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ABSTRACT

Protein–DNA/RNA/protein interactions play critical
roles in many biological functions. Previous studies
have focused on the different features charac-
terizing the different macromolecule-binding sites
and approaches to detect these sites. However,
no common unique signature of these sites had
been reported. Thus, this work aims to provide a
‘common’ principle dictating the location of the
different macromolecule-binding sites founded
upon fundamental principles of binding thermody-
namics. To achieve this aim, a comprehensive set
of structurally nonhomologous DNA-, RNA-, obli-
gate protein- and nonobligate protein-binding pro-
teins, both free and bound to their respective
macromolecules, was created and a novel strategy
for detecting clusters of residues with electrostatic
or steric strain given the protein structure was
developed. The results show that regardless of the
macromolecule type, the binding strength and con-
formational changes upon binding, macromolecule-
binding sites are energetically less stable than
nonmacromolecule-binding sites. They also reveal
new energetic features distinguishing DNA- from
RNA-binding sites and obligate protein- from non-
obligate protein-binding sites in both free/bound
protein structures.

INTRODUCTION

Protein–macromolecule interactions play critical roles in
many biological functions, including gene transcription
and translation, signal transduction, enzyme regulation
and immune response. Since protein–macromolecule
interactions are central to various processes in a living
cell, a detailed understanding of protein–macromolecule
interactions is critical. Such an understanding has

benefited from the increasing number of 3D structures
of protein–macromolecule complexes that are being
solved (1,2). These solved complexes in turn have spurred
research efforts toward characterizing and detecting
protein–macromolecule binding sites. The predicted
macromolecule-binding site(s) of a given protein enable
specific residues to be mutated and their effects on binding
analyzed, thus aiding functional annotation of new struc-
tures from structural genomics projects. They also help to
reduce conformational search in docking a macromolecule
to its target protein, thus reducing the number of false
positives (3). In the following, we summarize for each
macromolecule ligand (DNA/RNA/protein), the known
characteristics of the respective macromolecule-binding
site on the protein and the key approaches used to
detect the site(s).

In binding DNA, proteins achieve binding (i) ‘affinity’
through favorable charge–charge interactions between
positively charged arginine and lysine side chains and
the negatively charged DNA phosphate backbone and
(ii) ‘specificity’ through directional hydrogen bonding
and van der Waals (vdW) interactions (4–6). Hence, posi-
tively charged residues are enriched, whereas negatively
charged residues are depleted in DNA-binding sites.
Given the 3D structure of a DNA-binding protein
(DBP), the DNA-binding site has been identified using
mostly electrostatic potentials in conjunction with other
parameters such as surface accessibility, the protein sur-
face shape, and amino acid (aa) conservation (7–9) as well
as neural network (10) and support vector machine (11).
It has also been identified using support vector machine
(12) given only the 1D sequence of a DBP.

In binding RNA, proteins employ a recognition strategy
similar to DBPs to bind ‘double’-stranded RNA; in addi-
tion, they employ cavities to accommodate unstacked
‘single’-stranded RNA bases (13–21). Given only the
RNA-binding protein (RBP) sequence, its RNA-binding
site has been identified using machine learning approaches
such as support vector machines (12), a neural network
classifier (22) and a Naı̈ve Bayesian classifier (23). If the
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structure of the RBP is available, the RNA-binding site(s)
can been identified using residue and residue pairing pre-
ferences at the protein–RNA interface in conjunction with
the relative residue conservation (24) or the latter com-
bined with electrostatic energies and the protein surface
shape (25). Interestingly, although RNA/DNA-binding
sites are more evolutionary conserved than the rest of
the protein, considering only conservation led to many
false positives and is thus a poor predictor of these sites.

Other than binding DNA/RNA, proteins may also
interact with one another through various recognition
strategies. These protein–protein interactions can gener-
ally be divided into ‘obligate’ interactions of protomers
that cannot exist on their own in vivo; e.g. the Arc repres-
sor homodimer, human cathepsin D heterodimer and
multisubunit enzymes and ‘nonobligate’ interactions of
protomers that can exist independently; e.g. intracellular
signaling complexes and antibody–antigen, receptor–
ligand/hormone and enzyme–inhibitor/substrate com-
plexes (26). Compared to ‘nonobligate’ interfaces, obligate
interfaces are predominantly nonpolar and larger with
more contacts and conserved residues (27–29). In general,
compared to ‘noninterface’ protein surfaces, protein–
protein interfaces are enriched with nonpolar and aro-
matic residues as well as arginine but depleted in the
other charged residues (30,31). The interface residues,
which form vdW and electrostatic interactions between
complementary surfaces (32), are more conserved (33)
and solvent accessible (34), but less flexible (35) than non-
interface surface residues. Given the 3D protein structure,
protein-binding sites have been located based on their
shape, electrostatics and hydrogen-bonding complementa-
rities (36,37). They have been identified using linear regres-
sion (38), scoring function (34,39–43), support vector
machine (44–46), neural network (33,47,48) or Bayesian
networks (49) and the combination of parameters such
as side chain energy, solvation potential, residue propen-
sity and conservation, hydrophobicity, accessible surface
area and different structural indexes.

Whereas previous studies have revealed different char-
acteristics for the different macromolecule-binding sites,
we aim in this work to provide a ‘common’ physical
basis for DNA-, RNA-, obligate protein- and nonobligate
protein-binding sites. Although DNA/RNA/protein-
binding sites are more evolutionary conserved than the
rest of the protein surface, conservation cannot serve as
the common signature for such sites as it may arise not
only for binding macromolecules, but also for structural
purposes (see above). Considering fundamental principles
of binding thermodynamics, however, could provide a
common physical basis for the different macromolecule-
binding sites: aa residues involved in binding a given type
of macromolecule should make a net favorable enthalpic
and/or entropic contribution to the binding free energy.
In the absence of their binding partner and ‘solvent’, these
residues possess suboptimal hydrogen-bonding interac-
tions and packing, thus their ‘gas-phase’ electrostatic
and vdW interactions should be less favorable than
those of residues not involved in any binding interactions.
However, no systematic studies dissecting the individual
energetic contributions of a comprehensive set of DBPs,

RBPs, obligate and nonobligate proteins have addressed
the following questions (to the best of our knowledge):
(i) Regardless of the binding macromolecule type
and the conformational changes accompanying binding,
is the binding site generally less energetically stable than
the nonmacromolecule-binding regions? (ii) If so, does
unfavorable electrostatic or vdW energy dictate the
observed higher energy of a macromolecule-binding site
compared to the nonmacromolecule-binding regions? (iii)
In particular, how do DNA-binding sites differ energet-
ically from RNA-binding sites considering that these
two types of sites share in common positively charged aa
side chains interacting with negatively charged DNA/
RNA phosphate backbone. (iv) Along a similar vein,
how do obligate protein-binding sites differ energetically
from nonobligate protein-binding sites considering that
residues in both types of sites interact similarly with a
protein?
Herein, we address the above questions by first collect-

ing structurally nonhomologous protein structures, both
free and bound to DNA, RNA, obligate proteins and
nonobligate proteins. Given the free or bound protein
3D structure, we computed the ‘relative gas-phase’ elec-
trostatic or vdW energy of each residue, which in turn was
used to assign an electrostatic and a vdW rank to each
residue and its surrounding, as described in the next sec-
tion. The results reveal a common physical basis for the
different macromolecule-binding sites, consistent with
thermodynamics considerations. They also reveal key fea-
tures distinguishing the different DNA-, RNA-, obligate
protein- and nonobligate protein-binding sites that can
provide useful guidelines in developing methods to
detect different functional sites in proteins binding to
more than one macromolecule. Notably, these findings
were found to be independent of the conformational
changes accompanying macromolecule binding.

MATERIALS AND METHODS

Data set of protein–macromolecule complexes

The structurally nonhomologous macromolecule-binding
protein complexes were obtained as follows: For the
DNA/RNA-binding protein data sets, all available �3-Å
X-ray structures of proteins bound to DNA/RNA (but
‘not hybrid’ DNA/RNA) were obtained from the
Protein Data Bank (PDB) (50). For the obligate and non-
obligate protein data sets, �3-Å X-ray structures of pro-
teins bound to an obligate/nonobligate protein including
antigens (51) were obtained from the PPI-Pred server (46)
and the PDB. These DNA/RNA/obligate protein/
nonobligate protein-binding chains were then grouped
according to their CATH codes (52). For each group
of protein structures with the same CATH code, the
structure with the best resolution was selected as the repre-
sentative one. This yielded 76 DNA-binding, 72 RNA-
binding, 88 obligate protein-binding and 77 nonobligate-
protein-binding representative protein structures, whose
PDB entries are listed in Supplementary Table S1.
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Data set of ‘free’ macromolecule-binding proteins

The free protein structures corresponding to the above
complex structures were obtained as follows: For each
protein sequence in the bound data set, the SAS database
(53) was searched for sequences sharing �90% sequence
identity according to pairwise sequence alignments using
CLUSTALW (54). Next, the PDB was searched for �3-Å
X-ray free structures of the homologous proteins. If the
free structures were available, the Ca root-mean-square
deviation (RMSD) from the corresponding bound struc-
ture was computed using the SSAP program (55); the one
with the largest Ca RMSD was selected as the representa-
tive free structure to assess effects of conformational
change upon macromolecule binding. This yielded 41
DNA-binding, 24 RNA-binding, 14 obligate protein-bind-
ing and 38 nonobligate-protein-binding free protein struc-
tures, whose PDB entries and Ca RMSD are listed in
Supplementary Table S1.

Definition of true macromolecule-binding residues

For each representative protein–macromolecule complex,
the same criterion was used to assign the residues involved
in binding the respective DNA/RNA/protein. An aa resi-
due was considered to be a macromolecule-binding resi-
due if it contains one or more nonhydrogen atoms within
vdW contact or hydrogen-bonding distance to the nonhy-
drogen atom of its binding partner directly or indirectly
via a bridging water molecule. For a given complex struc-
ture, the HBPLUS (56) program was used to compute all
possible hydrogen bonds and vdW contacts, which are
defined by a donor atom to an acceptor atom distance
of 3.5 and between 3.5 and 4.0 Å, respectively.

Definition of nonmacromolecule-binding residues

Since a given protein may not only bind to its cognate
macromolecule, but also to other ligands, nonmacromole-
cule-binding residues were defined as those not involved in
binding any macromolecule. Residues binding other
macromolecules were determined by examining homolo-
gous structures of a given protein, which were obtained by
searching the SAS database (53) and the PDB for �3-Å
X-ray complex structures of homologous proteins sharing
�90% sequence identity with the given protein. These
homologous complex structures were used to determine
the residues involved in binding DNA/RNA/protein
according to the above criteria. Thus, for each protein in
a data set, residues ‘not’ assigned as binding DNA/RNA/
protein according to both the representative and homolo-
gous complex structures were defined as nonmacro-
molecule-binding, whereas residues assigned as binding
according to the ‘representative’ complex structure only
were defined as binding to the macromolecule. Supple-
mentary Tables S2A and B illustrate the assignment of
true DNA-binding and nonmacromolecule-binding resi-
dues, respectively, in transcription initiation factor
TFIID (PDB entry 1nh2-C) containing a 50-residue pro-
tein (aa 228–231; 241–286) bound to DNA.

Assignment of protonation states of ionizable residues

For a given protein, all Asp/Glu residues were deproto-
nated, while Arg/Lys residues were protonated. His resi-
dues were protonated if both side chain nitrogen atoms
were within hydrogen-bonding distance to any aa acceptor
atom. Otherwise, they were assumed to be neutral and
the side chain nitrogen that is within hydrogen-bonding
distance of an acceptor atom in the protein was
protonated.

Energy decomposition of a given protein structure

For each l–aa protein, its structure was energy minimized
with heavy constraints on all nonhydrogen atoms using
the AMBER (57) program to relieve bad contacts. Based
on the energy-minimized structure, the gas-phase electro-
static or vdW energy contributed by residue i in the
‘folded’ state, Eele

i or E
vdW

i, relative to that in a ‘reference’
state (E0elei or E

0vdW
i) was computed, where the reference

state for residue i was defined as CH3NH–aai–COCH3.
The change in the gas-phase electrostatic or vdW
energy from the ‘reference’ state to the ‘folded’ state is
given by:

�Eele=vdW
i ¼ Eele=vdW

i � E0 ele=vdW i 1

The gas-phase electrostatic and vdW energies were com-
puted with the all-hydrogen-atom AMBER force field (58)
with "=1 and no cutoffs using the AMBER (57)
program.

Knowing �Eele/vdW
i, the average electrostatic or

vdW energy contributions of aa i and its neighbors,
<�Eele/vdW>i, was computed from:

<�Eele=vdW >i¼ ��Eele=vdW
j=N

aa
i 2

where the summation in Equation (2) is over Naa
i residues,

which include aa i and all residues j whose Ca atoms are
within 10 Å of the Ca atom of aa i.

Electrostatic and vdW energy ranking of ‘each’ residue
in a protein

Each residue of a l–aa protein was assigned an electro-
static rank (Rankelei), a vdW rank (RankvdWi) and a com-
bined electrostatic and vdW rank (Rankele+vdW

i) based on
its <�Eele>i, <�EvdW>i and <�Eele+vdW>i=
<�Eele>i+<�EvdW>i energies, respectively. The l
<�Ex>i (x= ele, vdW, or ele+ vdW) energies were
ordered from the most negative to the least negative/
most positive. These were used to rank the l aa residues
from 1 to 10 such that residues with the top 10% most
negative <�Ex>i energies were ranked 1, residues with the
next top 10% most negative <�Ex>i values were ranked
2, etc. When l/10 is not an integer, each rank except the
largest one (i.e. 1, 2, . . . , 9) is associated with an integral
l/10 residues, while the largest rank of 10 corresponds to
the remaining residues in the l–aa protein. Supplementary
Table S3A illustrates the electrostatic and/or vdW ranking
of each residue in transcription initiation factor TFIID
(1nh2-C).
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Electrostatic and vdW energy ranking of ‘macromolecule’-
binding and ‘nonmacromolecule’-binding residues in a protein

For a protein p in a given data set, knowing Rankxi
(x= ele, vdW or ele+ vdW) of each residue i, the respec-
tive mean ranking of the Nþmp residues involved in binding
a given type of macromolecule m (denoted by superscript
‘+m’) and N�p residues not known to be involved in bind-
ing any macromolecule (denoted by superscript ‘�’) were
computed from:

hRankxiþmp ¼
X

i

Rankxi =N
þm
p 3a

hRankxi�p ¼
X

j

Rankxj =N
�
p 3b

where the summation in Equation (3a) or (3b) is over the
Nþmp and N�p residues in protein p, respectively (see
Supplementary Table S3B).

Electrostatic and vdW energy ranking of ‘different’ macro-
molecule–binding sites

For each data set of proteins that bind a given type of
macromolecule m (m=DNA, RNA, obligate/nonobligate
protein), its average rank was computed as:

hRankxiþm¼
X

p

Rankx
� �þm

p
=Nm 4a

hRankxi� ¼
X

p

Rankx
� ��

p
=Nm 4b

where the summation in Equation (4a) or (4b) is over the
Nm proteins in the data set. In addition, the number of
macromolecule-binding or nonmacromolecule-binding
residues with a given combination of electrostatic and
vdW energy ranking, N+m/�[Rankele, RankvdW], was
counted. Since the number of residues with the largest
electrostatic or vdW rank is generally greater than the
number of residues with other lower ranks, this number
was normalized as n+m/�[Rankele, RankvdW]=N+m/�

[Rankele, RankvdW]/(Nele[Rankele]�NvdW[RankvdW]),
where Nele[Rankele] and NvdW[RankvdW] are the numbers
of residues in the dataset corresponding to a given electro-
static and vdW rank, respectively. For each data set, the
frequency of a given combination of electrostatic and vdW
energy ranking was calculated as

vþm½Rankele;RankvdW�

¼ nþm½Rankele;RankvdW�=
X

nþm½Rankele;RankvdW�
5a

for the macromolecule-binding residues, and

v�½Rankele;RankvdW�

¼ n�½Rankele;RankvdW�=
X

n�½Rankele;RankvdW�
5b

for the nonmacromolecule-binding residues, where the
summation in Equation (5a) or (5b) is over the different
rank combinations.

RESULTS

In each free/bound data set containing DBPs, RBPs, obli-
gate proteins or nonobligate proteins, the protein’s 3D
structure was used to compute the electrostatic rank
(Rankelei), vdW rank (RankvdWi) and combined electro-
static and vdW rank (Rankele+vdW

i) of residue i and its
surrounding, as described in ‘Materials and methods’ sec-
tion. Each residue’s electrostatic and/or vdW rank is an
integer number, ranging from 1 to 10. A high Rankelei or
RankvdWi rank means that residue i and its surrounding
have relatively high electrostatic or vdW energy in the
protein, respectively. Averaging the Rankxi values
(x=ele, vdW or ele+vdW) of macromolecule-binding
and nonmacromolecule-binding residues in a given protein
p yields <Rankx>+m

p and <Rankx>�p, respectively [see
Equation (3) and Supplementary Table S3B]. Averaging
<Rankx>+m

p and <Rankx>�p over the number of
macromolecule m-binding proteins in the given dataset
(Nm) yields <Rankx>+m and <Rankx>�, respectively
[see Equation (4)]. For a given macromolecule m, the
<Rankx>+m values of all macromolecule-binding resi-
dues and the respective <Rankx>� values of all ‘non’ma-
cromolecule-binding residues, as well as the difference
between <Rankx>+m and <Rankx>� (denoted by Dx

m)
were computed from both the free and bound protein
structures (see Table 1).

Electrostatic versus vdW energy ranking distributions
in protein�macromolecule complexes

To determine if the distribution of electrostatic and vdW
energy ranks of residues binding a given macromolecule
differs from that of residues not known to bind any
macromolecule, �+m[Rankele, RankvdW] and ��[Rankele,
RankvdW] were computed for each bound data set, as
described in ‘Materials and methods’ section. The
�+m[Rankele, RankvdW] minus the random frequency,
which is equal to 0.01, shows that the distribution of elec-
trostatic and vdW energy ranks of macromolecule-binding
residues is not uniform and differs from that of residues
‘not’ known to bind to any macromolecule (Figure 1). The
binding site for a given macromolecule is characterized by
unfavorable electrostatic interactions and/or steric clashes,
as evidenced by the frequency of high electrostatic and
vdW energy ranks, which is greater than that in nonma-
cromolecule-binding regions. For example, the �+[10,10]
of residues binding DNA (0.049), RNA (0.034), obligate
proteins (0.047) and nonobligate proteins (0.050) are
greater than the ��[10,10] of nonmacromolecule-binding
residues in DBPs (0.017), RBPs (0.017), obligate (0.016)
and nonobligate (0.017) proteins, respectively. In contrast,
all the ��[Rankele, RankvdW] values are very close to the
random frequency.

Common feature of macromolecule-binding sites

To verify if macromolecule-binding sites are indeed
energetically less stable than nonmacromolecule-binding
sites regardless of the ligand type and the conforma-
tional changes accompanying binding, the electrostatic
and/or vdW ranks of all residues binding a given
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macromolecule m, <Rankx>+m (x=ele, vdW, or
ele+vdW) and the respective values of nonmacromole-
cule-binding residues, <Rankx>�, were derived from the
bound and free protein structures (Table 1). Regardless of
the conformational changes accompanying binding, all
four types of macromolecule-binding sites generally pos-
sess electrostatic and/or vdW interactions that are more
unfavorable than nonmacromolecule-binding regions; i.e.
they possess electrostatic and/or vdW strain. For a given
macromolecule m, the <Rankx>+m of all macromolecule-
binding residues in the bound/free protein structures is
greater than the respective <Rankx>� of all nonmacro-
molecule-binding residues (Table 1). For example, the
electrostatic rank of DNA-binding residues in the DNA-
bound structures (<Rankele>+DNA=6.89) is greater than
the respective value of ‘non’macromolecule-binding

residues (<Rankele>�=5.34). Furthermore, the differ-
ence between <Rankx>+m and <Rankx>� in each data
set (Dx

m) is positive with magnitude > 0.2.
To further verify that macromolecule-binding residues

are destabilized relative to their nonmacromolecule-
binding counterparts regardless of the absence/presence
of the macromolecule and its type, the Mann–Whitney
U-test was used to test the null hypothesis that
<Rankx>+m

p is equal to or less than the respective
<Rankx>�p for each protein in the free/bound dataset,
and the results are summarized in Table 2 and
Supplementary Table S4. The mean electrostatic/vdW
ranks of macromolecule-binding residues, <Rankx>+m

p,
derived from the ‘bound’ protein structures are signifi-
cantly greater than the respective <Rankx>�p of nonma-
cromolecule-binding residues: the P-values in Table 2 are

Figure 1. Electrostatic versus vdW energy ranking distributions in protein�macromolecule interactions. In each contour map, the x and y axes
denote, respectively, the electrostatic and vdW energy ranks, which range from 1 to 10, of residues binding a given type of macromolecule. The
�+m[Rankele, RankvdW] minus the random frequency, 0.01, are color-coded white for 0 < �+m

� 0.005, yellow for 0.005 < �+m
� 0.010, orange for

0.010 < �+m
� 0.015 and red for �+m> 0.015.
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all <0.05, rejecting the null hypothesis with a 95% con-
fidence level. The <Rankx>+m

p values derived from the
‘free’ protein structures are also significantly greater than
the respective <Rankx>�p (P< 0.05), except in two cases.
Based on the ‘free’ structures of 24 RBPs and 14 obligate
proteins, the mean electrostatic rank of RNA/obligate
protein-binding residues (5.71) is ‘not’ significantly greater
than the respective rank of nonmacromolecule residues
(5.47/5.43), as the null hypothesis is rejected by P> 0.05,
but the corresponding mean vdW <RankvdW>+m ranks
are significantly greater than the respective <RankvdW>�p
ranks (see Table 1).

Difference between electrostatic or vdW strain
in a given type of macromolecule-binding site

Although electrostatic and/or steric strain appears to be a
common feature among the four different types of macro-
molecule-binding sites, it is not clear if electrostatic strain
or vdW strain dictates the observed higher energy of a
macromolecule-binding site compared to nonmacromole-
cule-binding regions. Thus, the differences between
<Rankx>+m

p and <Rankx>�p (x=ele or vdW) were
compared for each protein in the free/bound data set
and the Mann–Whitney test was used to test the null

hypothesis that Dele
m=DvdW

m. On the basis of the ‘free’
protein structures, steric strain is dominant in both RNA-
and obligate protein-binding sites: the DvdW

RNA (1.17)
is greater than Dele

RNA (0.23) in RBPs; likewise, the
DvdW

obligate (1.17) is greater than Dele
obligate (0.28) in obli-

gate proteins (Table 1). For these two free data sets, the
null hypothesis, Dele

m�DvdW
m, is rejected with a 95% con-

fidence level, as the computed P-values are <0.05
(Table 2). In contrast, neither electrostatic nor steric
strain dictates the observed higher energy of DNA- and
nonobligate protein-binding sites compared to nonmacro-
molecule-binding regions in the free structures: the
null hypothesis, Dele

DNA (1.21) � DvdW
DNA (0.95) and

Dele
nonobligate(0.75) � DvdW

nonobligate(0.77), is not rejected
(P> 0.05 in Table 2). Interestingly, in the ‘active’ DNA-
bound conformation, electrostatic strain becomes domi-
nant in DNA-binding sites, as the null hypothesis, Dele

m

� DvdW
m, is rejected by a P-value=0.0001. On the other

hand, in the ‘active’ RNA-bound conformation, steric
strain is no longer dominant in RNA-binding sites, as
the null hypothesis, DvdW

RNA (0.83) � Dele
RNA (0.63), is

no longer rejected (P> 0.05 in Table 2).

Energetic difference between DNA- and RNA-binding sites

To determine the energetic difference between DNA- and
RNA-binding sites, the <Rankx>+DNA (x= ele or vdW)
values derived from the free/bound data sets were com-
pared with the respective <Rankx>+RNA values, and the
Mann�Whitney test was used to verify the observed
trends. The results in Tables 1 and 3 show that DNA
and RNA-binding sites possess different electrostatic
ranks but similar vdW ranks, regardless of the conforma-
tional changes that occur upon binding. The mean ‘elec-
trostatic’ rank of DNA-binding residues derived from the
bound/‘free’ structures (6.89/‘6.63’) is greater than that of
RNA-binding residues (6.18/‘5.71’). To evaluate if this
difference is statistically significant, the Mann�Whitney
U-test was used to test the null hypothesis that the
<Rankele>+DNA

p derived from the bound/free structures
is equal to or less than the <Rankele>+RNA

p; the resulting
P-values of <0.05 (see Table 3) rejected the null hypoth-
esis with a 95% confidence level. On the other hand, the
mean vdW rank of DNA-binding residues derived from
the bound/‘free’ structures (6.00/‘6.40’) is similar to that
of RNA-binding residues (6.18/‘6.60’), as the null hypoth-
esis, <RankvdW>+DNA

p=<RankvdW>+RNA
p, is accepted

by P-values >0.05 (Table 3).

Energetic difference between obligate and nonobligate
protein-binding sites

To determine the energetic difference between obligate- and
nonobligate protein-binding sites, the <Rankx>+obligate

(x= ele or vdW) values derived from the free/bound
data sets were compared with the respective
<Rankx>+nonobligate values, and the Mann�Whitney test
was again used to verify the observed trends. Although
obligate and nonobligate protein-binding sites do not
possess statistically different electrostatic/vdW ranks,
they exhibit different electrostatic and vdW rank differences,

Table 1. Energy ranking of macromolecule-binding versus nonmacro-

molecule-binding residues

Macromolecule,

ma
Nm

b N+m,c x <Rankx>+m <Rankx>� �x
m
d

+DNA 76 11% ele 6.89 5.34 1.55
vdW 6.00 5.56 0.44
Ele+vdW 6.88 5.33 1.55

�DNA 41 10% ele 6.63 5.43 1.21
vdW 6.40 5.45 0.95
Ele+vdW 6.73 5.41 1.32

+RNA 72 20% ele 6.18 5.55 0.63
vdW 6.18 5.35 0.83
Ele+vdW 6.24 5.51 0.73

�RNA 24 10% ele 5.71 5.47 0.23
vdW 6.60 5.43 1.17
Ele+vdW 5.89 5.43 0.46

+Obligate protein 88 16% ele 6.04 5.44 0.60
vdW 6.49 5.34 1.14
Ele+vdW 6.20 5.39 0.81

�Obligate protein 14 13% ele 5.71 5.43 0.28
vdW 6.44 5.27 1.17
Ele+vdW 5.85 5.39 0.46

+Nonobligate 77 9% ele 6.34 5.56 0.78
protein vdW 6.13 5.50 0.63

Ele+vdW 6.39 5.53 0.86
�Nonobligate 38 9% ele 6.33 5.58 0.75

protein vdW 6.29 5.52 0.77
Ele+vdW 6.36 5.56 0.80

aThe plus and minus sign indicate protein structures solved in the pre-
sence and absence of the macromolecule, respectively.
bThe number of free or bound proteins in the dataset.
cThe percentage of residues in the dataset that bind macromolecule m.
dDx

m=<Rankx>+m
�<Rankx>�, where <Rankx>+m and

<Rankx>� are computed according to Equation (4a) and (4b),
respectively.
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regardless of the conformational changes that occur
upon binding. The mean electrostatic and vdW ranks
of ‘obligate’ protein-binding residues derived from the
bound/‘free’ data sets (<Rankele>+obligate=6.04/‘5.71’
and <RankvdW>+obligate=6.49/‘6.44’) do not differ
significantly from those of ‘nonobligate’ protein-
binding residues (<Rankele>+nonobligate=6.34/‘6.33’ and
<RankvdW>+nonobligate=6.13/‘6.29’), as the null hypoth-
esis, <Rankx>+obligate

p=<Rankx>+nonobligate
p (x= ele

or vdW), is accepted by P> 0.05 (see Table 3). On the
other hand, the mean difference between the electrostatic
and vdW ranks of ‘obligate’ protein-binding residues,
<�ele�vdW>+obligate, derived from the bound (�0.45) or
free (�0.73) structures differs in sign from that of ‘nonobli-
gate’ protein-binding residues, <�ele�vdW>+nonobligate,
derived from the bound (0.21) or free (0.04) structures.
The null hypothesis that <�ele�vdW>+obligate is equal to or
greater than <�ele�vdW>+nonobligate is rejected by P-values
<0.05 (Table 3). Thus, the mean electrostatic rank is less
than the respective vdW rank for ‘obligate’ protein-binding
residues, but the former is greater than the latter for ‘non-
obligate’ protein-binding residues in the free/bound
structures.

Most proteins possess electrostatic or steric strain in their
macromolecule-binding sites

To determine if every protein has a binding site for a given
type of macromolecule that is less electrostatically and/or
sterically stable than nonmacromolecule-binding regions,
the percentage of proteins in the respective data set with
<Rankx>+m

p greater than <Rankx>�p (x= ele or vdW)
was computed from the free/bound data sets. Regardless
of the conformational changes that occur upon binding,
over 81% of DBPs, RBPs, obligate and nonobligate pro-
teins have binding sites with more electrostatic or steric
strain than nonmacromolecule-binding regions (see
Table 4). For example, out of the 41 free DBPs, 31 or
75.6% exhibit <Rankele>+DNA

p of DNA-binding residues
greater than that of nonmacromolecule-binding residues.
Among the 10 DBPs with <Rankele>+DNA

p equal to or
less than the respective <Rankele>�p, eight DBPs exhibit
<Rankvdw>+DNA

p greater than <Rankvdw>�p. Hence,
95% (39/41) of the DBPs possess DNA-binding sites
with more electrostatic and/or steric strain than the
respective nonmacromolecule-binding regions. The results
derived from the free/bound structures also show that

Table 2. P-values from Mann–Whitney U-tests to test if macromolecule-binding sites are energetically less stable than nonmacromolecule-binding

sites and if electrostatic or vdW strain dictates the macromolecule-binding sitea

Null Hypothesis Dataset m=DNA m=RNA m=obligate m=nonobligate

<Rankele>+m
�<Rankele>� Bound 0 0.0010 0 0.0010

Free 0 0.4023 0.2751 0.0225
<RankvdW>+m

�<RankvdW>� Bound 0.0005 0 0 0.0005
Free 0 0.0006 0.0001 0.0007

�ele
m=�vdW

m Bound 0.0002 0.7432 0.0259 0.6580

Free 0.3910 0.0392 0.0482 0.6551

�ele
m��vdW

m Bound 0.0001 0.6284 0.9871 0.3290

Free 0.1955 0.9804 0.9759 0.6725

�ele
m��vdW

m Bound 0.9999 0.3716 0.0129 0.6710

Free 0.8045 0.0196 0.0241 0.3275

aP-values > 0.05 are highlighted in bold.

Table 3. The P-values from Mann–Whitney U-tests to assess the energetic difference between similar macromolecule-binding sitesa

Null hypothesisb m=DNA, m0=RNA m=obligate, m0=nonobligate

Boundc Freed Boundc Freed

<Rankele>+m=<Rankele>+m0 0.0047 0.0074 0.2760 0.2396

<Rankele>+m
�<Rankele>+m0 0.0024 0.0037 0.8620 0.8802

<Rankele>+m
�<Rankele>+m0

0.9976 0.9963 0.1380 0.1198

<RankvdW>+m=<RankvdW>+m0
0.4602 0.3589 0.1385 0.8689

<RankvdW>+m
�<RankvdW>+m0 0.7699 0.8206 0.0693 0.4345

<RankvdW>+m
�<RankvdW>+m0 0.2301 0.1794 0.9307 0.5655

<�ele�vdW>+m=<�ele�vdW>+m0 0.0045 0.0267 0.0115 0.0465
<�ele�vdW>+m

�<�ele�vdW>+m0 0.0023 0.0134 0.9942 0.9767

<�ele�vdW>+m
�<�ele�vdW>+m0

0.9977 0.9866 0.0058 0.0233

aP-values > 0.05 are highlighted in bold.
b<�ele�vdW>+m=

P
p

Rankele
� �þm

p
� RankvdW
� �þm

p
=Nm, where the summation is over the Nm proteins in the dataset.

cP-values derived from protein structure solved with the macromolecule.
dP-values derived from protein structure solved without the macromolecule.
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between two similar macromolecules, more DBPs and
obligate proteins have destabilized binding sites, as com-
pared to RBPs and nonobligate proteins, respectively.

DISCUSSION

This work presents a general strategy for detecting electro-
static and vdW strain in a cluster of aa residues given the
protein structure without any empirical or adjustable
parameters. This strategy was applied to eight structurally
nonhomologous data sets containing �3-Å X-ray struc-
tures of DBPs, RBPs, obligate and nonbligate proteins,
free and bound to their cognate macromolecule. The
results reveal a common physical basis for DNA-, RNA-,
obligate protein- and nonobligate protein-binding sites;
i.e. they have in common electrostatic and/or steric
strain (Figure 1 and Table 1). This feature appears inde-
pendent of (i) the type of macromolecule-binding part-
ner, (ii) the strength of the protein�macromolecule
interaction (59) and (iii) conformational changes upon
macromolecule binding (see Supplementary Table S1).
The finding that interacting residues possess strain in
conjunction with residue conservation and other struc-
tural features can help in functional annotation, as
shown for the prediction of catalytic residues (60) and
DNA/RNA-binding residues (9,25). We are currently
applying the findings herein to predict the hot spots for
macromolecule-binding sites. It could also help in nar-
rowing the conformational search in pro-
tein�macromolecule docking, and in designing
therapeutic agents in cases where mutations of interact-
ing residues result in pathogenesis.

Comparison with previous work

The finding that macromolecule-binding residues gener-
ally possess more electrostatic and/or steric strain com-
pared to nonmacromolecule-binding residues is in accord
with previous studies. Experimental studies have found
substrate-binding residues in several enzymes such as

barnase (61), Escherichia coli ribonuclease H1 (62), and
T4 lysozyme (63) to be suboptimally stable, as their muta-
tions increased stability but reduced activity. Likewise,
mutations of interface residues in proteins such as retinoic
acid-binding protein (64) and barstar (65) yielded more
stable proteins. For these five proteins, Elcock (66)
found that the functional residues known to be subopti-
mally stable were among the most electrostatically
unstable residues identified by the change in the electro-
static free energy of a side chain upon transfer from aque-
ous solution to the protein. Elcock (66) further analyzed
216 protein–protein ‘complex’ structures and found that
the top 10% most electrostatically destabilizing charged
residues are more likely to be conserved (and thus impor-
tant for function) than to be variable. Ota et al. (60) found
that catalytic residues in 49 representative enzymes desta-
bilize the protein structure more than noncatalytic resi-
dues. Liang and co-workers (67) showed that residues at
the interfaces of eight ‘nonobligate’ heterodimeric protein
‘complexes’ (PDB entries 1ppf, 1cho, 1fss, 1brs, 2sic, 2ptc,
2sni and 1mlc) have higher sidechain energies than the
other surface residues.
In contrast to the above findings, Dessailly et al. (68)

found very poor overlap between destabilizing regions and
protein/nucleic acid-binding sites: none of the 11 protein–
protein or five protein�DNA complexes studied possess
>40% binding residues (defined as residues with two or
more nonhydrogen atoms within 6 Å of a ligand nonhy-
drogen atom) that are found in destabilizing regions; i.e.
the reported sensitivity is �40%. This maybe due to the
different energy functions used to define destabilizing resi-
dues: Dessailly et al. (68) used the electrostatic energy
computed with a dielectric constant of eight and the sol-
vation free energy, whereas we employed relative ‘gas-
phase’ electrostatic and vdW energies [see Equation (1)]
to define destabilizing residues. Thus, in DNA-binding
sites for example, the electrostatic interactions of posi-
tively charged atoms among themselves would be ‘unfa-
vorable’, but those with water molecules would be
favorable. Consequently, the favorable solvation free
energy would cancel in part the unfavorable gas-phase
electrostatic energy, as shown in our previous work (9),
which may partly account for the observed discrepancy.

Energetic features distinguishing binding sites of similar
macromolecules

The results herein have also revealed novel features distin-
guishing DNA- from RNA-binding sites, and obligate
protein- from nonobligate protein-binding sites that are
independent of the conformational changes upon binding.
Although both DNA- and RNA-binding sites have in
common positively charged aa side chains interacting
with negatively charged DNA/RNA phosphate groups,
the mean electrostatic rank of DNA-binding residues is
significantly greater than that of RNA-binding sites.
This difference may reflect the fact that DBPs bind
mostly double-stranded DNA, but RBPs bind not only
double-stranded RNA but also single-stranded RNA.
However, there were insufficient protein structures con-
taining purely double-stranded or single-stranded RNA

Table 4. Number of proteins whose binding sites for a given macro-

molecule is electrostatically or sterically strained

Dataseta Nm
b Nm

ele,c Nm
vdW,d Nm

�,e

+DNA 76 62 (81.6%) 50 (65.8%) 70 (92.1%)
�DNA 41 31 (75.6%) 33 (80.5%) 39 (95.1%)
+RNA 72 44 (61.1%) 47 (65.3%) 59 (81.9%)
�RNA 24 12 (50.0%) 19 (79.2%) 22 (91.7%)
+Obligate protein 88 64 (72.7%) 76 (86.4%) 85 (96.6%)
�Obligate protein 14 6 (42.9%) 13 (92.9%) 13 (92.9%)
+Nonobligate protein 77 48 (62.3%) 52 (67.5%) 64 (83.1%)
�Nonobligate protein 38 24 (63.2%) 27 (71.1%) 31 (81.6%)

aThe plus and minus sign indicate protein structures solved in the pre-
sence and absence of the macromolecule, respectively.
bThe number of protein structures in the dataset.
cThe number and (percentage) of proteins with <Rankele>+m

p>
<Rankele>�p.
dThe number and (percentage) of proteins with <RankvdW>+m

p>
<RankvdW>�p.
eThe number and (percentage) of proteins with <Rankele>+m

p>
<Rankele>�p and/or <RankvdW>+m

p><RankvdW>�p.
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for statistical analyses (see Supplementary Table S1),
as most RBPs bind to RNA molecules containing
double-stranded and/or single-stranded regions and
loops/bulges. Although both obligate and nonobligate
protein-binding sites interact with another protein, the
mean vdW rank is ‘greater’ than the mean electrostatic
rank in obligate protein-binding sites, whereas it is ‘less’
than the mean electrostatic rank in nonobligate protein-
binding sites. The new energetic features distinguishing
obligate protein and nonobligate protein interfaces com-
plement the structural characteristics found in previous
works, which showed that obligate interfaces are more
nonpolar and larger with more contacts than nonobligate
interfaces (28,29).

Analysis of macromolecule-binding sites with no apparent
electrostatic and/or steric strain

Although most macromolecule-binding sites possess elec-
trostatic and/or steric strain, certain sites seem to possess
negligible strain. One possible reason why some proteins
possess apparently stable binding sites for a given type of
macromolecule (with <Rankx>+m

p less than or equal to
<Rankx>�p) is because their nonmacromolecule-binding
regions may comprise of residues that are energetically
unstable in the absence of metal or other cofactors that
play a role in stabilizing the protein structure.
Furthermore, the assignment of nonmacromolecule-
binding residues depends on the availability of highly
homologous structures (see ‘Materials and methods’ sec-
tion). Another possible reason is the finding that most
DBPs and RBPs as well as obligate and nonobligate
proteins with relatively stable binding sites exist as
multimers, whose electrostatic and vdW interactions
were not considered in the present analyses. For example,
the <Rankx>+RNA

p in the ribosome proteins, 1vq8-1,
1vq8-2, 1vq8-D, 1vq8-E, 1vq8-J, 1vq8-X, are less than
or equal to <Rankx>�p, probably because each of these
proteins is part of the large ribosomal subunit of
Haloarcula Marismortui, which comprises 30 protein
chains.

SUPPLEMENTARY DATA

Supplementary data are available at NAR Online.
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