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Abstract: Polydopamine (PDA) has been gradually applied in wound healing of various types in the
last three years. Due to its rich phenol groups and unique structure, it can be combined with a variety
of materials to form wound dressings that can be used for chronic infection, tissue repair in vivo
and serious wound healing. PDA complex has excellent mechanical properties and self-healing
properties, and it is a stable material that can be used for a long period of time. Unlike other dressings,
PDA complexes can achieve both photothermal therapy and electro activity. In this paper, wound
healing is divided into four stages: antibacterial, anti-inflammatory, cell adhesion and proliferation,
and re-epithelialization. Photothermal therapy can improve the bacteriostatic rate and remove
reactive oxygen species to inhibit inflammation. Electrical signals can stimulate cell proliferation
and directional migration. With low reactive oxygen species (ROS) levels, inflammatory factors are
down-regulated and growth factors are up-regulated, forming regular collagen fibers and accelerating
wound healing. Finally, five potential development directions are proposed, including increasing
drug loading capacity, optimization of drug delivery platforms, improvement of photothermal
conversion efficiency, intelligent electroactive materials and combined 3D printing.

Keywords: polydopamine; photothermal; electrical stimulation; antibacterial; inflammation

1. Introduction

Severe trauma can cause a great deal of bleeding [1,2]. Traditional and extensive use
of hemostatic agents, including gauze [3], gelatin sponge [4] and bandages [5], can be
used to seal the bleeding part of the wound surface by pressing or tightening the wound
hard, thereby exerting a hemostatic effect. However, the hemostatic performance will
greatly reduce without pressure. Therefore, traditional hemostatic dressing is not suitable
for large and irregular surface wounds that are inconvenient to press, and uncontrollable
surface bleeding from wounds of fragile visceral tissue [6–9]. This usually results in
secondary injury or secondary pain for the patient [10–13]. So, it is necessary to design
a non-oppressive tissue adhesive with strong adhesion that can quickly stop bleeding and
relieve patients’ pain. Chronic wounds caused by diabetes, burns and other reasons have
cell migration defects and prolonged inflammation during the recovery process, leading
to increased fibroblast apoptosis, oxidative stress imbalance and excessively high levels
of reactive oxygen species [14,15], and low function of collagen deposition [16,17]. The
high level of reactive oxygen species will further promote the proliferation of bacteria,
which cannot provide a good environment for the adhesion and proliferation of tissue
cells. Therefore, it is necessary to design an antibacterial biomaterial that has the ability to
correct or reverse the imbalance in diabetic wounds and has the inherent characteristics of
inflammatory regulation and wound healing acceleration. PDA complex is an ideal wound
dressing that meets the above requirements.

PDA complex refers to a type of wound dressing formed by compounding PDA with
organic or metallic materials through sedimentation, grafting and cross-linking. PDA
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complex is mostly hydrogel, which can provide a moist and closed healing environment
for wounds. PDA is made by polymerizing dopamine monomer. Dopamine is oxidized
in alkaline solutions [18]. Recent studies have shown that PDA, with its photothermal
conversion properties and strong adhesion, can be combined with many organic and
inorganic molecules to prepare PDA complex dressings for different types of wound
healing. PDA complex hydrogel and scaffold can mimic the matrix for cell attachment and
growth. Additionally, due to their unique physical and chemical properties, they have been
proven to generate a microenvironment with antibacterial, anti-inflammatory and electrical
stimulation functions, which can guide cell behavior based on cell-material interactions.
PDA can be combined with a variety of substances to change its mechanical properties,
increase its electrical conductivity, improve and extend its antibacterial efficacy [19], and
enhance its near infrared irradiation (NIR) function [20]. This article briefly outlines
how PDA and different materials are combined, and compares their characteristics. The
antibacterial mechanism of these materials and their regulation of the wound healing
process is described. For the future development direction of PDA complex in wound
healing, multiple levels of potential applications and improvement directions are proposed.

2. Construction Methods and Physicochemical Properties of PDA Complex

PDA can bind a variety of organic materials through its rich catechol and amine groups
and adhere to the organic surface and biological tissues, such as the heart, liver, lung,
kidney and skin [21]. As can be seen from Figure 1, these interactions form nanoparticles,
hydrogels, and electrospinning or surface coatings through physical and chemical cross-
linking with covalent bonds [22] and non-covalent bonds [23]. Different construction
methods and materials can make PDA complex have many properties which are beneficial
to wound healing.
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2.1. Mechanical Properties of PDA Complex

PDA is rich in phenol groups, so it shows strong adhesion to various tissues including
human skin. This allows it to form a closed environment that promotes healing on the
surface of wounds such as burns. However, as a medical dressing, PDA complex also
needs to have mechanical strength similar to that of body tissue and skin, excellent ductility
and compressive strength. Based on these mechanical properties, the advantages of stable
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covering, small displacement, long antibacterial effect and quick wound healing can
be realized.

Non-covalently bonded hydrogels have better ductility and faster biodegradability
compared to covalent hydrogels. The dopamine-talc hydrogel prepared by Jing et al. [24]
elongated by more than 1000%. The axial compressive force of the gel increases with
the increase in the PDA concentration [25]. However, simple non-covalent cross-linked
materials often have insufficient mechanical strength. Therefore, covalent bonds are also
required to form permanent crosslinks, resulting in higher crosslinking densities to produce
better mechanical strength [26]. Ding et al. [27] added PDA to the gelatin hydrogel and
reported that the weakest adhesion connection is the hydrogel interface in the uncoated gel
material. In contrast, the weakest adhesion link in the coated PDA material is the cohesion
of the hydrogel, which proves that the quinones of PDA forms a covalent bond with the
lysine and arginine residues in gelatin. Similarly, the covalent bond between phenol in the
alginate-PDA scaffold [28] contributes to the mechanical strength and structural integrity
of the scaffold [29].

According to the reaction sequence, there are two types of covalent bonds between
PDA and organic molecules. First, In the pH range of 8–8.5, phenolic hydroxyl is ox-
idized to benzoquinone. Through this in situ free radical polymerization, dopamine
is easily deposited on almost any type or shape of the surface through oxidative auto-
polymerization [30–32]. The covalent cross-linking network thus formed is relatively
stable. Second, under weakly alkaline conditions, the adjacent quinones in dopamine
undergo a strong Schiff base or Michael addition reaction with nucleophilic functional
groups (such as amines and thiols) [33]. Benzoquinone can form a Schiff base structure
with another dopamine molecule or an amino group in an organic substance and generate
PDA. The Schiff base structure can be observed from the characteristic enhancement peak
at 1653 cm−1 in the infrared spectrum. Therefore, the stent network is usually formed by
the Schiff base reaction of PDA, rather than simply mixing. This structure can also improve
the mechanical strength of the material by increasing the cross-linking density, but it is not
as stable as the previous combination. This is because if the dynamic Schiff base network is
interrupted over time, the support network may be disbanded [34].

2.2. Healing Properties of PDA Complex

PDA complexes are mostly gel structures. The tensile strength and ductility of PDA
give the gel excellent deformation properties. This means that gel structures can be
deformed to absorb blood to stop bleeding, or deformed to release drugs. Traditional gels
may be unable to recover their original shape or even damaged after excessive deformation,
resulting in short service life. However, due to the rich functional groups of PDA itself
and its unique cross-linked structure, the broken or compressed gel can restore its original
shape (Figure 2). The self-healing properties of the gel indicate that the addition of PDA
can maintain its structural integrity [35]. The self-healing gel structure containing PDA
is divided into non-irritating type, pH-stimulating type and NIR-stimulating type. The
non-irritating self-healing hydrogel is due to the redox properties of the composite material.
For example, graphene oxide (GO) [36] can reduce the oxidized quinone to a hydroxyl
group and re-polymerize to form a molecular chain. The pH-stimulated self-healing
involves electrostatic interaction, and the hardness of the hydrogel also changes with the
pH value [24,37]. The self-healing properties of PDA gel are mainly enhanced by NIR. Laser
irradiation increases the activity of PDA and promotes the interaction between PDA and
macromolecular chains through covalent/non-covalent bonds. The laser-induced heating
increases the mobility of molecular chains in organic compounds [38,39]. The molecular
chains on the crack surface diffuse and interact with adjacent PDA-NPs and repair the
damage. The NIR stimulating PDA complex can also precisely control the shape, location
and speed of gel healing by changing the radiation intensity of the light source, exposure
time and irradiation location.
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It is worth mentioning that once covalent bonds are destroyed after repeated healing
cycles, it is more difficult to restore their original state [36,40]. So, compared with covalently
bonded structures, non-covalent interactions show longer cycle self-healing ability because
non-covalent interactions are reversible. For example, catechol groups on the PDA chain
and the organic molecules containing hydroxyl groups can be connected through non-
covalent bonds to form a recoverable network, effectively dispersing the PDA particles
in the cross-linked network [40]. Or a benzene ring on PDA can be cross-linked with
a positively charged amino group on an organic molecule via cationic-π interactions [41,42].
The supramolecular polymer obtained by this strategy can remain effective in multiple
healing cycles without any loss of polymer properties or structural integrity [43].

2.3. Electrical Conductivity of PDA Complex

Cell adhesion and migration are regulated by functional proteins and ions, and its be-
havior may be regulated by appropriate electrical stimulation (ES) [44,45]. Changes in pro-
tein and ion levels caused by electrical signals may also change cell morphology [46]. This
is because electric fields activate multiple cellular signaling pathways such as PI3K/PTEN,
the membrane channel of KCNJ15/Kir4.2 and intracellular polyamines. These pathways
are involved in the sensing of physiological electric fields, directional cell migration, and
possibly other cellular responses [47]. Electrical stimulation can be divided into exogenous
ES and endogenous ES. The application of exogenous ES in the healing of a skin wound
may require the use of large extra corporeal electrical devices, causing inconvenience to
patients. In a skin wound that destroys the epithelial barrier, the trans epithelial potential
at the wound that completely penetrates the epidermis is zero, establishing a potential
gradient or endogenous current from the undamaged epidermis to the wound [48]. Recent
work has found that wound-induced current can stimulate tissue growth; this phenomenon
is called the electrical axis or electrotaxis [49]. Endogenous ES can guide the migration and
proliferation of cells to the wound along the gradient, regulate cell proliferation, aspect
ratio and gene expression, and promote vascular differentiation and tissue maturation on
the wound surface [50] until wound healing and rebuild the original skin battery. Therefore,
providing conductive pathways to enhance endogenous ES is a more convenient way to
promote wound healing. This endogenous wound current decreases with the increase in
electrical resistance during wound healing, so electrical resistance can be used to measure
wound healing [51].

Conductive materials may make endogenous/exogenous ES more efficient, direct-
ing/aligning cell migration to the wound, ultimately accelerating wound regeneration [52].
When PDA is complexed with conductive materials, ES will be further expanded. Most
traditional electroactive materials lack cell affinity and have poor processing performance,
such as polyaniline, PPy, and PEDOT. In addition, nano-conductive materials are diffi-
cult to disperse in the matrix, and the conductivity of the composite dressing is limited
by the dispersibility of these conductive materials. Improving the dispersion and cell
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compatibility of conductive nanomaterials in a biocompatible matrix has become a key
point in the manufacture of electrically responsive wound dressings [53]. PDA can not
only overcome the limitations of the mechanical properties and processing performance
of electroactive materials, but also make the materials more conductive than ordinary
reducing agents. First, the polymerization of PDA on the surface of the material protects it
from any further attack by alkaline solutions. Additionally, the catechol on the PDA layer is
not only an active site that can induce the deposition of other substances, but also prevents
the agglomeration of cellulose and other substances, uniformly distributes organic mat-
ter, provides suitable conductive pathways [54] and constructs a cellular communication
network. Electrical signal stimulation generated by the material can further regulate cell
differentiation. Additionally, the PDA-modified nanosurface can also guide the directional
migration of cells.

In addition to electromechanically active materials, metals also conduct electricity.
Metal-based materials such as copper, iron, silver, zinc, and titanium have been used as
conductive materials for wound healing and are usually prepared in various nanometer
forms for such applications [55]. For example, the covalent chemical grafting of aromatic
organometallic compound EDC-NHS on the PDA coating significantly improves the con-
ductivity of the stent, and the product can be applied to devices such as biosensors [56]. On
the nanoscale, these metal-based materials can be easily chemically or physically modified
due to their large surface area, and exhibit good biocompatibility and significant electrical
conductivity [57]. Except chemical grafting, the catechol group on the PDA chain can usu-
ally also change the biological function of the metal surface through strong coordination
bonds [58].

3. The Mechanism of PDA Complex for Promoting Wound Healing

The PDA coating can convert a hydrophobic surface to a hydrophilic surface [59],
providing a moist and airtight environment for wound healing [60], which can enhance the
affinity of the material to cells/tissues and promote their adhesion to them. This is because
PDA has an excellent interfacial binding affinity to the nucleophilic moieties (-NH2 and
-SH) that usually exist on the surface of biological tissues such as the liver, heart, spleen,
lung, kidney, and tail [61–63]. It has been reported that the adhesion strength of a PDA
complex to pigskin can be as high as 90 kPa [35]. Combining the adhesive property with
the superior ductility, mechanical property and self-healing property of PDA complex
enables PDA complex to form a long-term and stable healing environment on the wound
surface. This avoids the secondary tearing of the wound caused by the need for repeated
replacement of traditional dressings [64].

Wound healing is a continuous and overlapping process, which can be divided into
four stages: antibacterial, anti-inflammatory, cell adhesion and proliferation, tissue differ-
entiation and re-epithelialization. Mechanisms of the PDA complex on the different stages
of the healing process also influence each other (Figure 3). PDA complex promotes wound
healing in three main ways. First of all, the photothermal properties of PDA complex have
bacteriostatic, anti-inflammatory and growth factor regulation functions, which suggests
that the photothermal effect acts on the whole process of wound healing. Second, PDA
complex not only has strong tissue adhesion, but also provides a variety of cell adhesion
sites. In addition, PDA cross-linked electroactive materials not only improve the processing
and mechanical properties of traditional electroactive materials, but also create an endoge-
nous bioelectrical pathway leading to the wound, guide cell migration and orientation,
and increase the deposition and arrangement of collagen. The effects of PDA complex
on wound healing are not limited to these two areas, but extend throughout the healing
process. Most PDA wound dressings can close full-thickness defect wounds within about
15 days, but the degree of re-epithelialization may vary depending on the composition.
At present, the best effect is the quaternary ammonium chitosan (QCS)/PDA material,
which has the greatest re-epithelialization effect, and the process can be completed within
10 days [25].
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3.1. Antibacterial Effect

Clinically, bacterial infection and biofilm formation often occur on living tissues
and/or various medical devices, accompanying inflammation responses. Severely, ma-
ture biofilms release planktonic bacteria that trigger new infections and further activate
the immune system to produce inflammatory responses. The persistent inflammatory
response would eventually lead to cell death and tissue necrosis, trigger surrounding soft
tissue inflammation or damage. Previous studies have shown that excessive inflammatory
response is also one of the main reasons for delaying wound healing, resulting in hyper-
trophic cicatrix formation [65]. On the other hand, an excess of bacteria cannot provide
a suitable environment for cell proliferation. Therefore, the primary task of preventing
wound infection is to inhibit bacteria.

The PDA coating alone lacks efficient and stable antimicrobial activity. Therefore,
it is often necessary to complex with bactericidal substances (Figure 4) [66]. From the
structure of PDA complex, the Schiff base structure of PDA has a synergistic antibacterial
effect with the aromatic ring. PDA can also enhance the effect of antibacterial by the
interaction between nano-hybridization and bacteria. The main source of antibacterial
power of PDA and its NIR response to photothermal effect. During the heating process, the
temperature difference and antibacterial efficacy increase with the increase in PDA content.
After PDA coating, the absorbance at 808 nm increased significantly. This may be due to the
introduction of a lone electron pair (-OH) in the PDA, increasing the molecular conjugation
system through resonance, thereby increasing the range of electronic activity [33].
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By summarizing the bacteriostatic rate data of some PDA complex, it was found
that the inhibition rate of the complex was higher under NIR radiation and the complex
was generally more effective against Gram-negative bacteria (Table 1). This is because
the high temperature produced by NIR can accelerate the death of bacteria. However,
Staphylococcus aureus (S. aureus) and other Gram-positive bacteria are generally more heat-
resistant than Gram-negative bacteria such as Escherichia coli (E. coli). The former has a thick
peptidoglycan layer (20–80 nm) composed of amino acids, surface proteins, teichoic acid
and lipids. Gram-negative bacteria lack these structures. Lack of outer membrane promotes
the penetration of the surrounding environment through the peptidoglycan layer [67].

Table 1. NIR heating temperatures and bacteriostatic rates of various materials containing PDA.

Material ∆Ts/◦C NIR Antibacterial Rate Anti-Bacterial Rate Reference

Dibenzaldehyde-grafted poly
(ethylene glycol) (PEGDA), lauric

acid-terminated chitosan (Chi-LA), and
Cur-loaded mesoporous PDA

nanoparticles (PDA@Cur)

24.8 E. coli, 97.8%; S. aureus, 94.2% E. coli, 37.1%; S. aureus, 20.4% [68]

PDA@gold nanoparticles-hydroxyapatite
PBS liquid 18 E. coli, 96.8; S. aureus, 95.2% E. coli, 34.6%; S. aureus, 13.7% [69]

Quaternized chitosan/PDA 27.2 S. aureus, 100%; E. coli, 100% S. aureus, 100%; E. coli, 70% [25]
TiO2 nanorods-PDA-Ferrocene 38 MRSA 1, ≥99%; E. coli, >99% - [56]

PDA/Cu-CS 43 MRSA, 97.64%; E. coli, 96.27% MRSA, 13.89%, E. coli, 48.82% [70]
Poly(L-lactic acid)-poly(citrate

siloxane)-curcumin@PDA hybrid nanofibrous
scaffold (denoted as PPCP matrix)

21 E. coli, 93.3 ± 1.2%; S. aureus,
97.7 ± 0.7% - [71]

Ag-pDA/BC (rGO) - E. coli, >84% - [72]
Deoxyribonuclease (DNase)-carbon monoxide

(CO)@mesoporous PDA
nanoparticles (MPDA NPs)

23 MRSA, 92% - [65]

bacterial cellulose/PDA/
polyacrylamide hydrogels - - S. aureus, 100% [73]

MOF-PDA 31 S. aureus, 99.62%; E. coli, 99.97% 0 [74]
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Table 1. Cont.

Material ∆Ts/◦C NIR Antibacterial Rate Anti-Bacterial Rate Reference

Gelatin/dopamine cryogels 24.2 S. aureus, 100%; E. coli, 100% S. aureus, 70%; E. coli, 68% [75]
DAP-GCS-PDA@GNRs 35 MRSA, 100% - [76]

MoS2@PDA-Ag 43 S. aureus, 99.99% - [55]
Carbon quantum dot (CQD)-decorated ZnO

(C/ZnO) composites were chosen as the
functional NPs

30 S. aureus, 99.9996%%; E. coli,
99.9998% S. aureus, 70.8%; E. coli, 60.2% [77]

GT-DA/CS/CNT gelatin-grafted-dopamine
(GT-DA) and PDA-coated carbon nanotubes

(CNT-PDA)
26.7 S. aureus, 100%; E. coli, 100% S. aureus, 5.9%; E. coli, 2.1% [78]

1 MRSA, Methicillin-resistant Staphylococcus aureus.

There is a difference of approximately 20 ◦C in the NIR temperature rise of other
compatible materials. However, the temperature difference of the composite material
containing PDA and metal cations is 40 ◦C. When the temperature exceeds 50 ◦C, the
protein will irreversibly denature, leading to rapid bacterial death. This means that when
PDA is complexed with antibacterial metal cations, its photothermal and antibacterial
effect are enhanced. Pure copper ions only gradually inhibit bacteria. However, laser
irradiation quickly heats metal cations and accelerates the inhibition of bacterial growth.
However, after the laser irradiation is terminated, the antibacterial effect is terminated.
The combined effect of copper ions and laser irradiation provides rapid and long-lasting
antibacterial effects [70]. The intensity and duration of irradiation in different studies are
slightly different. Although the addition of PDA prevented the aggregation of nano-metal
particles [79], which led to the decrease in the antibacterial effect of the metal itself [80], the
overall antibacterial effect of the composite was enhanced due to the photothermal effect.
Moreover, PDA coverage can also prevent the contact between AuNPs and cell and reduce
the cell toxicity of AuNPs [25].

On the other hand, metal cations also inhibit bacterial growth by inhibiting the for-
mation of biofilms, changing membrane permeability, producing ROS that interferes with
RNA and DNA replication [81] and inducing genotoxicity [82]. It is worth noting that this
strategy of suppressing bacterial growth by producing ROS can only be used in the early
antibacterial process of wound healing. This is because the pH of the severely infected site
can be 5.0–5.5, and there is significant hydroxyl generation at this pH value [83]. PDA will
also accelerate the production of antibacterial active oxygen after the laser is irradiated
and heated [84]. Although it can quickly kill bacteria in the early stage, but this will affect
the inflammatory response in the middle of the wound and tissue maturation in the later
stage. This strategy is also not suitable for diabetic ulcers, because excessive levels of
inflammatory cytokines and ROS and defective cell function can impair diabetic wound
healing [56].

In addition to compound with antibacterial substances, PDA can also produce targeted
and sustained antibacterial effects by loading and releasing antibacterial drugs. PDA has
a large number of catechol groups, benzene rings, delocalized π electrons and C=C double
bonds. Therefore, the PDA coating will react specifically with biomolecules containing
sulfhydryl, amine and amino groups [85]. Existing studies have found that drug molecules
can be loaded into PDA nanoparticles through π-π stacking, electrostatic attraction, and
hydrogen bonding [80] and achieve sustained drug release, response release, or targeted
release by adding specific ligands. The sustained drug release characteristics of PDA
nanoparticle-coated hydrogels can be attributed to the high binding ability of PDA with
organic matter through Michael addition [86] or Schiff base reaction [87] or the π-stacking
reaction between small drug molecules and PDA [88]. These interactions will inhibit the
pulsed drug release and prolong the drug release time.

The responsiveness of drug release is also affected by the concentration gradient,
pH responsiveness and NIR [89]. Previous studies have involved loading curcumin into
MPDA via π-π stacking and hydrogen bonding. Under NIR irradiation, π-π stacking and
hydrogen bonding were affected, which resulted in release of curcumin from MPDA. The
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PDA hydrogel with large pores inside, after NIR, the macroporous structure collapses,
which will also cause large volume shrinkage [35] and drug release [36]. The pH-dependent
behavior of drug release can be explained by various electrostatic interactions between
PDA and drug. The amino group of PDA deprotonates at high pH and generates negative
charges. However, at low pH, PDA is protonated [36].

3.2. Anti-Inflammatory Effect

PDA complex can regulate inflammation and growth factors, regulate immune re-
sponse, increase fibroblast activity, protect fibroblasts from apoptosis, and weaken the
inflammatory response at the wound site. Inflammation affects the speed of wound heal-
ing and scar tissue formation. The specific performance is that PDA complex can help
down-regulate pro-inflammatory cytokines, regulate the immune response, up-regulate an-
giogenic factors such as CD31 and VEGF [90] and promote wound vascular differentiation
and tissue maturation. CD31 is a transmembrane protein expressed in early angiogenesis.
It is used to confirm the presence of endothelial cell tissue and assess angiogenesis. VEGF
affects the migration, proliferation and angiogenesis of vascular endothelial cells [91–93].

The large amount of ROS produced by neutrophils at the wound site may destroy
biological macromolecules. The PDA catechols have antioxidant effects [94]. Phenol
groups can capture electrons and scavenge ROS. Excessive ROS production and lipid
peroxidation can hinder the healing of chronically infected wounds such as diabetes [95].
The phenol group in PDA is converted to quinones, and the free radical redox equilibrium
is established [50], and this activity varies with the content of dopamine in the complex [96].
In contrast, the phenoxy group produced by the conversion of catechol to benzoquinone
can be stabilized by electron delocalization. The reduction of ROS levels in macrophages
can reduce the expression of pro-inflammatory factors and promote tissue regeneration.
Pro-inflammatory cytokines include IL-6, IL-1β, TNF-α and CD86. IL-6 is closely related
to the severity of inflammation caused by bacteria and is a sensitive indicator for clinical
diagnosis of bacterial infections [97]. IL-6 promotes the release of somatostatin and inhibits
the release of growth hormone [98]. PDA material significantly down-regulates many
pro-inflammatory factors obtained from wounds [54].

For chronic wounds like diabetes, the degree of oxidative stress in the wound can
also be assessed by measuring lipid peroxidation and antioxidant enzyme activity [99].
Superoxide dismutase (SOD) is an enzyme in the antioxidant defense system of skin
tissue. In diabetic wounds covered by PDA dressings, SOD is up-regulated, which means
that oxidative stress is reduced. Matrix metalloproteinases (MMP) are zinc-dependent
endopeptidases [100]. In diabetic animals, high levels of MMP-2 and MMP-9 inhibit
multi-factor homeostasis and re-epithelialization in the extracellular matrix [101], tissue
fluid [102] and diabetic foot ulcer tissue [103]. Excessive ROS can abnormally up-regulate
MMP in diabetes [104]. After PDA clears ROS, it down-regulates MMP-2 and MMP-9,
reduces excessive tissue proteolysis, and promotes diabetic wound healing.

3.3. Cell Adhesion, Proliferation and Migration

Blood cells, keratinocytes, endothelial cells, fibroblasts, inflammatory cells and other
cell types are involved in wound healing [105]. PDA dressings promote cell adhesion,
proliferation and migration in four ways. Among them, it mainly promotes wound healing
by precisely regulating various cell responses and cytokines in the process of homeostasis,
inflammation, granulation formation and remodeling. The functional groups on PDA-
NPs (including catechol and quinone) promote cell adhesion and proliferation, and form
covalent/non-covalent interactions with adjacent tissue surfaces. In addition to the electri-
cal stimulation mentioned above, PDA complex promotes cell adhesion, proliferation, and
directional migration through three other pathways.
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3.3.1. Simulation of the Extracellular Matrix (ECM)

The unique nanostructure and abundant sites of PDA material can mimic the adhesion
of ECM and become binding sites for various proteins and differentiation sites for various
cells. The nano-crosslinked network in the scaffold is similar to the collagen fibers in ECM.
This is beneficial for the distribution, migration, proliferation of cells and reconstruction of
damaged tissues. Therefore, PDA can be combined with other materials to form scaffolds
with low cytotoxicity and excellent biodegradability. Among them, the degree of cell
damage and death under the dressing can be quantitatively determined by the lactate
dehydrogenase (LDH) release method [34]. Fluorescence-labeled bovine serum albumin
(FITC-BSA) can measure the amount of protein adsorbed on the film and evaluate its
biocompatibility [60]. Previous studies have reported that PDA has negligible toxicity
to 3T3 fibroblasts and human umbilical vein endothelial cells (HUVEC) [106]. Due to
the interaction sites provided by dopamine, EF1 human fibroblast cell cultures and PDA
hydrogels show good biocompatibility [24].

The porous ECM-like network modified scaffold formed by the composite of PDA is
a microstructure with enhanced porosity, specific surface area and oxygen permeability.
They also protect wounds from external contamination and further promote cell adhesion
and proliferation. The porous structure may be penetrated and filled with the extracellular
matrix (including fibrin, collagen molecules, and lysyl oxidase) [107]. Lysyl oxidase and
collagen itself can be cross-linked to obtain long-term strength and stability [108].

PDA nanoparticles can promote cell protrusions, such as flakes and filamentous feet,
and promote cell proliferation through expansion [109]. The cells adhered to the PDA
scaffold formed superior α-smooth muscle actin (α-SMA) protein bundles and provided
greater adhesion [34]. Certain non-structural proteins in ECM also play an important role
in cell adhesion and proliferation. Abundant active groups in PDA mimic these proteins
and provide adhesion sites. Additionally, the adhesion strength increases with the increase
in PDA content [40,110].

3.3.2. Activated Blood Cells

Some PDA complexes can fix platelet-rich plasma to achieve the functions of co-
agulation and activation of platelets. The macroporosity in the scaffold or cross-linked
gel supports and improves blood cell adhesion and enhances coagulation [111]. Various
growth factors in the plasma combined with NIR stimulation can regulate the formation of
blood vessels and the proliferation and differentiation of fibroblasts. Platelet-rich plasma
(PRP) is a source of various growth factors, such as PDGF, IGF-1, VEGF, FGF-2 and so
on. It stimulates the formation of new blood vessels and various fibroblast activities [112].
Vascular endothelial growth factor (VEGF) is the main angiogenesis inducer. Platelet-
derived growth factor (PDGF) expands blood vessels and forms mature blood vessels,
which has a strong chemotactic effect on fibroblasts and smooth muscle cells. The adhesion
of platelets to the gel increased with the increase in PDA content.

In addition, PDA gel causes their morphology to change from a disc to an irregular
shape. The status and number of platelets determine the amount of bleeding and clotting
time [75]. The gel absorbs a large amount of blood at the bleeding site during the expansion
of the shape, prevents the adhesion between the tissue and the hemostatic device, and
protects the tissue from the destruction of blood flow. In contrast, the interconnected
large porous structure inside the compressed gel can restore its original shape and specific
surface area, strengthen the adhesion of blood cells and platelets, and concentrate and
activate the hemostatic agent [25].

3.3.3. NIR Irradiation Promotes Cell Proliferation

NIR-mediated phototherapeutic possesses the advantages of higher tissue penetration
depth, great target selectivity, benign tissue compatibility, and avoidance of drug- resistant
bacteria [113]. Chen et al. [105] showed that the PDA complex can effectively promote
cell proliferation and reduce the apoptosis rate after NIR irradiation. When the NIR
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lamp is turned on, PDA-NPs generate heat locally through the photothermal effect. At
temperatures above the lower critical solution temperature (LCST), hydrogel changes from
a swollen hydrophilic state to a collapsed hydrophobic state and releases cells. On the other
hand, on the 10th day after NIR irradiation, the stent with PDA significantly up-regulated
Ki67 and Bcl-2. Ki67 is a nuclear antigen expressed in proliferating cells, which further
indicate that the heat generated by infrared radiation helps the proliferation of cells, thereby
further promoting wound healing.

3.4. Organizational Differentiation and Re-Epithelialization

Wound healing is a complex and dynamic process. This process is continuous and over-
lapping, including cell adhesion, cell proliferation, fibroblast transplantation, connective
tissue synthesis, collagen deposition, wound re-epithelialization, and the formation of skin
appendages. Tissue differentiation accelerates after controlling wound infection, because
the down-regulation of inflammatory factors is often associated with the up-regulation of
angiogenesis factors. Re-epithelialization is mainly driven by the migration and prolifera-
tion of keratinocytes. Keratinocytes are hormone receptors and can synthesize hormones
that initiate wound healing [114]. Hormone production further stimulates wound closure.
Most PDA complexes for chronic wounds are about 14 days, and the wound closure rate
is about 98% (Table 2). They cover them with relatively thick new epidermis and more
dermal papillae and hair follicles, and form a mature epithelial structure.

Table 2. Wound healing time and healing status of various PDA compound dressings.

Materials Healing Time/d Healing Condition Reference

Bioactive glass/PDA-modified
electrospun scaffolds 15

The wound was almost completely healed and the
remaining wound area was 0.98%. There were
more dermal papillae and hair follicles on the

wound surface and the epithelial
structure was mature.

[115]

PDA-NPs/PNIPAM gel 15
The wound was closed, mature skin tissue was

regenerated, and collagen fibers and hair follicles
were arranged.

[35]

QCS/PDA 10 The wound healed completely. [25]

PDA-reduced graphene oxide
(pGO)-incorporated chitosan (CS)

and silk fibroin
21 Blood stagnation and wound closure

were observed. [94]

PDA-coated Antheraea pernyi 14 The wound was completely healed and new skin
and hair formed. [60]

Poly(glycerol-
ethylenimine),Ti3C2TxMXene@PDA

(MXene@PDA) nanosheets and oxidized
hyaluronic acid (HCHO)

14 The wound healing rate was 96.31%. [34]

PDA (PDA) coating on hydroxyapatite
(HAp) incorporated with gold nanoparticles

(Au-HAp)
10 The wound healed. [69]

Poly(3,4-ethylenedioxythiophene)-
PDA-silk microfibers 15 The wound healed. [50]

PDA functionalized bioactive
glass nanoparticles

(BGN@PDA)-F127-ε-Poly-L-lysine hydrogel
14 The wound was largely healed and abundant

granulation tissue was visible. [110]

PDA@Ag NPs),
polyaniline-polyvinyl alcohol 20 The wound completely healed. [40]

PDA/collagen sponge scaffolds 21

There was a full-thickness skin defect on the
wound surface. After 21 d, the full thickness skin

of each group survived, the wound was closed,
and there was no obvious gap between the skin

and regenerated tissue.

[116]
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Table 2. Cont.

Materials Healing Time/d Healing Condition Reference

pDA-epsilon PL/NFDS 32
The average burn wound healing rate was

88.3 ± 16.0%. Angiogenesis and granulation tissue
regeneration were increased.

[25]

Chitosan 20 mg/PDA 4.5 mg 15 The wound closure rate was 100%. [85]

Bacterial cellulose/PDA/
polyacrylamide hydrogels 15 Granulation tissue deposition was dense and

collagen bundles were regular. [73]

Dibenzaldehyde-grafted poly(ethylene
glycol) (PEGDA), lauric acid-terminated

chitosan (Chi-LA), and curcumin
(Cur)-loaded mesoporous PDA

nanoparticles (PDA@Cur)

14 Most of the wound healed. [68]

Agarose-PDA hydrogel (APG) 14 The collagen density increased and most of the
wound healed. [117]

MOF-PDA 12 The wound healed. [74]

Educed PDA nanoparticles (rPDA NPs)
incorporated oxidized dextran/chitosan

hybrid hydrogels
15 The wound healed with scar tissue. [118]

pDA/PLGA nanofibrous/platelet-derived
growth factor-bb 7 The wound was reduced by >80%. [119]

Carpacara methacrylate-ZnO/PDA 14 There was complete epithelialization. [81]

Ordinary medical gauze sequentially with
PDA, perfluorocarbon, and

silver nanoparticle
14 The wound area was reduced to 8.1 ± 5.7%. [64]

QCS/reduction graphene
oxide-PDA/poly(N-isopropylacrylamide) 14 The wound healed completely with

re-epithelialization and no scar tissue was visible. [90]

2D PDA nanosheets 14 The wound of the high-dose group was healed
without obvious scarring. [120]

PDA coated BC with in situ silver
nanoparticle reduction 25 The third degree burn wound healed completely

without scarring. [121]

Gelatin/dopamine cryogels 14 The wound was completely healed and
re-epithelialized without scarring. [75]

Bromelain immobilized electrospun
poly(ε-caprolactone) (PCL) fibers

(BrPDA-PCL fibers)
11 The wound was completely closed with scarring. [122]

PTA/PDA 18 The wound was completely closed in the
full-thickness skin defect model. [123]

PDA-RGD peptide-bFGF 60 The rabbit ear wound was completely healed and
epithelialized without scarring. [124]

Basic fibroblast growth factor
(bFGF)/PDA/poly(lactide-co-glycolide)

(PLGA) fibers
14 The wound healing rate was 92% and scar tissue

was obvious. [125]

Zein/PDA/TiO2 15 There was complete re-epithelialization with
partial scar tissue. [114]

Van-gel-PDA 46 The burn wound was closed without
re-epithelialization. [126]

Eggshell membrane/PDA 7 The wound healing rate was 81.9%. [127]

MoS2@PDA-Ag 8 Most of the wound healed. [55]

EGF-loaded PDA-NP-CS/SF cryogel 21 The wound healed completely and was
re-epithelialized. [128]

H2O2/HPR (horseradish
peroxidase)-PDA-rGo 14 The hydrogel group had relatively more skin

appendages and blood vessels such as hair follicles. [129]

Carbon quantum dot (CQD)-decorated ZnO
(C/ZnO) composites were chosen as

the functional NPs
10 The skin was intact and the subcutaneous tissue

structure was normal. [77]



Int. J. Mol. Sci. 2021, 22, 10563 13 of 22

Table 2. Cont.

Materials Healing Time/d Healing Condition Reference

Cotton gauge (CG)-coated
with quercetin and silver 12

On day 12, a thin layer of dermis was observed
complete with glands and hair roots forming as
per normal tissue. Connective tissue deposition

and adipose tissue formation were enhanced.

[130]

GT-DA/CS/CNT gelatin-grafted-dopamine
(GT-DA) and PDA-coated carbon nanotubes

(CNT-PDA)
14 The wound surface was almost completely closed

and smooth new epidermal tissue appeared. [78]

The photothermal effects, carrier function and electrical stimulation mentioned above
also affect tissue differentiation and re-epithelialization. Photothermal therapy of PDA
complex is safer than previous strategies of promoting wound healing by heating up,
because it doesn’t change the cold environment of the subcutaneous tissue [115]. Such as
catalyzing water/H2O2 at the site of bacterial infection [131,132] and delivering oxygen
to the subcutaneous tissue [133] in an attempt to overcome hyperthermia. Some studies
have injected growth factors directly into the injured full-thickness tissue to promote
healing or injected plasmids or viruses with growth factor genes to up-regulated growth
factors [134,135]. However, this method is influenced by tissue density, and the amount
of reagents actually injected is limited, so the injection is easy to escape, which affects the
therapeutic effect. PDA can be used as a suture carrier to deliver drugs or growth factors
to deep wounded external or internal tissues [136,137].

Endogenous electrical signal stimulation generated by the conductive pathway pro-
vided by the PDA complex can up-regulate certain genes, build a cellular communication
network, and promote the expression of a variety of proteins and cytokines that promote re-
epithelialization. For example, smooth muscle actin (α-SMA) plays a major role in wound
healing by promoting the proliferation and differentiation of fibroblasts. Collagen type III
(Col III) plays a major role in granulation tissue reorganization and basement membrane
regeneration. Furthermore, VEGF is linked to vascular endothelial cell migration and
angiogenesis. The PDA scaffold accelerates wound closure and promotes wound healing
by up-regulating α-actin, ColIII, platelet-derived growth factor (PDGF) [71] and VEGF
(Figure 5) [52].
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It can be seen that photothermal therapy, carrier transport and electrical stimula-
tion mainly regulate multiple growth factors to achieve tissue differentiation and re-
epithelialization. The most involved are angiogenic factors. Angiogenesis, the first step
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of tissue differentiation, is a key factor in wound healing. QRT-PCR analysis showed that
PDA complex up-regulated genes related to angiogenesis, such as KDR, E-NOS, VEGF,
TGF-β, SDF-1, and FLT-1. The cytokine TGF-β promotes the proliferation of fibroblasts
and differentiates them into myofibroblasts. It also involves in matrix remodeling and
angiogenesis. SDF-1 is an essential medium for wound healing. It recruits mesenchymal
cells to the wound site and promotes IL-10 mediated angiogenesis [65,88] CD31 and α-SMA
immunofluorescence labeling can be utilized to observe the effect of composite scaffolds
on wound neovascularization. About 7 days after wound healing, there were significantly
more CD31 cells in wounds treated with PDA materials than wounds treated with other
materials. This suggests that the PDA complex promotes the formation of new blood
vessels on the wound surface [115]. When the wound is restored and reconstructed, some
small blood vessels degenerate and CD31 is down-regulated [138].

The newly formed blood vessels provide nutrients and oxygen to the wound bed,
where they initiate collagen deposition and epidermal regeneration [139]. The degree of
maturation of epithelial structures can be distinguished in a variety of ways. The wound
surface, basement membrane thickness and cell arrangement both reflect the quality of the
wound healing. H&E, Masson trichrome staining and MT staining [41,116,123] can show
the cell arrangement and fiber content of wound at each stage. These techniques are associ-
ated with PCR to evaluate the expression levels of basic fibroblast growth factor (bFGF),
type I collagen (Col I), Col III, TNF-α and other genes, and to evaluate re-epithelialization
in wounds And collagen deposition. Collagen content treated with PDA complex usually
increases within the first 10 days after the wound matures is stable, but it is also slightly
different due to different types of collagen (Figure 6) [71]. PDA complex up-regulates Col I
during the entire wound healing process, up-regulates Col III in the early and mid-healing
stages, and down-regulates Col III after healing [69].
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Finally, the wound treated with PDA complex showed an orderly arrangement of
collagen fibers, abundant collagen bundles, a narrow gap of wound granulation tissue,
and thick epithelium. Masson staining shows that the mature skin tissue induced by PDA
complex is similar to natural skin tissue. It can obviously improve the deposition and
arrangement of collagen [107] and decrease the formation of scars. As the wound heals
and the new tissue are formed, the cell density gradually increases until the epidermal
thickness and cell density are close to normal skin.

4. Conclusions and Prospect

PDA complex provides a kind of healing material that can meet the needs of rapid
hemostasis, no compression, strong adhesion, high antibacterial rate and inflammation
inhibition for wound healing. Excellent adhesion, mechanical properties and ductility pro-
vide a close-fitting healing environment. Combined with the self-healing properties of the
PDA complex, the dressing lifespan is greatly extended. As PDA can provide a conductive
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pathway, when combined with electroactive materials, it can produce signals that regulate
cell proliferation and directional migration. From different stages of wound healing, PDA
complexes can enhance antibacterial activity through their own structure and photothermal
effect, and can also achieve the purpose of targeted and continuous antibacterial activity by
loading drugs. By simulating ECM and activating blood cells, NIR stimulation can further
promote cell adhesion and proliferation. The photothermal effect and rich phenol groups
of PDA complex can remove ROS to achieve the anti-inflammatory purpose. Finally, the
wound was rapidly re-epithelialized by adjusting various growth factors.

The future development direction of PDA dressing can be considered from the fol-
lowing aspects. First, the mechanism of PDA polymerization has not yet been completely
elucidated. Under alkaline polymerization conditions, PDA polymerization cannot ensure
the loading or activity of small molecules. Preceding reports mostly used PDA as a wall
material to encapsulate drugs, or load drugs on another material, which limited the loading
capacity of drugs. In addition to the reported porous structure of mesoporous PDA that
can increase the loading capacity [36,140], to better solve this problem, it may be possible
to try to covalently bind the drug to the dopamine monomer and then polymerize it.
Second, the drug delivery platform needs to be optimized. New drug delivery platforms
should simultaneously realize sustained release, stimulated release, targeted release, and
sequential release to assure better therapeutic effects [53]. PDA dressings can only achieve
sustained release, targeted release, and stimulated release at present. In the future, the
sequential release will achieve engineered and functionalized drug-controlled release.

Third, the efficiency of light-to-heat conversion needs to be improved. PDA has NIR
response photothermal characteristics, and provides photothermal antibacterial ability
with increasing temperature. The temperature difference of NIR treatment increases with
the increase in PDA content by 20 ◦C, while for PDA complexed with metal cations, the
temperature difference is 40 ◦C. However, for wound dressings used to bond tissues and
organs in the body, metal materials are not easily degraded. Therefore, in the future,
improving the photothermal conversion efficiency and photosensitivity of PDA and non-
metallic materials is also a major direction for future research on PDA. This may not only
speed up wound healing in internal tissues, but also may be used to treat tumor cells.

Fourth, the establishment of dual-function smart electroactive materials. In recent
years, advances in real-time monitoring of wound conditions such as temperature, pH,
etc., will allow more timely management of wound bed infections [141]. Furthermore,
compared to some currently used materials, such as polyaniline, polypyrrole and polyethy-
lene phthalate, the electrical conductivity may decrease over time due to the reduction in
dopants in their physiological environment or loss [142]. The PDA can maintain a relatively
constant conductivity in the physiological solution, which means that it can be combined
with the method of measuring the transcutaneous resistance or impedance of the wound
every day using electrodes to effectively measure the wound state [143,144], because re-
sistance and impedance both increase with the progress of wound healing. However, the
difference between the electrical resistance (impedance) of the conductive biomaterial and
the electrical resistance (impedance) of the skin tissue must be carefully considered. This
makes the PDA composite material a dual-functional active dressing that can simultane-
ously promote cell activities related to wound healing and monitor the healing process. It
may help to achieve individualized treatment at different stages of wound regeneration
and repair, and accelerate these processes.

Fifth, the combination with 3D printing. Compared with diabetic and chronically
infected wounds, full-thickness skin defects caused by severe trauma and extensive burns
are more complicated and take more time to heal [145]. Since PDA gel can maintain a fixed
shape after preparation, it may not be suitable for wounds in large-area, total-loss skin
models. Therefore, another future research goal is to combine PDA gel with 3D printing
technology [146] to prepare dressings that fully fit large-area, irregular wounds.
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