Vector Distance Feature Clusters Silhouette

Sum of 
Square 
Errors

Calinski–
Harabasz

Davies–
Bouldin

KMeans

Complete Binary
Jaccard Pathway 280 0.3 26,716.4 237.83 1.4

Sokalsneath Pathway 280 0.31 15,093.87 215.77 1.35

Inner

Binary

Dice Protein 800 0.31 3702.47 25.23 1.2

Jaccard Protein 800 0.34 2633.78 21.37 1.23

Sokalsneath Protein 800 0.35 2296.09 16.82 1.37

Numeric
Correlation Gene 800 0.39 4146.08 22.42 1.08

Cosine Gene 800 0.38 4143.6 22.59 1.09
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context rather than knowing the number of clusters that would obtain the model with the biggest Silhouette 
score. One dendrogram has been generated for each combination of dataset, type of vector, distance and feature, 
as can be observed in the Supplementary Information section (S1. Hierarchical clustering dendrograms). All 
of them were obtained by means of Ward linkage method. Special relevance got the dendrograms obtained by 
Euclidean distance matrices, where relationships between all diseases were so well distributed along the tree that 
they can be seen at the naked eye.

Distributions of the number of diseases inside the clusters corresponding to DBSCAN and KMeans models 
were retrieved and studied but OPTICS models were preferred over the previous. The reason was that the first 
two had the tendency of grouping a high proportion of the diseases in one large cluster and most of the other 
many clusters had few diseases inside them. A model with a more homogeneous distribution of the number of 
diseases along the groups was searched in the current work.

Two of the obtained models were chosen to be further analysed, both generated with OPTICS algorithm. 
The first one was obtained from the complete dataset, using numerical vectors, genes as features and cosine 
metric to compute distances. Such model results were of 2199 clusters, 3032 diseases as noise (29% of the entire 
dataset), a Silhouette score value of 0.46, a CH score value of 10.9 and DB score value of 1.14. The distribution of 
the number of diseases along the obtained groups in this model is represented in Fig. 1. The second model was 
generated by the inner dataset regarding pathways as the studied features, with binary vectors and computing 
distances with sokalsneath metric. The global results for this model were of 729 clusters, 1228 diseases as noise 
(30%), a Silhouette score value of 0.43, a Calinski–Harabasz (CH) score value of 13.19 and Davies–Bouldin (DB) 
score value of 1.12. The distribution of the number of diseases along the formed groups for the second model 
can be seen at Fig. 2. Both models’ specific structures are included in two files in the repository (‘optics_com-
plete_real_cosine_genes.tsv’ for the first one and ‘optics_inner_bool_sokalsneath_pathways.tsv’ for the second), 
where disease Unified Medical Language System (UMLS) Concept Unique Identifiers (CUIs), their names, the 
corresponding cluster number and the number of items in each cluster were provided.

The visual representation of the clusters formed in the two-dimensional space obtained reducing the features 
from the first and second models are included respectively in Fig. 3 and Fig. 4. The axes in both figures represent 
the derived dimensions when performing a Principal Component Analysis (PCA) and t-distributed Stochastic 
Neighbour Embedding (t-SNE) on the datasets. Each point corresponds to a disease, with its colour and radius 
respectively corresponding to the associated cluster and its size. Only clusters containing more than 10 (in the 
first model) and more than 15 (in the second one) diseases were included in the plot. Comparing both representa-
tions, it was intuitively noticed a better configuration of the first model than the second, since the aggregations 
were more easily distinguishable to the eye in the first case. Hence, especial attention and further analyses were 
taken on the first clustering model.

A deeper analysis of the arrangement of the values of Silhouette score was performed in the first model. All 
Silhouette scores associated to each of the diseases in the complete genes dataset accordingly to the categoriza-
tion provided by this model are attached in the repository mentioned file ‘optics_complete_real_cosine_genes.tsv’. 
The distribution of Silhouette samples values was depicted along the first 9 largest clusters in Fig. 5. As it can be 
seen, excluding some outliers, all diseases in these clusters showed scores ahead the average of Silhouette (0.46), 
and were significantly closer to 1. Additionally, discarding the values of Silhouette score given to the diseases 
categorized as noise, the average of such coefficient for the rest of the instances in the model (a total of 7268 
diseases) was 0.78. From those diseases, just 116 had a Silhouette value lower than 0. Only 3 clusters (cluster 

Figure 1.   Distribution of the number of diseases in each cluster for the first analysed model obtained 
performing OPTICS. The model was generated from the complete dataset regarding genes as the studied 
features, with numeric vectors and computing distances with cosine metric. The histogram bars were filtered so 
that clusters with less than 5 diseases are not displayed. The global results for this model were of 2199 clusters, 
3032 diseases as noise (from a total of 10,300), a Silhouette score value of 0.46, a CH score value of 10.9 and DB 
score value of 1.14.
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166, 926 and 980) had an average Silhouette score value below 0. This can be interpreted as a good sign in the 
validation of the generated groups as it will be discussed.

Discussion
To have a structured view of the parts that have an interest in discussing for our research, this section was 
divided as follows: first, we analysed the obtained results regarding the different features; second, in the context 
of the computed distances and types of vector; and finally, from the different algorithms point of view. Further 
interpretations are then exposed. The section ends with the conclusions, limitations and future lines of the study.

In general, the features that were related to highest Silhouette scores, highest CH scores and lowest DB indexes 
results were pathways, followed by genes and then proteins. Variants did not provide high quality results in the 
current work due to the implicit high dimensionality, as there were 67,842 different genetical variants. Highest 
values of Silhouette (and in general, better clustering organizations) were obtained in the case of the complete 
datasets rather than considering the inner disease list. Even though at a first instance it was thought that poor-
est results would be obtained from the complete datasets due to the large number of diseases to group, it was in 
such cases where highest quality outcomes were derived. This make us think that finer models are brought on 
from comprehensive knowledge bases, where a global picture of disease relationships is depicted. In other words, 
the inner dataset could be overlooking some molecularly interesting relationships that can be significant when 

Figure 2.   Distribution of the number of diseases in each cluster for the second analysed model obtained 
performing OPTICS. The model was generated from the inner dataset regarding pathways as the studied 
features, with binary vectors and computing distances with sokalsneath metric. The histogram bars were filtered 
so that clusters with less than 5 diseases are not displayed. The global results for this model were of 729 clusters, 
1228 diseases as noise (from a total of 4130), a Silhouette score value of 0.43, a CH score value of 13.19 and DB 
score value of 1.12.

Figure 3.   Visualization of the first analysed model obtained performing OPTICS. Each point represents a 
disease, plotted in the two-dimensional space obtained once applied PCA and t-SNE to the genes feature matrix 
related to the complete set of diseases. Different colours symbolize different clusters. The size of the points 
ranges accordingly to the clusters’ size. Only diseases in clusters containing more than 10 diseases have been 
represented for the sake of clarity (a total of 468 diseases).
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generating these novel models. Regarding the type of vector, a general tendency of better results related to one 
or another was not observed. However, from the biomedical background perspective, models obtained from 
numerical vectors appeared to be digging deeper as they quantified disease-feature associations.

Taking into account the different metrics employed to compute disease distances, although the results highly 
depended on the used algorithm, highest Silhouettes (not implying necessarily best results here) came from 
hamming and sokalsneath indexes. Nevertheless, hamming distance for example did not give the impression of 
meeting the suitable needs to represent distances between diseases given its definition. Such metric measures the 
minimum number of substitutions required to change one vector into the other, so when it comes to represent 
biological feature binary vectors of diseases, this ‘edition’ concept does not seem coherent. As an example, it 
would not be reasonable to measure the distance of the substitutions from one gene vector to other gene vector, 
as the edit distance between the vectors would not consider the biological insight of ‘editing’ one gene into the 
other. Once again, the general understanding of the problem was crucial to address potential solutions.

Referring to the different algorithms, best results were delivered when performing clustering with OPTICS, 
nearly followed by DBSCAN. HDBSCAN did not provide suitable nosological models under the established 
conditions. KMeans was not the best option in the light of the computation cost and time given the datasets 
dimensions, remaining impossible to accurately optimize the number of clusters in it. For the grouped best 

Figure 4.   Visualization of the second analysed model obtained performing OPTICS. Each point represents a 
disease, plotted in the two-dimensional space obtained once applied PCA and t-SNE to the pathways feature 
matrix related to the complete set of diseases. Different colours symbolize different clusters. The size of the 
points ranges accordingly to the clusters’ size. Only clusters containing more than 15 diseases have been 
represented for the sake of clarity (a total of 409 diseases).

Figure 5.   Distribution of Silhouette coefficient in the clusters formed in the first analysed model obtained 
performing OPTICS. Only the 9 first largest clusters are shown, depicted sorted by the number of diseases 
(cluster 165 has 29 diseases while cluster 1043 has 16 diseases). The specific diseases grouped inside each cluster 
can be found at the public repository.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21096  | https://doi.org/10.1038/s41598-021-00554-6

www.nature.com/scientificreports/

results, it was satisfied that in each dataset and type of vector, the feature from which such models have been 
generated is always the same.

Two models have been chosen as the preferred when putting together all the described outcome factors to 
be considered while clustering diseases. Both models were generated applying OPTICS algorithm. The first was 
developed in the complete dataset regarding genes, with numerical vectors and implementing cosine metric to 
compute distances. The second one derived from the inner disease list, using pathways as the studied features, 
represented as binary vectors and computing sokalsneath distance. They represented the differences between two 
distinct methods to arrange new accurate disease groups with the same algorithm but leading to totally different 
outputs. The placement of the clusters in the two-dimensional representation was considered finer in the first 
model since clusters were better distributed in relation to the dimensions, and therefore additional attention 
was paid to such grouping.

Silhouette analysis of the former clustering model has been key to highlight the accurate disposition of 
diseases in such groups. In this model, the average value of Silhouette coefficient over the 10,300 diseases was 
0.46, which ascended up to 0.78 when computed for the 7268 diseases ignoring noise points. Such Silhouette 
coefficient average (not considering outliers) indicates that, from the mathematical point of view, diseases inside 
each cluster formed in this model are highly bound and related to the rest of diseases in the same cluster. And 
they are poorly associated and well separated from diseases in the other clusters. This reveals that the current 
diseases layout was of considerable high quality in comparison to the other models generated. Moreover, there 
were not many diseases grouped in a cluster (that, is not categorized as outlier points) that had a small Silhouette 
coefficient value. The proportion of those diseases when compared to the whole set was relevantly lower: only 
1.6% of the diseases not categorized as noise points had Silhouette values under 0 and just 14% of these diseases 
had a Silhouette value under the global average (0.46). The 10 biggest clusters’ Silhouette values distributions were 
represented. Such clusters were chosen among the others as to be containing more different diseases and therefore 
having a wider range of Silhouette values. Even selecting those clusters, the Silhouette coefficient distributions of 
the diseases within those clusters were fairly close to 1. Merely a few diseases in the 10 biggest clusters presented 
Silhouette coefficient values under the average, just a 5% of diseases from the total of diseases in those clusters. 
All these facts stemmed from the closeness of most clusters Silhouette scores to 1 instead of to negative values, 
which denoted a well cohesion and separation inside and between clusters respectively.

Another valuable point is that the model here presented is a new way of categorizing diseases based on their 
molecular traits, in particular, disease associated genes. Such categorization provides new information that 
other standard classification systems did not. Our model was compared to 3 traditional and commonly used 
taxonomies: Disease Ontology (DO), International Classification of Diseases (ICD) and Medical Subject Head-
ings (MeSH). The correspondences between the different diseases, their given cluster and their classes in the 
official classifications are included in the repository file ‘optics_complete_real_cosine_genes-OTHERdiseaseclas-
sifications.xlxs’. As it can be observed, the obtained groups do not seem to be related to such different systems’ 
categorizations. For that reason, the information that provides our categorization can be extremely interesting 
and an contribute to adequately configurate official disease classification systems to include new biological and 
molecular insights.

Such biological insights could be studied for some clusters of this particular model (analyzing all the models 
with all their corresponding clusters would be unfeasible). The relevant information of the first 9 largest clusters 
is presented in Table 4, where the diseases in each cluster, the gene(s) associated to all of them, and other gene(s) 
associated to some of them are included. It can be observed how the clustering algorithm has grouped diseases 
that share biological features (in this case, genes) in the same groups. All the diseases in all the clusters share at 
least one important gene, which plays a leading role when organizing diseases in such a way. For example, the 29 
diseases in cluster 155 are somehow related to POMC (propiomelanocorcortin) gene, the 24 diseases in cluster 
701 to TTR (transthyretin) and the 20 diseases of cluster 761 to SCN5A (sodium voltage-gated channel alpha 
subunit 5). Some of the diseases inside these groups would never be together in traditional nosological models 
due to the already explained lacks. Here, we see diseases grouped based on their association to molecular traits, 
namely genes, and therefore new interesting clusters can be analyzed. In the largest cluster, according to MeSH 
classification of diseases, we can observe ‘Neoplasms’, ‘Endocrine System Diseases’, ‘Musculoskeletal Diseases’, 
‘Congenital, Hereditary, and Neonatal Diseases and Abnormalities’, ‘Nutritional and Metabolic Diseases’, ‘Stoma-
tognathic Diseases’, ‘Nervous System Diseases’, ‘Cardiovascular Diseases’ and ‘Eye Diseases’ all together in the 
same group. The same thing happens with the other traditional taxonomies: the present clustering configuration 
presents different traditional categories within the same cluster.

Although the results obtained seem accurate and relevant to us, the work has some limitations. One of the 
most important would be the fact that when generating new nosological models, it is expected that this new 
disease taxonomies include not only disease molecular information but also phenotypical. Both types of informa-
tion should be present simultaneously in order to provide comprehensive models. However, symptoms were not 
regarded to carry out the study this time, leading to the lack of that knowledge part in our models. Furthermore, 
another problem was the great dimensionality of the data when considering each feature as a variable of the 
dataset. An initial idea was to perform clustering with a meta-feature matrix involving all the features at once, 
so all the information could be present in the model at once. But, given such large number of variables, this 
purpose was discarded.

As the main conclusion of the present research work, our results confirm the possibility of generating novel 
models to group diseases. Such models can be interpreted as new disease nosological groups, providing molecular 
information and insights and not necessarily aligning to already existing disease classification systems, which 
may lack of the aforementioned knowledge. The factors that have to be taken into account when performing this 
type of studies are several, from the used algorithm to cluster diseases to diseases features that will be considered 
and distance metrics. Together with the background knowledge and desired output, intrinsic evaluation methods 
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Cluster number Number of diseases in the cluster Diseases in the cluster
Most important gene(s) associated to 
all diseases in the cluster

Other gene(s) associated to some 
diseases in the cluster

155 29

ACTH Syndrome, Ectopic
Adrenal Cortex Diseases
Adrenal Gland Hyperfunction
Arthritis, Gouty
Facial paralysis
Hypernatremia
Diplegic Infantile Cerebral Palsy
Cerebral Palsy, Quadriplegic, Infantile
Monoplegic Infantile Cerebral Palsy
Calcium Pyrophosphate Dihydrate 
Deposition
Athetoid cerebral palsy
Monoplegic Cerebral Palsy
Hypocortisolism secondary to another 
disorder
Spastic cerebral palsy
Subaortic stenosis
ACTH-dependent Cushing’s syndrome
Adrenocortical hyperplasia
Opsoclonus-Myoclonus Syndrome
Cerebral Palsy, Dystonic-Rigid
Cerebral Palsy, Atonic
Congenital Cerebral Palsy
Sacroiliitis
Cerebral Palsy, Mixed
Cerebral Palsy, Rolandic Type
Kinsbourne Syndrome
Paraneoplastic Opsoclonus-Myoclonus 
Ataxia
Proopiomelanocortin Deficiency
Pyogenic Sacroiliitis
Septic Sacroiliitis

POMC
(propiomelanocortin) PRKAR1A, NR3C1, FGFR1

701 24

Carpal Tunnel Syndrome
Familial Amyloid Polyneuropathy, 
Type V
Trigger Finger Disorder
Amyloid Neuropathies, Familial
Amyloid Neuropathies
Autonomic neuropathy
Systemic amyloidosis
Familial amyloid polyneuropathy, 
type VI
Familial Amyloid Neuropathy, Portu-
guese Type
Familial Amyloid Polyneuropathy, 
Jewish Type
Amyloid Polyneuropathy, Swiss Type
Amyloid of vitreous
Amyloid Polyneuropathy, British Type 
(disorder)
Danish type familial amyloid cardio-
myopathy
Senile systemic amyloidosis
Familial Amyloid Polyneuropathy, 
Appalachian Type
Hereditary cardiac amyloidosis
Protein Misfolding Disorders
Dystransthyretinemic Euthyroidal 
Hyperthyroxinemia
AMYLOIDOSIS, HEREDITARY, 
TRANSTHYRETIN-RELATED
AMYLOIDOSIS, LEPTOMENIN-
GEAL, TRANSTHYRETIN-RELATED
AMYLOID CARDIOMYOPATHY, 
TRANSTHYRETIN-RELATED
CARPAL TUNNEL SYNDROME, 
FAMILIAL
Transthyretin related familial amyloid 
cardiomyopathy

TTR​
(transthyretin) APOA1, GSN, LYZ

Continued
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Cluster number Number of diseases in the cluster Diseases in the cluster
Most important gene(s) associated to 
all diseases in the cluster

Other gene(s) associated to some 
diseases in the cluster

761 20

Torsades de Pointes
Left posterior fascicular block
Paroxysmal familial ventricular fibril-
lation
Ventricular tachycardia, monomorphic
Lenegre’s disease
Congenital long QT syndrome
CARDIOMYOPATHY, DILATED, 1E
SICK SINUS SYNDROME 1, AUTO-
SOMAL RECESSIVE
LONG QT SYNDROME 3
Heart Block, Nonprogressive
Cardiac Conduction Defect, Nonpro-
gressive
Hereditary bundle branch system defect
CARDIAC CONDUCTION DEFECT, 
NONSPECIFIC (disorder)
Ventricular Fibrillation, Paroxysmal 
Familial, 1
Long QT syndrome type 3
ATRIAL FIBRILLATION, FAMILIAL, 
10
LONG QT SYNDROME 2/3, DIGENIC
LONG QT SYNDROME 3/6, DIGENIC 
Disorder
Cardiac channelopathy
Complete heart block with broad QRS 
complexes

SCN5A
(sodium voltage-gated channel alpha 
subunit 5)

KCNH2, KCNQ1, KCNE2, DPP6, 
CALM2, KCNE1, SCN1B, CALM3, 
CAML1, KCNA3, CACNA1C

571 20

Dissociated Nystagmus
Rotary Nystagmus
Periodic Alternating Nystagmus
Symptomatic Nystagmus
Spontaneous Ocular Nystagmus
Vertical Nystagmus
Rebound Nystagmus
Jerk Nystagmus
See-Saw Nystagmus
Retraction Nystagmus
Temporary Nystagmus
Permanent Nystagmus
Unidirectional Nystagmus
Multidirectional Nystagmus
Conjugate Nystagmus
Convergence Nystagmus
Fatigable Positional Nystagmus
Non-Fatigable Positional Nystagmus
LEBER CONGENITAL AMAUROSIS 
6 (disorder)
Cone-Rod Dystrophy 13

RPGRIP1
(RPGR interacting protein 1) -

62 19

Herpes Labialis
Hyperlipoproteinemia Type III
Sea-Blue Histiocyte Syndrome
Internal Carotid Artery Stenosis
Dementia in Parkinson’s disease
Multiple Sclerosis, Acute Relapsing
cortex bone disorders
Common Carotid Artery Stenosis
External Carotid Artery Stenosis
Multiple Sclerosis, Relapsing–Remitting
Apolipoprotein E, Deficiency or Defect 
of
Dysbetalipoproteinemia due to Defect 
in Apolipoprotein E-d
Familial Hyperbeta- and Prebetalipo-
proteinemia
Hyperlipemia with Familial Hypercho-
lesterolemic Xanthomatosis
Broad-Betalipoproteinemia
Floating-Betalipoproteinemia
ALZHEIMER DISEASE 2
LIPOPROTEIN GLOMERULOPATHY
Obstructive sleep apnea hypopnea

APOE
(apolipoprotein E) –

Continued
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Cluster number Number of diseases in the cluster Diseases in the cluster
Most important gene(s) associated to 
all diseases in the cluster

Other gene(s) associated to some 
diseases in the cluster

217 18

MENTAL RETARDATION, 
X-LINKED 2 (disorder)
MENTAL RETARDATION, 
X-LINKED 14
MENTAL RETARDATION, 
X-LINKED 20
MENTAL RETARDATION, 
X-LINKED 23
Mental Retardation, X-Linked 92
MENTAL RETARDATION, 
X-LINKED 82
MENTAL RETARDATION, 
X-LINKED 84
MENTAL RETARDATION, 
X-LINKED 77
MENTAL RETARDATION, 
X-LINKED 81
MENTAL RETARDATION, 
X-LINKED 42
MENTAL RETARDATION, 
X-LINKED 73
MENTAL RETARDATION, 
X-LINKED 53
MENTAL RETARDATION, 
X-LINKED 72
MENTAL RETARDATION, 
X-LINKED 50
MENTAL RETARDATION, 
X-LINKED 95
MENTAL RETARDATION, 
X-LINKED 90 (disorder)
MENTAL RETARDATION, 
X-LINKED 88 (disorder)
MENTAL RETARDATION, 
X-LINKED 41

DLG3
(discs large MAGUK scaffold protein 3)
GDI1
(GDP dissociation inhibitor 1)

–

130 18

Akinetic Mutism
Gerstmann-Straussler-Scheinker 
Disease
Kuru
Prion Diseases
Fatal Familial Insomnia
Human Transmissible Spongiform 
Encephalopathies, Inherited
Wasting Disease, Chronic
SPONGIFORM ENCEPHALOPA-
THY WITH NEUROPSYCHIATRIC 
FEATURES
Creutzfeldt-Jakob Disease, Sporadic
HUNTINGTON DISEASE-LIKE 1
Creutzfeldt-Jakob Disease, Heidenhain 
Variant
Iatrogenic Jakob-Creutzfeldt disease
Other Creutzfeldt-Jakob disease
Amyloidosis, Cerebral, with Spongi-
form Encephalopathy
Acquired CJD
CEREBRAL AMYLOID ANGIOPA-
THY, PRNP-RELATED
Familial Creutzfeldt-Jakob
Familial Alzheimer-like prion disease

PRNP
(prion protein)

CSF2, LAMC2, CTSD, PRDX2, GH1, 
C4BPA, CARD14, MAPT, ABCB6, 
APOE

562 17

Myxedema
Subacute thyroiditis
Thyrotoxicosis
Subclinical hypothyroidism
Severe hypothyroidism
Silent thyroiditis
Toxic thyroid adenoma
Diffuse goiter
Toxic diffuse goiter
Acquired hypothyroidism
Neonatal hyperthyroidism
Autoimmune thyroiditis
Congenital hyperthyroidism
Hyperthyroidism, Nonautoimmune
Hyperthyroidism, Familial Gestational
HYPOTHYROIDISM, CONGENITAL, 
NONGOITROUS, 3
HYPOTHYROIDISM, CONGENITAL, 
NONGOITROUS, 1

TSHR
(thyroid stimulating hormone receptor) TG

Continued
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are key to choose the most suitable model since a ground truth is not available in these cases. The work presented 
here concludes that density-based clustering algorithms (as OPTICS) can be used to group diseases in such 
new nosological models. The model that was identified as to be the best regarding new nosologies requirements 
was obtained by applying OPTICS clustering in the complete dataset of diseases related to numerical vectors 
of disease-gene associations scores, and measuring diseases distance by cosine index. Silhouette score provided 
reliable information concerning the distribution and configuring of the formed diseases groups, allowing us to 
determine the appropriateness of the model.

Some additional work might be carried out in the future to extent the present research lines. On the one hand, 
reducing the dimensionality in a more refined way, as well as filtering or weighting some variables, may improve 
the results and uncover hidden patterns. On the other hand, further exploring of the generated dendrograms as 
well as the ones that would have been obtained by performing HDBSCAN could also lead to some interesting 
outputs. In any case, a better analysis of the models generated by such algorithm should be performed. Also, 
studying the possibility of adding scores of protein-disease or pathway-disease associations may help obtaining 
more accurate models regarding such features18. Overall, suggesting new methods or models to refine the compu-
tation of disease similarities can improve the development of new taxonomies and forward disease understanding. 
Another interesting research question to be posed would be to investigate the relationships of the diseases within 
the new generated clusters regarding the sharedness of drugs indicated for their treatments19. Such studies can 
open new horizons and approaches in the field of drug repurposing among others. Besides, the structure of the 
data appears to be more suitable for a network analysis20–24. The associations between diseases and features offer 
a good starting point to study the relationships between diseases in the context of graph theory. Such analysis 
may provide more insights or head to the discovery of unknown patterns.

Methods
General methodology.  The analysis was divided in five main parts: (i) we first built the diseases datasets to 
be used accordingly to the considered biological features and types of vectors, (ii) then computed the distances 
between diseases using different metrics, (iii) implemented different popular clustering algorithms which were 
(iv) evaluated by intrinsic evaluation metrics, and (v) finally validated the obtained results. The general method-
ology that was followed in this research is summarized in Fig. 6, while the general clustering analysis parts are 
represented in the workflow of Fig. 7.

Datasets, disease features and vector types.  Diseases and their related features’ data were obtained 
from DISNET system (http://​disnet.​ctb.​upm.​es/), a web platform designed for the integration of biomedical 
knowledge and the creation of customisable disease networks25. Although DISNET main available informa-
tion revolves around diseases’ phenotypical knowledge (principally, signs and symptoms), other data regarding 
biological disease features are also included in DISNET. Some of the biological features that can be queried in 
DISNET and that were the chosen traits for the clustering analysis, are genes, proteins, metabolic pathways and 
variants related to diseases. DISNET genes, proteins and genetic variants and their associations to diseases were 
collected from DisGeNET (https://​www.​disge​net.​org/), while metabolic pathways were gathered from WikiP-
athways (https://​wikip​athwa​ys.​org). Both sources were queried in May 2020.

Diseases were filtered to be of UMLS semantic type ‘T047’ (disease or syndrome). They were identified by 
the UMLS CUI. The disease-related features that were considered in each of the different used datasets were as 
follows: 10,131 different genes, 9328 different proteins, 331 different metabolic pathways and 67,842 different 
genetical variants. Distinct diseases subsets were built based on these four types of features, and, when it came 
to select the diseases involved in the analysis, two different approaches were taken:

Cluster number Number of diseases in the cluster Diseases in the cluster
Most important gene(s) associated to 
all diseases in the cluster

Other gene(s) associated to some 
diseases in the cluster

1039 16

Epilepsies, Partial
Epilepsy, Simple Partial
Simple Partial Seizures
Gelastic Epilepsy
Benign Focal Epilepsy, Childhood
Childhood Benign Occipital Epilepsy
Amygdalo-Hippocampal Epilepsy
Rhinencephalic Epilepsy
Occipital Lobe Epilepsy
Subclinical Seizure
Uncinate Seizures
Digestive Epilepsy
Benign Occipital Epilepsy
Migrating partial seizures in infancy
EPILEPTIC ENCEPHALOPATHY, 
EARLY INFANTILE, 14
EPILEPSY, NOCTURNAL FRONTAL 
LOBE, 5

KCNT1
(potassium sodium-activated channel 
subfamily T member 1)

LGI1, CDKL5

Table 4.   Relevant information of the largest clusters formed in the first analysed model obtained performing 
OPTICS. Only the 9 first largest clusters are shown. The number of diseases, the names of such diseases inside 
each cluster and the genes related to those diseases are included in the table. The most important gene(s) 
column depicts the gene(s) that is/are associated to all the diseases in the cluster. The last column presents 
other genes that are related to multiple diseases in the cluster.

http://disnet.ctb.upm.es/
https://www.disgenet.org/
https://wikipathways.org
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•	 The ‘complete’ datasets of all the diseases related to each of the considered features. There were different 
numbers of diseases in the distinct datasets considering each of the features: genes, proteins, pathways and 
variants.

•	 The ‘inner’ dataset of those diseases that had associations to all the related features. That is, those diseases 
that had at the same time associations to both genes, proteins, metabolic pathways and genetic variants.

Dataset

Complete

Inner

Vector

Binary

Numeric

Distance

Dice

Hamming

Jaccard

Sokalsneath

Correlation

Cosine

Euclidean

Minkowski

Feature

Genes

Proteins

Pathways

Variants

Algorithm

DBSCAN

HDBSCAN

OPTICS

KMeans

Hierarchical

Figure 6.   Schematic representation of the considered factors involved in the current analysis methodology. 
Each phase of the performed analysis contemplated different variables, leading to different combinations of 
the possible inputs that would in turn lead to different outcomes. The figure illustrates the possibilities for the 
different used datasets, features, vector types, distance metrics and clustering algorithms.

F1 F2 F3 … Fm

D1 1 0 0 … 0

D2 0 0 0 … 1

… … … … … …

Dn 1 1 0 … 0
F1 F2 F3 Fm

D1 D2 Dn

1) Disease − feature associations
(weighted or not)

2) Feature matrices formed by binary or
numerical feature vectors

a. Datasets structuration in feature matrices 

Disease 
feature 
vector

Diseases
Complete list 
(for each feature)

Inner list 
(for all features)

Biological 
features

Genes
Proteins
Pathways
Variants

b. Computing distance matrices 

D1 D2 … Dn

D1 0

D2

…

Dn

D1 D2 … Dn

D1 0

D2

…

Dn

D1 D2 … Dn

D1 0 1 … 0,5

D2 0 … 1

… 0 …

Dn 0

Metrics
• Binary vectors :

- dice
- hamming
- jaccard
- sokalsneath

• Numeric
vectors :
- correlation
- cosine
- euclidean
- minkowski

c. Clustering implementation and evaluation

Clustering algorithms

- DBSCAN

- HDBSCAN

- OPTICS

- KMeans

- Hierarchical

Evaluation
- Number of clusters
- Noise
- Silhouette
- Calinski-Harabasz
- Davies-Bouldin
- SSE

Figure 7.   Workflow followed to perform the clustering analysis. The main steps in the study were the dataset 
structuring in feature matrices, the distance matrices computation and the clustering implementation and 
evaluation.
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The idea behind considering both ‘complete’ and ‘inner’ datasets was to study whether inputting all features at 
the same time would lead to better models from the mathematical point of view, or would be rather preferable to 
consider one type of feature at a time. Biologically, the initial hypothesis was that the ‘inner’ dataset could provide 
more accurate models given that all features would be considered at once. This would yield to finer outcomes 
since the multiple aspects from molecular insights and relationships of diseases would be taken into account.

The numbers of diseases in each dataset are summarized in Table 5.
The relationships between the diseases and the different features were represented by vectors of features. 

Representing diseases by vectors of related features is supported by Vector Space Models (VSM) methods26. 
When constructing disease feature vectors, two strategies were considered: utilizing the binary disease-feature 
associations (a disease was either associated or not to a feature) or numeric disease-feature relationships (the 
association between a disease and a feature took a numerical value that ranged from 0 to 1, where 0 indicated that 
the disease and the feature were not associated and 1 represented the full disease-feature association). Binary vec-
tors were built for all the features (genes, proteins, pathways and variants) but numerical vectors were only built 
for the case of genes and variants. The explanation of this lies in the fact that disease-feature associations scores 
to build such numerical vectors were only available for genes and variants. Gene-disease associations (GDA) 
and variant-disease associations (VDA) scores were obtained from DisGeNET27. Those scores are in-house 
developed metrics reflecting how well established a particular association is based on the current knowledge. 
They give highest values to associations that are reported by several databases, by expert curated resources, and 
with large numbers of supporting publications (https://​www.​disge​net.​org/​dbinfo). Data in feature matrices were 
not transformed nor scaled since all the values varied from 0 to 1.

Computing diseases distances.  Disease similarities have been widely studied over the literature. Some 
works have demonstrated that using semantic similarity metrics (usually applied to compare texts), for instance 
between biological processes, can enhance the computation and understanding of disease similarity28. Some 
relevant metrics and approaches have been proposed and developed along the years29–34. Beyond the utility that 
these similarities between diseases provide to make novel groups more appropriate from the biological point of 
view, they can also be of use when revealing common pathogenic mechanisms or in drug design, among other 
research scopes35–38. In the present work, disease similarities were treated as distances, where distance = 1 − simi-
larity.

To compute the distance between all the pairs of diseases according to the aforementioned approaches, dif-
ferent well-known literature metrics were considered. Since binary vectors can be understood as categorical data 
and numeric vectors as continuous data, distinct measures had to be studied for one and another. In the case 
of the binary vectors, Dice, Hamming, Jaccard and Sokal-Sneath metrics were used; whilst for numeric feature 
vectors, Correlation, Cosine, Euclidean and Minkowski indexes were computed. Minkowski’s p parameter (order 
of the norm of the difference �Ai − Bi� ) was set to 5. The particular definition and formula of each of the eight 
metrics is attached in the Supplementary Information section (S2. Formal distance metrics definitions). Cor-
relation and cosine distances are very similar but not the same. Figures representing the distribution of such 
disease distances in each dataset and based on the different feature vectors are also included in such section (S3. 
Distributions of the distance matrices). Except from Euclidean and Minkowski metrics (which varied between 
0 and 30 and between 0 and 3 respectively), all the distances ranged from 0 to 1, giving 0 to those diseases that 
were the same (or shared exactly the same features) and 1 to completely distinct diseases.

The computed disease distances were structured in squared symmetric matrices, where columns and rows 
headers represented the list of diseases. The value in each field of the matrices corresponded to the distance 
between the disease of the column and the disease of the row. Therefore, all the elements in the diagonal were 
equal to 0.

Clustering methods and algorithms.  Grouping the instances of a dataset is one of the principal objec-
tives of unsupervised machine learning, receiving the name of clustering. Clustering diseases into groups based 
on their biological features can provide insights towards the most suitable response that should be addressed 
in presence of a disease classified within certain group39, incorporating molecular knowledge to the classically 
phenotypic-oriented taxonomies.

There are numerous methods that implement different clustering algorithms, which can be classified as to be 
partitional, hierarchical or density-based clustering methods. In the present work, five very well-known algo-
rithms representing the different types of methods were used: DBSCAN40, HDBSCAN41, OPTICS42, KMeans 
and agglomerative hierarchical clustering. Besides, each of the clustering algorithms present different input 
parameters and therefore required different parameter’s optimizations.

Table 5.   Number of diseases in each of the considered datasets.

Dataset Feature Number of diseases

Complete

Genes 10,300

Proteins 10,246

Pathways 6708

Variants 6942

Inner All 4130

https://www.disgenet.org/dbinfo
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DBSCAN (Density-Based Spatial Clustering of Applications with Noise) was designed to find core samples and 
expand clusters from them. It requires two parameters: Eps and MinPts. Eps, which defines maximum distance 
between two samples for one to be considered as in the neighborhood of the other, was varied between 0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. MinPts, which specifies the density threshold for dense regions, took the values 
2, 3, 5, 10 and 30. DBSCAN allows categorizing points in the dataset out of any cluster, as noise or outliers.

HDBSCAN (Hierarchical DBSCAN) extended DBSCAN converting it into a hierarchical clustering algorithm. 
It extracts a flat clustering based on the stability of clusters. However, HDBSCAN still requires of a density 
threshold as DBSCAN does. This parameter is MinPts, which for the present study was fixed to 5.

OPTICS (Ordering Points To Identify the Clustering Structure) is a density-based algorithm as well. The advan-
tage of it is that it deals with detecting clustering even in a varying density structure, solving one of DBSCAN 
weaknesses. Therefore, it allows the presence at the same time of higher density and lower density clusters. It 
requires setting MinPts parameter though, which in our case was set to 2.

KMeans and agglomerative hierarchical clustering have been two classical ways of grouping elements. 
Whereas KMeans requires the specification of the number of clusters to be formed, hierarchical clustering can 
aid in the visualization of the relationships established between the different instances. Given the dimensions of 
the datasets, choosing KMeans’ optimal number of clusters, via for example the elbow method, was not feasible. 
Thus, four different values of the number of clusters were predefined in accordance with the number of features 
and diseases in each dataset. With regard to agglomerative hierarchical clustering, the number of clusters was 
not optimized, but one dendrogram was generated for each dataset, type of vector, feature and measure, using 
Ward linkage method.

Evaluation.  One of the hardest points when performing a clustering analysis comes with the evaluation of 
the obtained results. As an unsupervised learning task and in the pursuit of forming new groups, a ground truth 
or a known labelling of the dataset instances may be hidden. In this research case, the purpose was to gener-
ate new nosological models, not necessarily equal to the already existing disease classification systems, so the 
aforementioned tags were not available. Consequently, the ways to assess the resulting model depended on both 
the knowledge on the field and the desired output, and/or on intrinsic evaluation metrics. Intrinsic (also known 
as internal) evaluation refers to the methods used to examine the clustering based on the computed distances 
without knowing the ground truth. In general, such intrinsic methods evaluate a clustering by examining how 
well the clusters are separated and how compact the clusters are43. It should be stressed that, as the present work’s 
main objective was to obtain new models, carrying out an external evaluation was deemed unfeasible. We must 
then rely on these internal metrics in the absence of a better option. Nonetheless, in a future, we do not discard 
to use alternatives to these ways of assessing the models.

The number of formed clusters and the number of instances classified as noise (when possible given the 
algorithms) were two very important parameters to determine the quality of the clustering results. A result with 
either too big or too little number of clusters in relation to the total number of diseases in the dataset would 
have not provided the requested knowledge. Furthermore, a model that categorized a large set of diseases as 
noise would neither have yielded suitable nosologic information. Thus, when evaluating and choosing the best 
clustering models, the values of these two parameters were considered of utter importance. The distribution of 
the number of diseases inside clusters was also taken into account.

However, from the most mathematical and formal point of view, an intrinsic evaluation was needed. Three 
metrics, known to be performing well in a wide range of situations44, were computed for DBSCAN, HDBSCAN, 
OPTICS and KMeans: Silhouette45, Calinski–Harabasz (CH)46 and Davies–Bouldin (DB)47 scores. One additional 
coefficient was computed in KMeans’ case: the sum of square errors (SSE), also known as ‘inertia’ or ‘dispersion’, 
which represents the sum of squared distances of samples to their closest cluster center. Silhouette scores range 
from -1 to 1, where values close to + 1 indicate that the objects are well matched to their own cluster and poorly 
matched to neighbour clusters, and values of -1 indicate that the clustering configuration may have too many 
or too few clusters or overlapped clusters. For their part, higher values of CH indicate better clustering results, 
while lower values of DB metric are related to better clustering configurations. SSE should be minimised in good 
clustering results. Formal definitions of these metrics are provided at Supplementary Information section (S4. 
Formal evaluation metrics definitions).

Validation.  Once the results were obtained, some of them were further analysed to validate the correspond-
ing models. On the one hand, the distributions of the number of diseases in the clusters were represented to 
have an idea of the arrangement of diseases along the different generated groups. On the other hand, visualiza-
tions of the formed clusters in a two-dimensional space were also included. The features were condensed in two 
dimensions by performing first a Principal Component Analysis (PCA) to reduce the dataset to 50 dimensions, 
and afterwards a t-distributed Stochastic Neighbour Embedding (t-SNE)48 to obtain the two dimensions to rep-
resent. Such a dimensionality reduction of the data allowed summarizing the information to plot the different 
groups in the plane. The distribution of the different values of Silhouette associated to each disease and along the 
different clusters was also illustrated for the best model.

Data availability
The code developed for the current analysis and all the results are fully available and accessible at the public 
repository https://​medal.​ctb.​upm.​es/​inter​nal/​gitlab/​disnet/​nosol​ogic-​models-​paper/​tree/​master.
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