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Abstract: In this work, we firstly report the preparation of heterogeneously assembled structures
Au-Ag nanoclusters (NCs) as good drug carriers with high loading performance and biocompatible
capability. As glutathione-protected Au and Ag clusters self-assembled into porous Au-Ag NCs, the
size value is about 1.358 (±0.05) nm. The morphology characterization revealed that the diameter
of Au-Ag NCs is approximately 120 nm, as well as the corresponding potential ability in loading
performance of the metal cluster triggered-assembling process. Compared with individual com-
ponents, the stability and loading performance of heterogeneous Au-Ag NCs were improved and
exhibit that the relative biocompatibility was enhanced. The exact information about this is that cell
viability was approximately to 98% when cells were incubated with 100 µg mL−1 particle solution
for 3 days. The drug release of Adriamycin from Au-Ag NCs was carried out in PBS at pH = 7.4 and
5.8, respectively. By simulating in vivo and tumor microenvironment, the release efficiency could
reach over 65% at pH = 5.8 but less than 30% at pH = 7.2. Using an ultrasound field as external
environment can accelerate the assembling process while metal clusters triggered assembling Au-Ag
NCs. The size and morphology of the assembled Au-Ag NCs can be controlled by using different
power parameters (8 W, 13 W, 18 W) under ambient atmosphere. Overall, a novel approach is
exhibited, which conveys assembling work for metal clusters triggers into heterogeneous structures
with porous characteristic. Its existing properties such as water-solubility, stability, low toxicity and
capsulation can be considered as dependable agents in various biomedical applications and drug
carriers in immunotherapies.

Keywords: Au-Ag NCs; heterogeneous structures; assembling; drug carriers; biocompatibility

1. Introduction

Metal nanomaterials (NMs) are widely used in the fields of catalysis, sensing, and
biomedicine because of their special physicochemical properties and special construc-
tional characteristics [1–5]. In addition, different types of metal NMs have distinct opti-
cal, electrical, and catalytic properties [6–8]. Sorted by crystalline features, metal NMs
could be classified into representative references, based on pure-phased crystalline such
as nanoparticles (NPs) with highly crystalline properties and metal clusters formed by
atoms aggregations [9]. When their properties were evaluated in physicochemical works,
metal clusters drew the most interest among composite materials due to their unique

Int. J. Mol. Sci. 2022, 23, 11197. https://doi.org/10.3390/ijms231911197 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms231911197
https://doi.org/10.3390/ijms231911197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms231911197
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms231911197?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 11197 2 of 16

characteristics [10–13]. Nanoclusters consisting of fewer atoms have a higher specific sur-
face area, which might perform the promised function actively. Obviously, it is feasible to
expand the possibility by integrating different metal clusters or by changing the compo-
sition ratio of metal atoms in clusters by precisely controlling the molar amount of metal
elements [14–17]. In this case, various metal-cluster based materials with different physic-
ochemical properties can be made from one pure-phased metallic element by adjusting
the number of constituent atoms of metallic nanoclusters (NCs) [18,19]. When multiple
elements are used, it is possible to further increase the functional diversity [20,21]. Similarly,
the precious metal clusters are always composed of several hundreds of atoms, such as gold
(Au), silver (Ag), and copper (Cu), which have attracted significant attention due to their
unique properties and related applications [22–25]. In addition, the noble metal clusters
have good fluorescence property [26–29] due to the spatial confinement of free electrons,
which leads to discrete electron hopping [30,31], with the electron energy levels dispersing
from continuous to discontinuous states. The electron hopping becomes active, resulting in
strong light absorption [32–34]. Potentially, the allowed molecular-like properties could
arise from NCs’ size or morphological formation, which would imply interesting optical
property, structural activity, and physical or chemical catalysis [35,36]. It enhances the
previous illustration of functional materials and shows that precious metal NCs have a
wide range of promising applications.

Extended works on noble metal NCs have been widely applied as innovative flu-
orescent NMs in biological applications, environmental sciences, pharmacy, and other
disciplines [26,37–40]. Studies have showed that Au NCs possess a killing effect on both
Gram-positive and Gram-negative bacteria. The interaction of Au NCs with bacteria may
lead to an increase in intracellular reactive oxygen species production in order to kill
bacteria [41]. Ag NCs have antimicrobial effects and are suitable for topical antimicrobial
delivery [42]. Although some progress has been made, there are still some problems and
challenges, such as the small particle size of metal NCs, where it is difficult to control
the reactivity, harsh reaction conditions, unclear surface, interfacial structures, and low
quantum yields [43–45]. Due to the spectral activity and surface activity of functional
surfactants, it could provide functional groups (-NH2, -COOH, -SH) and imply an assembly
mechanism in forming superstructures. It could be proposed that the assembled structures
would be more stable and widely used by comparing it with individual cluster. Shi et al.
have successfully synthesized chiral Au NCs assemblies with strong circular dichroism
(CD) by using atomically precise Au NCs to fabricate ordered assembled structures with
emerging optical activity [46]. By understanding the mechanism of assembly structure,
noble metal NCs would be excellent candidates for assembled building blocks [47,48]. Due
to their thermodynamic stability, the number of constituent atoms of various types can be
easily synthesized in large quantities and could assemble heterogeneous structure at the
atomic level [49]. Yahia et al. reported that cationic polymers mediated the self-assembly of
Au NCs into Au NPs of about 120 nm in diameter while the aggregation-induced emission
phenomenon (AIE) resulted in a 4-fold enhancement of luminescence due to electrostatic
interactions between the polyelectrolyte and the stable surface ligands of Au cluster [50].
The previous works exhibit that there is difficulty in assembling small sized NCs to artifi-
cially control a nanosphere or nanocage structure. Chakraborty et al. suggested atomically
accurate, self-assembled structures (Au cluster) that can enclose plasmonic Au nanorods
and also enhanced the detection limits of sensor devices [51]. Yonesato et al. presented
a controlled assembly method for Ag construction rather than signal cluster [52]. How-
ever, the assembled structures were mainly classified as homogeneous Au-Au and Ag-Ag
formations [15,53,54]. These homogeneous NCs gives remarkable properties through ad-
justing organic ligands, which implied the simple assembly modes and controllable reaction
processes. However, the challenge exists beyond the limitations, poor properties, and weak
structural formation because of its single consistence of homogeneous NCs. It seldom leads
to low sorts of assembled novel structures and interested physical and chemical properties,
which is different from those of individual cluster [15,55].
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Herein, we present heterogeneous assembled structures of Au-Ag by metal cluster
triggered by the assembling process in aqueous medium. It performed well in a drug
loading capacity and biocompatibility due to the porous characterization, which not only
retained the properties of individual cluster (Au, Ag), but also achieved new properties
and extended the application fields. During the assembling process, the resultant Au-Ag
NCs demonstrates glutathione (GSH) promotes combination or integration between Au
and Ag cluster. Au-Ag heterogenous NCs are well-fabricated, the morphology is adjusted
by integrating with previous polymers (poly-vinylpyrrolidone, polyethylene glycol400
and poly-ethyleneimine). Adding an ultrasound field implies that this kind of physical
field can induce the growth of the assembled NCs in assembling processes. The functional
groups on its surface are mainly amino-NH2 and carboxyl-COOH, which are hydrophilic
molecules with high biocompatibility (Figure 1a).
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Figure 1. (a) Schematic diagram of formation and synthesis of heterogeneous assembly structures
of precious metal NCs (Au, Ag); (b)HR-TEM images of Au-Ag cluster @PVP; (c) Self-assembled
mechanism of Au-Ag NCs and (d) HR-TEM images of Au-Ag cluster @PEG400.

2. Result and Discussion
2.1. Synthesis and Characterization of Assembled Heterogeneous Au-Ag NCs

Heterogeneous Au-Ag NCs were fabricated during in-assembly approaches via a
simple approach, as shown in Figure 1a; the scheme could reflect the main bond-forming
process in a chemical environment (Figure 1c). A similar phenomenon was already con-
veyed exactly in our previous works [56]. In the processes of assembled heterogeneous
Au-Ag NCs, the individual Au or Ag cluster were modified by GSH molecule completely,
which played a key role in chemical and physical stabilities. As the protector for individual
cluster, GSH could apply the different functional groups as link agents while meeting other
coupled groups for constructing amid functions. Moreover, there have been many findings
which suggest that assembled nanostructures are composed through hydrogen bonds,
electrostatic and Vander Waals interactions as much as possible. Similarly, the assembled
behaviors might provide a large number of precise, ingenious and accurate for different
structures. The linkages were realized through bonding of approaching surfactants, which
was well utilized in the synthesis process; moreover, its molecular functional groups such
as -COOH (carboxyl) and -NH2 (amino) provided a high possibility for the assembling
processes (Figure 1c). The morphology and size of the formed Au-Ag NCs changed consid-
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erably when compared to the assembled heterogeneous Au-Ag NCs (Figure S1) for single
Au or Ag clusters (Figure S2). Compared to the monolithic nanoclusters, the particle size
of Au-Ag NCs is increased by about 10 times, and the morphology is regular spherical
aggregates. Polymers such as PVP and PEG400 were used to enhance the stability of the
structures, which could facilitate the growth of the assembled structures throughout the
growth process. PEI can be used as a binder to facilitate the generation of the assembled
structure. As shown in Figure S3, in the growth process of assembled heterogeneous Au-
Ag NCs, individual nanoclusters gradually aggregate from small irregular agglomerated
states to regular spherical aggregates under the influence of polymer materials, hydrogen
bonding, and electrostatic interactions. In this work, the bonding response and electrostatic
adsorptions, and the furtherance in assembling would lead to obtaining the heterogeneous
structures, but also the diameter is approximately two hundred nanometers larger. The
modification of assembled structures can not only ensure the dispersion and stability but
also promote the circulation time in vivo and reduce the scavenging effect. Furthermore,
these polymers could improve the efficiency of metal clusters boning together through syn-
ergistic interactions. It can be treated as one soft-template with different clusters implanted
on its surface. It enhanced Au and Ag clusters assembled efficiently and conveyed regular
morphology or structural formations. It was especially good for making heterogeneous
Au-Ag NCs, such as bridge-linkage between Au and Ag clusters, which were obtained and
modified completely by polymers. HR-TEM characterizations proved internal information
and, additionally, the morphological shapes appeared as regular spheres (Figure 1b,d). It
demonstrated the Au-Ag cluster @PVP and Au-Ag cluster @PEG 400 heterogeneously as-
sembled structures at RT with an average diameter of 100 nm. It also implied that the pores
appear in the assembled structure via HR-TEM characterization. All of these assembled
heterogeneous structures eventually showed morphological size uniformity and porous
characteristics. By adjusting the added mole quantification of each component, the high
resolution of analysis should be addressed for understanding structural information.

As shown in Figure 2a,c, the TEM images conveyed Au and Ag NCs could be inte-
grated together as sphere appearance by using PVP as soft template in assembling processes.
The HR-TEM characterization obviously embodied the structural particularity, it indicated
the pore appeared (Figure 2b) and metal cluster could link together after using polymer
molecule (PVP) as synergistic reaction. It revealed one principle about the assembled
structure but also reflected the uniformity of the homogeneous pore well. Additionally,
the observed pore should be adjusted in the assembling process. In detail, the internal
structural measurement to detailed analysis of these assembled Au-Ag NCs was achieved
(Figure 2c), it implied the possible mechanism in fabricating heterogeneity was mainly
determined by successful integration between different components. The characterization
of elemental (Au, Ag) composition and distribution could prove the assembled process;
furthermore, it certified the homogenous consist status while Au integrating with Ag
clusters. In addition, the structural morphology was also confirmed by the distribution
of Au and Ag as much as possible. It confirmed that the Au (yellow) and Ag (green)
are spherically and uniformly distributed in the EDS mapping results, which proved the
elemental composition of this heterogeneous Au-Ag NCs. It indicated the distribution of
Au and Ag in the assembled structure as a homogeneous distribution of porous spherical
structure with porous characteristic (Figure 3a). After characterizations, the pore size can
reach 3.358 nm, which was just a pure phased metal cluster with different polymers. In
these procedures, metal clusters were assembled together by the condensation reaction of
amino and carboxyl groups, but also the hydrogen bonding and electrostatic interactions
attended timely. The polymer materials (PVP, PEG400 and PEI) have the stability to remain
as dispersed and non-agglomerated as possible when integrated with individual metal
clusters. The linkage in this kind of building blocks the enhanced assembling processes;
however, the soft template also provided a precondition in order to construct regular
morphology or keep the uniformity in fabricating Au-Ag NCs. In all this, the assembled
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Au-Ag structure should be considered as a spontaneous fabrication process, with hydrogen
bond, van der Waals force and Ionic bond synergism as the main driving force.
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Fourier transform infrared spectroscopy (FT-IR) was used to demonstrate the presence
of different static functional groups in assembling works. It could convey the initial linkage
between each component and chemical reaction completely. The pure glutathione (GSH)
and PVP could imply the obvious references while comparing with the resultant Au-Ag
cluster @PVP NCs. As shown in Figure 3b, the vibrational spectra of alkyl C-H stretching
in the assembled Au-Ag cluster @PVP was characteristic at 2956 cm−1. The whole reaction
is in the aqueous phase at room temperature, which will not damage the structure of
PVP itself, and PVP acts as a soft stencil and binder in the whole reaction process, and
PVP is a water-soluble polymer with good dispersion to prevent particles from gathering
and precipitating each other. The spectrum of Au-Ag cluster @PVP NCs comparable
to the one of only PVP, indicating that PVP can be used as a stabilizer. The observed
1001 cm−1 to 1058 cm−1 peaks can be attributed to C-O-C stretching, while 1492 cm−1 was
from C-N stretching. The absorption peaks near 3415 cm−1 are O-H stretching vibrations,
near 1543 cm−1 are N-H stretching vibrations, and the bond at 1058 cm−1 is due to C-O
stretching vibrations [57], C=O has a characteristic absorption peak near 1680 cm−1. The
thiol group (-SH) did not appear at 2520 cm−1 due to the integration of GSH and metal
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clusters (Au and Ag). During the assembled process, the main bonding works were realized
for forming amid linkage. The hydrophilic functional groups (carboxyl, -COOH; amino,
-NH2) could couple together in the form of amid linkages, which was enhanced by using
polymeric materials. Therefore, the changes in peak position and relative intensity might
be considered as one essential factor in assembling work. Meanwhile, the Au-Ag cluster
@PEG400 showed the vibration spectra of PEG, Au, and Ag cluster observed that the
FI-IR absorbing functional groups mainly have C-C stretching vibrations near 1358 cm−1,
CH2 stretching vibrations at 1342 cm−1, and C-O stretching vibrations at 1000–1160 cm−1,
respectively (Figure 3b). The combination of PEG and Au-Ag NCs reflected -OH stretching
vibration (2110 cm−1), and -OH bending vibration mode (1650 cm−1). Moreover, the
absorption peak of -OH was at 3500 to 3200 cm−1 [24]. By using PEI as a synergistic agent
in fabricating Au-Ag NCs, there are the same influences and appearance of functional
groups (Figure S5e). Furthermore, the relative stability of these assembled structures
(Au-Ag cluster @PVP, Au-Ag cluster @PEG400) can be realized by measuring their surface
charge in water media and buffer solutions. As shown in Figures 3c and S5d, zeta potential
indicated these assembled structures have a negative surface charge, while PVP and
PEG400 prevent the aggregation of particles through spatial site resistance, forming a stable
colloidal structure that can maintain its stability in DI water and PBS solutions. However,
the shielding of the surface charge of the nanoclusters by the polymer material leads
to an increase in the zeta potential value. The difference in zeta potential value between
two kinds of assembled structure can be ascribed to the chemical charge adsorption through
particular chemical groups (-C-OH, -C=O) influence. Additionally, it proved the structural
stability and water solubility.

2.2. Drug Loading and Releasing Performance of Assembled Au-Ag NCs

Due to the porous characteristic, this assembled Au-Ag NCs can be used as drug carri-
ers in further investigations. As shown in Figure 4a,b, it conveyed the characteristic peak
near 480 nm and 590 nm after the Au-Ag cluster@PEG400 loaded DOX molecule, it illus-
trated the emission spectrum difference before and after DOX molecule loaded completely.
Among them, the assembled Au-Ag cluster@PEG400 had no absorption peak near 480 nm,
which confirmed that DOX could be loaded successfully on Au-Ag cluster@PEG400. After
loaded DOX, the TEM image of whole construction was shown in Figure 4c, it exhibited
a similar morphology to the original structures due to the porous loading particularity.
The further investigation of combination could be attributed to electron adsorption, pore
adsorption and molecular hydrogen bonding [58,59]. The exhibition in loading perfor-
mance could be well-conveyed in optical measurement, and it gave the absorbance peaks
status. Figure S4a showed that DOX is interconnected with the assembled heterogeneous
Au-Ag NCs, in which DOX was encapsulated in the assembled structure, which might lead
to an increase in particle size. Similarly, the typical Au-Ag cluster @PVP NCs were also
checked for measuring its loading performance, as shown in Figure 4d,e. It demonstrated
the absorption peaks (480 nm) and emission difference (590 nm), which proved loading
performance directly. Figures 4f and S4b showed TEM images, showing that the surface
of the assembled structure loaded drug has a polymer film with increased particle size.
Furthermore, the morphological exhibition changed more obviously than PEG400 modified
Au-Ag NCs when loading the DOX molecule. This can be attributed to the target molecules
might enhance the hindrance while integrating with chemical electronegativity groups.
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In another word, the drug entered the assembled structure and loaded in the porous
structure by π-π stacking, molecular hydrogen bonding and electrostatic adsorption during
in loading process. Here, PVP might be thought of as a soft template but also possessed a
certain adsorption effect, so that DOX can be successfully loaded on the assembled Au-Ag
cluster @PVP. Au and Ag cluster with particle size of less than 10 nm were assembled by
PEI into NCs with size of around 50 nm (Figure S5a). In addition, the loading performance
of the heterogeneous Au-Ag cluster @PEI was also characterized as shown in Figure S5f.
There are special phenomena such as color changes in the merging processes and the
particularity of red-shift and bonding formations. When added DOX, the color changed
from orange-red to blue-purple, and the UV absorption peak of the Au-Ag cluster @PEI-
DOX shifted from 480 nm to 580 nm, which was due to the formation of hydrogen bond
between the carbonyl group of DOX (as hydrogen acceptor) and the -NH2 group of PEI
(hydrogen donor) [60]. Amino groups interacted rapidly with the carbonyl groups on DOX
to form hydrogen bonds in aqueous solution, and its morphological features can be seen
in the TEM images as a striated structure with the appearance of a lattice (Figure S5b,c).
All of the above loading performances implied the feasibility of treating these assembled
Au-Ag NCs as one acceptable carrier in further drug delivery. The estimation of the release
performance was realized in vitro DOX release evaluation of Au-Ag cluster @PVP-DOX
and Au-Ag cluster@PEG400-DOX at RT in different pH solutions (PBS pH = 7.4 and 5.8).
The qualitative analysis of the UV-vis absorption spectra as in Figure 5a,b, demonstrated
that DOX can be released significantly more with DOX released at pH = 5.8 than at pH = 7.4
in the form of higher absorbance of DOX (480 nm). Similarly, the fluorescence spectra
also show a higher absorbance of DOX at pH 5.8 at 590 nm and a higher release of DOX
(Figure 5c,d). It demonstrated DOX was released more efficiently in an acidic environment
as measured in optical property characterizations. It fully conveyed that polymers (PEI,
PVP, PEG400) could assist the assembling processes but also illustrated that heterogeneous
Au-Ag NCs has promising applications in the form of biological carriers for targeted
tumor therapy.
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In order to evaluate the releasing performance, the whole assembled NCs were culti-
vated in PBS solution (pH = 5.8). It could reach 69.8% (Au-Ag cluster @PVP) and 65.8%
(Au-Ag cluster @PEG400) of DOX releasing efficiency within 48 h. In this process, DOX
is connected to Au-Ag cluster @PVP by π-π stacking and is also integrated during molec-
ular hydrogen bonding and electrostatic adsorption. An amid group could be achieved
by Au-Ag cluster@PEG400 integrated with DOX, in which case it might form electronic
interactions, hydrazone bonding, and amide bonds. As shown in Figure S6, the standard
curve was used to quantify the concentration of DOX through UV-vis characterizations.
The loading capacity of the Au-Ag cluster @PVP and the Au-Ag cluster @PEG400 could
reach 5.8% and 13.1%, respectively (Figure 6a). Due to the lower relative molecular mass
of PEG400, this spatial repulsion was relatively weak, and the more clusters could attach
to each other, the higher adhesion it surely achieved than PVP [61]. Polymers on the
surface of assembled Au-Au NCs acted as a colloidal stabilizer through spatial repulsion.
Furthermore, the drug loading rate of Au-Ag cluster@PEG400 is higher than that of Au-Ag
cluster @PVP because the affinity of PEG400 was stronger than that of PVP.

By using lyophilization, it found that the Au-Ag cluster @PEG400 could not be
lyophilized to a solid state, which indicated that its adhesion was stronger than PVP
and loaded more drugs. As shown in Figure 6b, the release performance was estimated
in different pH conditions, which indicated that the higher releasing efficiency could be
achieved in pH = 5.8 solvent. The Au-Ag cluster @PVP and Au-Ag cluster @PEG400 can
imply that 62% and 72% of DOX is released within 12 h, respectively. It was significantly
faster at pH = 5.8 compared to pH = 7.2. It underwent a buffer solution (PBS, pH = 7.2),
which meant about 19% and 23% release efficiency of DOX from these two Au-Ag cluster
@PVP and Au-Ag cluster@PEG400, respectively. In weak acidic condition, the protonation
of DOX in the amine group increases its solubility, which enhances the release of Au-Ag
cluster @PVP-DOX and Au-Ag cluster@PEG400-DOX [62]. In addition, these different
types of assembled Au-Ag NCs not only lead to improved physical properties, enhanced
enrichment function, and increased drug loading rate, but also met the requirements for
degradation and self-clearance in living organisms [63,64]. It indicated that the assembled
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structure would accelerate the release performance in tumor cells due to the tumor and
lysosomes’ acidic micro-environment. It could effectively reduce the toxic side effects of
DOX to enhance the tumor killing effect.
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2.3. Biocompatibility of Assembled Heterogeneous Au-Ag NCs

The biocompatibility was evaluated through heterogeneous Au-Ag NCs integrated
with cell lines (239T, HACAT, IMEF) at different culture times and concentrations. Live
cells were stained using CA and dead cells were stained with PI. Different fluorescence
and digital microscopy images of different cell lines were cultured for 2 days, as shown
in Figures 7a and S7, respectively. The cell activity of the Au-Ag cluster @PVP, Au-Ag
cluster@PEG400, and Au-Ag cluster @PEI groups exceeded 90% within 2 days. It can be
visually observed in the fluorogram of cell distribution (green fluorescence without red flu-
orescence). The results of live-dead cell staining showed that the assembled heterogeneous
Au-Ag NCs is highly biocompatible and does not affect cell growth and reproduction with
less cytotoxicity. Cell viability in the presence of Au-Ag cluster @PVP showed 100%, 94%
and 97% viability at concentrations of 25, 50, and 100 µg mL−1, respectively. Even after
2 days, there was no significant change in cell viability, still showed high biocompatibility.
The cell viability in the presence of assembled heterogeneous Au-Ag NCs exhibited ≈98%,
95%, and 90% viability at concentrations of 25, 50, and 100 µg mL−1, respectively. Cell
viability showed high activity after 2 days of increasing concentration incubation. By
keeping constant conditions, it showed excellent adaptation to cell types via culture with
Au-Ag cluster@PEG400. Similarly, the cell viability of the Au-Ag cluster @PEI was over
90% (Figure 7b). All sets of experimental results showed that the assembled heterogeneous
Au-Ag NCs are highly biocompatible.

2.4. Synthesis and Characterization of Ultrasonically Induced Assembly of Heterogeneous
Au-Ag NCs

The high frequency ultrasonic experiment (HFUE) instrument (6 MHz) was selected
in this work. As shown in Figure S8a, it is the main work module and circuit diagram
of device, which was mainly composed of 4 parts of ultrasonic emission circuit. The
ultrasonic field was used to investigate the effects of different powers on the formation of
the assembled structure (Figure 8a). After the physical treatment, Au and Ag clusters were
induced on the ultrasonic planar coupler to form the assembled structure. Ultrasound fields
could accelerate the assemble rate, provide reaction conditions, and promote heterogeneous
structures forming processes (Figure S8b). By assuming that the ultrasonic waves were
emitted from one side, clusters would move toward the acoustic pressure node (red dot
in Figure 8b) stop working for 5 s after 10 s of emission. The acoustic cavitation can
provide sufficient energy for the initiation of free radical reactions, changing into reactive
H· and OH·. As shown in Figure S8c, once a certain amplitude of acoustic rarefaction



Int. J. Mol. Sci. 2022, 23, 11197 10 of 16

passes through solution, the bubbles rupture violently, releasing the high temperature
induced linkage between metal clusters. Ultrasonic irradiation can induce free radicals of
OH· and H· radicals (Equation (1)). These radicals recombined to return to their original
form or combine to generate H2O2 and H2 (Equations (2) and (3)), and the oxidants and
reductants were employed during different reactions of the sonochemical exhibitions. The
functional groups such as -NH2, -OH and -COOH will fabricated linkage in the form of
hydrogen bonds and chemical bonding between Au and Ag NCs. -OH and -COOH can
form hydrogen bonds with water molecules in water, and because the electron-giving
ability of nitrogen atoms is greater than that of oxygen atoms (-NH2 is more electrophilic
than -OH), -NH2 and -COOH can amide to form peptide bonds(-NH-CO-) (Equation (4)).
These chemical bonds connect Au NCs and Ag NCs on the surface of the cluster.

H2O→ H·+OH· (1)

OH + OH→ H2O2 (2)

H·+H· → H2 (3)

-NH2+COOH→ -NH-CO- + H2O (4)
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Figure 7. (a) Representative fluorescence microscopy images of 293T, HACAT and IMEF cells, which
were treated by using 50 µg mL−1 colloidal solutions (Au-Ag cluster @PVP, Au-Ag cluster@PEG400
and Au-Ag cluster @PEI) after 2 days, in preparation for biocompatibility measurements. The scale
bar in the inset corresponds to 100 µm; (b) Relative cell viability of different cell lines 293T, HACAT
and IMEF treated with different concentrations of modified Au-Ag cluster @PVP, Au-Ag cluster
@PEG400 and Au-Ag cluster @PEI for 2 days.

Adjusting the parameters, it was found that Au and Ag could incubate with poly-
mer materials completely; this resulted in heterogeneous Au-Ag NCs under different
ultrasonic powers of 18 W, 13 W, and 8 W, respectively. It implied that the assembled
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Au-Ag NCs could appear while using ultrasonic power of 18 W and 8 W (Figure 8c,d).
HR-TEM characterization showed a regular spherical construction and a regular pore
presence (Figure S10a,f). In terms of PVP, the spherical-like aggregates also appeared while
ultrasonic power was reduced to 13 W and 8 W (Figure S9a,b). The resultant structures
became larger in particle size and irregular in morphology, as evidenced in Figure S10b,c.
Along with ultrasound power increasing, the resultant heterogeneous Au-Ag NCs became
smaller and the shape was gradually more regular than before. When PVP containing non-
breakable C=O was replaced with PEG400 containing C-O-H and C-O bonds, the formation
of the assembled structure was different under the action of ultrasound. The irregular
aggregates appeared while ultrasonic power was increase to 13 W and 18 W (Figure S9c,d).
The resultant structures became irregular in morphology, as evidenced in Figure S10d,e.
Along with ultrasound power increasing, the shape of heterogeneous Au-Ag NCs was
gradually more irregular than before. From this works, it can be seen that the addition of
different polymeric materials resulted in different assembly processes at the same power.
The ultrasound field enhanced the emulsification of non-ionic polymers [65–67] but also
strengthens the binding between Au and Ag clusters.
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Figure 8. (a) Schematic diagram of formation and synthesis of heterogeneous assembly structures
of precious metal NCs (Au, Ag) under ultrasonic conditions; (b) Simulation model while applying
ultrasound fields (6 MHz, 8 W, 13 W, 18 W) from bottom incentive (ultrasonic emission 10 s, stop
5 s); (c) TEM images of Au-Ag cluster @PVP prepared at 18 W ultrasonic power; (d) TEM images of
Au-Ag cluster @PEG400 prepared at 8 W ultrasonic power.

3. Materials and Methods
3.1. Materials

Chloroauric acid (HAuCl4, 99%), sodium borohydride (NaBH4, 95%), L-glutathione
(L-GSH, 99%), polyvinyl pyrrolidone (PVP, Mw: 58,000, 95%), Macrogol 400 (PEG400, Mw:
400, 90%), Polyethyleneimine (PEI, Mw: 800, 90%), Doxo-rubicin Hydrochloride (DOX,
98%), Phosphate buffer (PBS pH = 7.2 and 5.8), Calce-in-AM (CA), propidium iodide (PI)
and Cell Counting Kit-8 (CCK8) were supplied by Aladdin Reagent Co., Ltd. (Shanghai,
China), Silver nitrate (AgNO3, 99%) were provided by KESHI (Chengdu, China). All
chemicals were used without further purification.

3.2. The Fabrication of Assembled Au-Ag NCs
3.2.1. Synthesis of Au and Ag Clusters

The Au cluster was synthesized based on previous work [41]. 0.0461 g of L-GSH
was fully dissolved in 50 mL of aqueous solution, then 0.394 mL of the HAuCl4·3H2O
(0.1 mg mL−1) solution was added into the L-GSH aqueous solution. The mixed solution
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was milky white and was transferred to a magnetic agitator and stirred continuously
(500 rpm) for 5 h at 80 ◦C. The Au clusters was successfully achieved once the color
changed to bright yellow. Dialysis purification process was used to depurate the Au cluster.
Ag clusters have been previously synthesized [68]. Preparation using the same conditions
but replacing the Ag precursor reactant was performed. 0.3073 g of L-GSH was fully
dissolved in 50 mL aqueous solution, then 0.0425 g of AgNO3 was added into the L-GSH
aqueous solution. After 30 min of reaction, 0.0945 g of NaBH4 was added to the mixed
solution. The mixed solution was milky white and transferred to a magnetic agitator and
stirred continuously (500 rpm) for 3 h at −4 ◦C. The Ag clusters was successfully achieved
once the color changed to brownish-black.

3.2.2. Synthesis of Assembling Heterogeneous Au-Ag NCs (Au-Ag Cluster @PVP, Au-Ag
Cluster @PEG400 and Au-Ag Cluster @PEI)

The prepared Au NCs (25 mg mL−1) and Ag NCs (18 mg mL−1) were dialyzed and
purified. A total of 7 mL of Au NCs and Ag NCs was transferred into a small beaker and 1 g
of PVP was added. The whole mixture was kept at 37 ◦C for 24 h with continuous stirring,
avoiding light during the whole experiment. Similar to the above preparation, Au-Ag
cluster @PEG400 and Au-Ag cluster @PEI are formed as Au-Ag cluster @PVP structure.

3.3. Drug Loading and Releasing Characteristics Measurements

A total of 2 mL of Doxorubicin hydrochloride water solution (10 mg mL−1) was added
into 5 mL of Au-Ag cluster @PVP and Au-Ag cluster@PEG400 solution. The solution was
continuously stirred in the dark for 2 h. Subsequently, the solution was dialyzed to remove
the excessive DOX attached on the surface of the particles. The DOX loading ratio was
estimated by the UV-vis spectrometer. To study drug release behaviors, 1 mL of Au-Ag
cluster @PVP-DOX or Au-Ag cluster @PEG400-DOX solution were placed in dialysis bag
(MW: 3500) and immersed in 50 mL of PBS buffer solution with different pH values of
5.8 and 7.4, the solution was then placed in a shaking incubator (37 ◦C, 150 rpm), and
at determined time period, 1 mL of DOX released medium was sampled, and an equal
volume of fresh PBS medium was added to maintain the sink conditions. Then, the released
DOX amount was measured by UV-vis spectrometry.

3.4. Biocompatibility Measurement and Related Experiments

To investigate the cytotoxic effects of different concentrations of heterogeneous assem-
bly materials on 239T, HACAT, and IMEF cells, the three cells were inoculated in 96-well
plates at a density of 5.0 × 103 cells well for 24 h. Media containing Au-Ag cluster @PVP,
Au-Ag cluster@PEG400 and Au-Ag cluster @PEI solutions at different concentrations (2,
5, 12.5, 25, 50, 100 µg mL−1) were added to 96-well plates, and these cells were continu-
ously cultured for 1 and 2 days. Cellular activity was then assessed by CCK8 according
to the manufacturer’s instructions, and cell viability values were measured by measuring
absorbance with an enzyme marker. To further quantify cytotoxicity, live dead cell staining
experiments were also performed.

3.5. Heterogeneous Au-Ag NCs via Assembly Process with Ultrasound Field Function

The selected ultrasonic frequency was 6 MHz, and the ultrasonic induction reaction
was performed with a power of 8 W, 13 W, and 18 W, respectively. A total of 3 mL of each
prepared gold nanocluster and silver nanocluster solution was added to a small beaker,
0.1 g of PVP or 1 mL of PEG400 was added, and the surface of the ultrasonic transducer was
coated with coupling agent to avoid the presence of air to attenuate the ultrasound, and
finally, the beaker was placed on the transducer and reacted under the action of ultrasound
for 8 h.
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3.6. Characterization of Heterogeneous NCs

UV-vis absorption spectra were recorded in the range of 200–800 nm by using a
Varian Cary 50 UV-Vis Spectrophotometer in absorbance mode. Photoluminescence (PL)
spectra were obtained by a Cary Eclipse spectrofluorometer equipped with a xenon lamp. A
transmission electron microscope (TEM, JEM-2800, JEOL Ltd., Tokyo, Japan) with an energy
dispersive spectrophotometer (TECNAI G2 F20, ER-C, Jülich, Germany) was employed
for TEM characterization with an accelerating voltage of 200 kV and a GatanSC200 CCD
camera. Automatic specific surface and porosity analyzer BET (ASAP 2460 3.01) are used
for average pore size measurements. FT-IR spectra data were recorded with a Nicolet
is50 spectrometer (Thermo Fisher, Waltham, MA, USA) in the range from 1500 cm−1 to
400 cm−1. Zeta potential analyzer (Malvern Zeta sizer Nano ZS90, Malvern, UK) is used to
characterize the positive and negative properties of NCs.

4. Conclusions

In summary, one effective approach was designed for making heterogeneous Au-Ag
NCs. Through the chemical reduction and hybrid methods, it overcomes the drawbacks
in preparing heterogeneous structures, which was achieved under organic solvents and
heating high temperature. It presented one practical method for the synthesis of metal
cluster based heterogeneous constructions. Metal clusters (Au, Ag clusters) can integrate
together in the form of regular morphology through synergistic reaction. This could be
realized by linkage from chemical bonding and polymer induction in assembling processes.
The formed structure exhibits relative structural stability, porous characteristics, and pH
dependent properties. The drug loading and releasing performance embodied its structural
particularity. It proved that this heterogeneous structure not only retained the functional
properties of individual building blocks, but also can bring relative novel functions via
assembling procedure. Its biocompatibility exhibition seems to indicate that this kind of
heterogeneous NCs could be considered as one carrier in further investigations due to its
porous property. The resultant Au-Ag NCs showed that the particle size and structure of
assembled heterogeneous Au-Ag NCs were greatly affected with the increase in ultrasound
power, and the formation time of assembled structures was shortened at the same time. It
proved that physical energy (by acoustic cavitation) releasing might induce the assembling
process through influencing the internal bond of polymers. It demonstrated that the
design and application of cluster-assembled structures will allow for a new area in the
design of novel porous structure and super functional structures, which can be utilized in
different applications.
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