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The human brain is constantly active and even small limitations to cerebral blood flow 
(CBF) may be critical for preserving oxygen and substrate supply, e.g., during exercise 
and hypoxia. Exhaustive exercise evokes a competition for the supply of oxygenated 
blood between the brain and the working muscles, and inability to increase cardiac output 
sufficiently during exercise may jeopardize cerebral perfusion of relevance for diabetic 
patients. The challenge in diabetes care is to optimize metabolic control to slow progression 
of vascular disease, but likely because of a limited ability to increase cardiac output, these 
patients perceive aerobic exercise to be more strenuous than healthy subjects and that 
limits the possibility to apply physical activity as a preventive lifestyle intervention. In this 
review, we consider the effects of functional activation by exercise on the brain and how 
it contributes to understanding the control of CBF with the limited exercise tolerance 
experienced by type 2 diabetic patients. Whether a decline in cerebral oxygenation and 
thereby reduced neural drive to working muscles plays a role for “central” fatigue during 
exhaustive exercise is addressed in relation to brain’s attenuated vascular response to 
exercise in type 2 diabetic subjects.

Keywords: cardiac output, cerebral blood flow, cerebral oxygenation, cerebral metabolism, diabetes, vascular 
conductance

INTRODUCTION

Animals like the Crucian carp and the aquatic turtle can survive anoxia for extended periods 
of time (Sick et  al., 1982; Lutz et  al., 1985; Hochachka and Lutz, 2001; Nilsson and Lutz, 
2004), but human brain function depends on continuous delivery of oxygen and nutrients. 
Thus, interruption of blood supply to the brain for only a few seconds results in loss of 
consciousness (Rossen et  al., 1943; Finnerty et  al., 1954; Smith et  al., 2011). Accordingly, even 
minor limitations to cerebral blood flow (CBF) may be  critical in preserving oxygen and 
substrate supply to the brain and in that regard the human brain is challenged by exercise 
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and hypoxia (Kim, 2014). When the brain is activated to 
perform exercise, the increment in CBF enhances brain 
oxygenation whereas skeletal muscle oxygenation decreases 
progressively with work rate. Thus, functional activation of 
the brain initially leads to hyperperfusion, while the large 
increase in skeletal muscle blood flow during exercise may 
be  taken to be  insufficient (Quistorff et  al., 2008).

Reduced exercise tolerance in type 2 diabetes mellitus (T2DM) 
is incompletely understood (Estacio et  al., 1998; Fang et  al., 
2005), and has been attributed to cardiac insufficiency and 
impaired muscle metabolism (Poirier et  al., 2000; Taegtmeyer 
et al., 2002; Scheuermann-Freestone et al., 2003; Stephens et al., 
2007). We  consider the effects of functional activation by 
exercise on the brain and how it contributes to understanding 
the control of CBF in relation to the limited exercise tolerance 
experienced by type 2 diabetic patients. Analogies and differences 
between the cerebral vs. skeletal muscle blood flow responses 
to exercise are highlighted with emphasis on the dependency 
of the human brain on the distribution of the available blood 
flow. A decline in cerebral oxygenation in the later stages of 
exhaustive exercise may reduce the motor drive to working 
muscles similar to what is observed during exercise in hypoxia 
(Rasmussen et  al., 2010). Whether a decline in cerebral 
oxygenation with following reduced neural drive to working 
muscles plays a role in the development of “central” fatigue 
during exhaustive exercise is addressed in relation to the altered 
brain vascular response to exercise in type 2 diabetic patients 
and their accentuated perceived exertion.

AUTONOMIC NEURAL CONTROL OF 
CBF DURING EXERCISE

The large increase in systolic blood pressure during exhaustive 
exercise challenges CBF control mechanisms including 
cerebrovascular or cerebral autoregulation, the cerebrovascular 
responsiveness (CVRCO2) to carbon dioxide (CO2) and oxygen 
(O2) partial pressures, matching of local cerebral blood supply 
to the metabolic demand (i.e., neurovascular coupling), neurogenic 
control (Immink et  al., 2014; Ritz et  al., 2014; Willie et  al., 
2014; Phillips et  al., 2016), and maintenance of cardiac output 
(Ide et  al., 1998, 1999a; Van Lieshout et  al., 2001, 2003; Ogoh 
et  al., 2005a; Bronzwaer et  al., 2014, 2017). During exercise, 
CBF increases as quantified by several methods (for review, see 
Secher et  al., 2008; Smith and Ainslie, 2017). Dynamic exercise 
enhances the transcranial Doppler ultrasound determined middle 
cerebral artery blood velocity (MCA V) and the 133Xe clearance 
determined CBF (Jorgensen et  al., 1992) and also the blood 
flow in the internal carotid and vertebral arteries (Sato et  al., 
2011). Notably, the increase in CBF during cerebral activation 
is such that cerebral oxygenation is enhanced as expressed by 
blood-oxygen-level (BOLD) dependent imaging (Laughlin et  al., 
2012) and for whole-body exercise, a similar increase in cerebral 
oxygenation is demonstrated by near-infrared spectroscopy (Ide 
et  al., 1999b). Changes in CBF in response to exercise are 
restricted to specific areas of the brain and, therefore, blood 
flow in a single brain artery or vein cannot be  considered to 

fully represent flow to or from the brain as a whole, reflecting 
that the effects of exercise on brain metabolism are heterogeneous. 
For example, regulation of internal carotid and vertebral artery 
flow seems different not only during exercise (Sato et  al., 2011) 
but also during simulated orthostatic stress (Ogoh et al., 2015b). 
Constancy of diameter of an insonated large cerebral artery is 
required to link changes in cerebral blood velocity to those in 
CBF (Coverdale et  al., 2014; Verbree et  al., 2014, 2017).

Sympathetic activity is proposed to enhance cerebral vascular 
tone to counteract the increase in cerebral perfusion pressure 
beyond what is designated as the cerebral autoregulatory range 
(Purkayastha et  al., 2013; Ogoh et  al., 2015a), with cerebral 
perfusion pressure defined as the difference between blood 
pressure at the level of the circle of Willis and the critical 
closing pressure, the pressure inside a blood vessel below which 
it collapses and blood flow ceases. Both sympathetic and cholinergic 
mechanisms are considered important for restricting the exercise-
induced increase in CBF without affecting the cerebral metabolic 
rate for oxygen (Seifert et  al., 2010; Purkayastha et  al., 2013; 
Willie et  al., 2014; Ogoh et  al., 2015a). Of note, erythropoietin 
has been applied to improve athletic performance and endurance 
but it actually reduces cerebrovascular conductance during exercise 
both under normoxic and hypoxic conditions (Rasmussen et al., 
2012). The contribution of autonomic neural control of CBF 
during exercise remains difficult to detangle (Van Lieshout and 
Secher, 2008; Mitchell et  al., 2009; Willie et  al., 2014). The 
presently available evidence for neurogenic CBF control from 
rest to exercise is mainly from direct sympathetic ganglion 
blockade studies. At rest, unilateral trigeminal ganglion stimulation 
reduces CBF as evaluated by transcranial Doppler ultrasound 
and by single-photon emission computed tomography (Seifert 
and Secher, 2011). During exercise, β-adrenergic receptor blockade 
restricts the increase in cardiac output and in MCA V whereas 
this attenuation is eliminated by stellate ganglion blockade (Ide 
et  al., 1998). Intrinsic cerebrovascular sympathetic activity is 
indicated by jugular venous “spillover” of norepinephrine from 
the brain in healthy humans but not in patients with autonomic 
failure who lack sympathetic vasomotor control (Harms et  al., 
2000; Mitchell et al., 2009). Apart from these selective investigations 
numerous studies have manipulated CBF pharmacologically by 
e.g., angiotensin, α-adrenergic receptor agonists and antagonists, 
nitric oxide donors, and anesthetic agents (Purkayastha et  al., 
2013; Willie et  al., 2014) but the effects of these interventions 
on cerebrovascular tone remain controversial (Van Lieshout and 
Secher, 2008; Willie et  al., 2014). For instance, the similarity of 
reductions in arterial pressure and pulsatile change in MCA V 
before vs. during ganglion blockade while maintaining arterial 
pressure with phenylephrine was taken to suggest that sympathetic 
vasoconstriction, mediated through α2-adrenergic receptor 
activation, is not the underlying mechanism for the reduction 
in CBF during central hypovolemia (Zhang and Levine, 2007). 
Yet, it should be  considered that phenylephrine may lower CBF 
while increasing mean arterial pressure (Stewart et  al., 2013). 
In diabetic patients, both cerebral autoregulatory capacity (Kim 
et  al., 2008a; Kim, 2014; Vianna et  al., 2015) and CVRCO2 as 
the major operative mechanisms maintaining CBF may have 
become impaired (Dandona et  al., 1978; Fulesdi et  al., 1997), 
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rendering diabetic patients more susceptible to ischemic episodes 
(Dandona et  al., 1978; Kim et  al., 2011).

BRAIN VS. SKELETAL MUSCLE BLOOD 
FLOW RESPONSE TO EXERCISE

A major difference between brain and skeletal muscle is that 
the brain is active under all living conditions and uses ~15% 
of cardiac output at rest (Ide et  al., 1999a, 2000; Immink et  al., 
2009; Willie et al., 2014). The effects of exercising in the upright 
vs. seated position on cardiac preload are exemplified by a higher 
heart rate in the upright position (Yoshiga and Higuchi, 2002). 
Equally, the change to the upright posture accompanying the 
majority of exercise modalities affects both the arterial supply 
to and the venous drainage from the brain (Van Lieshout et  al., 
2003; Dawson et  al., 2004; Gisolf et  al., 2004). When assuming 
the upright position, global CBF and frontal cortical oxygenation 
decrease, seemingly at odds with the concept of cerebral 
autoregulation implicating constancy of CBF for a range of 
cerebral perfusion pressures. The “constant flow” autoregulation 
plateau has been constructed from data across different studies 
rather than quantifying the pressure-flow relationship within 
individual subjects that, however, is difficult given that the range 
of blood pressures required for relating flow to pressure remains 
effectively limited by autonomic cardiovascular reflex activity. 
Yet, maintaining CBF constant would require an autoregulatory 
efficacy with an infinite gain, which generally does not apply 
to biological systems (Van Lieshout et  al., 2003; Willie et  al., 
2014). Obviously, the arterioles rather than large arteries represent 
the main side of vascular resistance, but also larger arteries 
contribute to vascular control (Iversen et al., 1995). For the brain, 
the large extracranial vessels and surface vessels contribute 
importantly to cerebrovascular resistance, thus being at least 
passively involved in regulation of CBF (Faraci and Heistad, 1990; 
Ritz et  al., 2014; Willie et  al., 2014).

The brain with its small vascular bed being tightly controlled 
takes up to ~25% of whole-body oxygen consumption at rest 
(Braz and Fisher, 2016). The vulnerability of the brain is 
exemplified by the fact that its function deteriorates when 
cerebral oxygenation is reduced by more than about 10% from 
the resting level, in contrast to skeletal muscles, that continue 
their activity despite an O2 desaturation below 10% (Quistorff 
et  al., 2008; Secher et  al., 2008). Continued exhaustive exercise 
evokes a competition for the supply of oxygenated blood between 
the brain and the working muscles. The brain activates the 
muscles, but from then on, the large increase in muscle blood 
flow and thus skeletal muscle vascular conductance represents 
a major competitor for continuous provision of oxygen and 
substrate upon which the brain relies (Secher et  al., 2008). 
Heavy exercise with large muscle groups requests more blood 
than the heart can provide and thus requires tight sympathetic 
vasomotor control to maintain arterial pressure (Calbet et  al., 
2004). When humans exercise at maximal intensity, up to 
~80–90% of total cardiac output is being distributed to skeletal 
and cardiac muscle (Laughlin et  al., 2012). At the same time, 
an increase in regional CBF has to match the enhanced neuronal 

metabolism exemplified by an elevated cerebral metabolic rate 
for oxygen at that stage of exercise (Laughlin et  al., 2012). 
Within the brain, in contrast to skeletal muscles, there is no 
capillary recruitment and creating and maintaining an elevated 
O2 gradient is a prerequisite given that the efficacy for O2 
extraction by the brain compared to skeletal muscle is small.

CARDIAC OUTPUT SUPPORTS CBF 
DURING EXERCISE

The size of cardiac output is important for regulation of CBF 
beyond arterial pressure both at rest and during exercise (Hellstrøm 
et  al., 1994, 1996; Magnusson et  al., 1997; Ide et  al., 1998, 
1999a,b, 2000; Gruhn et  al., 2001; Van Lieshout et  al., 2001; 
Ogoh et  al., 2005a; Secher et  al., 2008; Braz and Fisher, 2016). 
In consequence, an incompetence to increase cardiac output 
sufficiently during exercise may jeopardize cerebral perfusion 
and thereby the ability of the central nervous system to recruit 
and adequately drive the motoneurons. The role of cardiac output 
for distribution of flow is illustrated in patients with moderate 
heart failure for whom peak skeletal muscle perfusion is maintained, 
provided that the activated muscle mass is small. Involvement 
of a larger muscle mass, however, reduces peak leg blood flow, 
perfusion, and oxygen uptake (Magnusson et al., 1997). Similarly 
in these patients during one-legged exercise, MCA V is maintained 
but declines with two-legged exercise and exposes a competition 
between brain and skeletal muscle (Hellstrøm et al., 1996). Thus, 
the traditional concept that the brain is at the top of the hierarchy 
of competing physiological needs is challenged when cardiac 
output no longer matches tissue O2 requirements. Under these 
circumstances, exercise evokes cerebral deoxygenation, metabolic 
changes, and indices of fatigue similar to those observed during 
exercise in hypoxia (Secher et  al., 2008; Rasmussen et  al., 2010). 
Thus, reduced cerebral oxygenation may play a role for the 
development of central fatigue as an exercise capacity limiting 
factor (Rasmussen et  al., 2010; Kim et  al., 2015).

EXERCISE AND BRAIN VASCULAR 
CONTROL IN TYPE 2 DIABETES

Physiological aging is associated with a decline in resting 
cerebral metabolism, global CBF, and gray matter flow but 
does not in itself implicate affected CBF control (for review, 
see Braz and Fisher, 2016). Specifically, the normal development 
of an initial increase in CBF in response to exercise is well 
maintained in the elderly (Laughlin et  al., 2012; Fisher et  al., 
2013; Braz and Fisher, 2016). During maximal exercise in 
healthy humans, fatigue is preceded by reductions in systemic 
and skeletal muscle blood flow, and O2 delivery and uptake 
(Gonzalez-Alonso et  al., 2004).

In middle-aged type 2 diabetic patients, the cardiac output 
reserve and work capacity are low and the increase in CBF 
that is present in healthy young and elderly does not develop 
(Figures  1, 2; Kim et  al., 2015). Accordingly, these patients 
demonstrate an early reduction in cerebral oxygenation despite 
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FIGURE 1 | Cerebrovascular response to exercise in eight male type 2 diabetic patients without symptomatic cardio-vascular disease (closed circles) vs. seven 
age and gender matched healthy subjects (open circles) at the same absolute (left panels) and relative workload (right panels). (A) Cerebral blood flow derived 
from the Fick principle (CBFFick) from inverse arterial-jugular venous oxygen difference, (B) middle cerebral artery mean blood flow velocity (MCA Vmean), 
(C) cerebrovascular conductance index (CVCi), and (D) rating of perceived exertion (RPE; Borg scale). The patients demonstrated a decline in cerebral perfusion 
and oxygenation during incremental exercise associated with attenuated increases in cerebral and systemic vascular conductance compared with healthy 
controls. Cerebral oxygenation reached its lowest level at exhaustion at a 20% lower workload in type 2 diabetes mellitus (T2DM) patients than healthy controls 
and patients expressed a higher RPE than healthy controls. †p < 0.05 and ‡p < 0.01 vs. rest; *p < 0.05 and **p < 0.01 vs. control subjects. Values are 
mean ± SD (modified from Kim et al., 2015).
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a larger brain O2 extraction, and they express enhanced perceived 
exertion, signifying a fundamental problem in brain vascular 
control during exercise (Kim et al., 2008a; Vianna et al., 2015). 
Yet, for these patients, the brain uptake of lactate and glucose 
is similar to what is found in healthy reference subjects (Kim, 
2014; Kim et al., 2015), which points to cerebrovascular rather 
than brain metabolic derangement. In contrast to the vast 
amount of studies on the muscle blood flow response to 
exercise in type 2 diabetic patients, data on the CBF response 
to exercise in these patients are very sparse. In diabetic patients, 
progression of microvascular disease interferes with the 
physiological nocturnal decline in blood pressure, coinciding 
with a persistently increased arterial pulse pressure and reduced 
baroreflex sensitivity, contributing to their increased 
cardiovascular risk (Kim et al., 2019). Treatment of hypertension 
as a common comorbidity in type 2 diabetes is required to 
reduce the risk of hypertensive surges during strenuous exercise 
that challenge the brain vasculature, but intensive blood pressure 
control may, in contrast to nondiabetic hypertensive patients, 
reduce their CBF (Kim et  al., 2011).

FROM DECONDITIONING TO PHYSICAL 
EXERCISE – A CHALLENGE OF BRAIN 
VASCULAR CONTROL

Loss of skeletal muscle mass is a main factor for the increased 
incidence of type 2 diabetes with aging. Deconditioning as 

a result of physical inactivity vs. resistance exercise is associated 
with opposing adaptive responses. Resistance exercise provides 
better metabolic control (Baldi and Snowling, 2003), mitigates 
disuse-associated tendon stiffness, maintains or increases 
skeletal muscle mass, and improves whole body glucose disposal 
(Fenicchia et  al., 2004). Thus, a focus on resistance exercise 
has been recommended for type 2 diabetic patients, specifically 
for the subgroup of sarcopenic or severely deconditioned 
older patients (Sigal et  al., 2006). Resistance vs. endurance 
exercise has different cardiovascular effects. Resistance-type 
activities produce a considerably larger increase in arterial 
pressure, because of the mechanical compression of blood 
vessels together with repeated Valsalva-like maneuvers 
(MacDougall et  al., 1985). Unlike aerobic exercise, resistance 
training affects central arterial compliance in healthy men 
(Miyachi et  al., 2004).

In healthy young adults, isometric resistance exercise with 
vs. without concomitant straining produces a greater 
cerebrovascular challenge (Perry et al., 2020), whereas straining 
dominates the central and cerebral hemodynamic response 
to intense static exercise (Pott et  al., 2003). Although acute 
changes in arterial blood pressure during physiological 
challenges are transmitted to the cerebral circulation, under 
normal conditions, CBF returns to its baseline value within 
a few seconds (Panerai et  al., 2001; Pott et  al., 2003; Immink 
et al., 2005; Labrecque et al., 2020). Cerebral vasoconstriction 
constantly plays a protective role during exercise of moderate 
to heavy intensity, in particular when pulse pressure exceeds 
the autoregulatory range (Ogoh et  al., 2005b). When 
autoregulatory mechanisms are failing (Immink et  al., 2005; 
Kim et  al., 2008a; Frosch et  al., 2017; Vranish et  al., 2020) 
or overwhelmed by acute blood pressure surges beyond the 
autoregulatory range, e.g., grave hypertension, CBF becomes 
more directly related to its perfusion pressure, resulting in 
cerebral hyperperfusion manifested by retinal edema and 
encephalopathy (Immink et  al., 2004).

PERSPECTIVE

In the European Union, 55  million individuals suffer from 
type 2 diabetes and 66 million have impaired glucose tolerance, 
with an estimated ~4% annual increase. Optimizing metabolic 
control by behavioral modification including regular physical 
activity, thus slowing down progression of vascular disease 
is a task for diabetes care. From that point of view, physical 
activity represents a “medicine” for metabolic disease (Pedersen 
and Saltin, 2015; Pedersen, 2019). The challenge to optimize 
metabolic control in individuals with type 2 diabetes may 
be achieved at least in part by behavioral modification including 
regular physical activity (Kim et  al., 2008b; Pedersen, 2017). 
Indeed, physical activity by patients with type 2 diabetes 
markedly improves the impaired insulin action and is considered 
a cornerstone in the treatment along with diet and medication. 
Unfortunately, however, type 2 diabetic patients perceive 
sustained aerobic exercise to be  more strenuous than healthy, 
non-diabetic subjects. This sets a limit to the effectiveness 

FIGURE 2 | Middle cerebral artery mean blood flow velocity (MCA Vmean) at 
rest and during exercise at the same relative workload in young individuals 
(black circles), and in middle-aged subjects without (gray circles), and with 
type 2 diabetes (T2DM; open circles). During submaximal and during maximal 
exercise, cerebral perfusion was reduced in older individuals compared with 
young individuals, and the more so in the older diabetic patients. Values are 
mean ± SEM (adapted from Fisher et al., 2013; Kim et al., 2015).

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kim et al. Brain Perfusion During Exercise in Type 2 Diabetes

Frontiers in Physiology | www.frontiersin.org 6 January 2021 | Volume 11 | Article 583155

of physical activity as a preventive lifestyle intervention for 
this patient population (Praet and van Loon, 2008, 2009; 
Huebschmann et  al., 2009, 2015; Nadeau et  al., 2009; 
Regensteiner et al., 2014; Senefeld et al., 2020). Left ventricular 
diastolic dysfunction may be an early manifestation of diabetic 
cardiomyopathy. When cardiac function deteriorates, the blood 
supply to the brain seems no longer safeguarded, pointing 
to the hitherto underexposed functional connection between 
heart and brain. Aerobic exercise itself may reveal arterial 
dysfunction associated with latent and overt cerebrovascular 
disease (Robertson et  al., 2019).

In mice, exercise training increased brain mitochondrial 
biogenesis (Steiner et  al., 2011) and a liver-to-brain axis was 
identified by which plasma glycosylphosphatidylinositol-specific 
phospholipase could transfer the benefits of exercise on 
neurogenesis in the brain from young to old mice (Ansere 
and Freeman, 2020; Horowitz et al., 2020). Nevertheless, regular 
physical exercise arguably continues to remain the most 
consistently effective health-enhancing strategy to attenuate the 
deterioration in brain structure and function related to aging 
and type 2 diabetes (Hillman et  al., 2008; Mayhan et  al., 2011; 
Espeland et  al., 2018; Pedersen, 2019). When applying the 
concept that failure in regulation at multiple levels is common 

in diseases like diabetes (Pedersen and Saltin, 2015), a limited 
ability to increase cardiac output together with reduced systemic 
and cerebral vasodilatory capacity become primary targets for 
prevention and treatment, challenging integrative physiologists 
and clinicians alike.
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