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Today, in silico studies and trial simulations already complement experimental approaches 
in pharmaceutical R&D and have become indispensable tools for decision making and 
communication with regulatory agencies. While biology is multiscale by nature, project work, 
and software tools usually focus on isolated aspects of drug action, such as pharmacokinetics 
at the organism scale or pharmacodynamic interaction on the molecular level. We present a 
modeling and simulation software platform consisting of PK-Sim® and MoBi® capable of building 
and simulating models that integrate across biological scales. A prototypical multiscale model 
for the progression of a pancreatic tumor and its response to pharmacotherapy is constructed 
and virtual patients are treated with a prodrug activated by hepatic metabolization. Tumor 
growth is driven by signal transduction leading to cell cycle transition and proliferation. Free 
tumor concentrations of the active metabolite inhibit Raf kinase in the signaling cascade and 
thereby cell cycle progression. In a virtual clinical study, the individual therapeutic outcome 
of the chemotherapeutic intervention is simulated for a large population with heterogeneous 
genomic background. Thereby, the platform allows efficient model building and integration 
of biological knowledge and prior data from all biological scales. Experimental in vitro model 
systems can be linked with observations in animal experiments and clinical trials. The interplay 
between patients, diseases, and drugs and topics with high clinical relevance such as the role 
of pharmacogenomics, drug–drug, or drug–metabolite interactions can be addressed using 
this mechanistic, insight driven multiscale modeling approach.
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identification and lead optimization to late clinical development 
and life-cycle management of marketed drugs. Systems biology 
approaches are progressively entering several of these stages and 
promise to accompany and support projects along the develop-
ment process by integrating and testing available knowledge and 
data as well as translating this knowledge to new settings and 
patient groups (Butcher et al., 2004). However, there is still a clear 
demand to better relate, translate, and merge results between the 
different physiological scales as well as research and development 
processes involved.

A large number of software solutions have been developed in 
the systems biology area supporting scientists in model building 
and analysis. The Systems Biology Markup Language (SBML) 
homepage1 provides a growing compilation of different software 
tools with a main focus on metabolic and signaling networks 
reflecting the non-clinical focus of systems biology so far. General 
physiology modeling tools focusing on the dynamics of human 
physiology across multiple organ systems as well as PK software 
tools focusing on physiologically-based approaches to describe 

IntroductIon
Most properties of a biological organism result from complex inter-
actions between biological scales from the molecular level to the 
whole body. They are emergent properties not evident at individual 
biological scales. Today, systems biology is aiming for a holistic 
description and understanding of biological processes (Chong and 
Ray, 2002) by an integration of analytical experimental approaches 
with synthetic computational models.

The holistic claim of systems biology is progressively influencing 
science and leading to the mergence of previously largely separated 
fields of investigation and modeling. In the context of pharmaceuti-
cal research and development it is relevant not only to investigate 
drug action at the target site (pharmacodynamics, PD), but also 
to understand how the drug reaches the target and what effective 
concentrations result from a given dose (pharmacokinetics, PK). 
When taking a mechanistic view of the involved processes, PK/
PD models inevitably merge with approaches to model molecular 
signaling and metabolic networks (Kuepfer, 2010).

Besides the different physiological scales involved in life sci-
ence and pharmaceutical research, the latter is also organized into 
multiple project stages of research spanning from early target 1http://sbml.org
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Software and trademark information: Excel® is a registered trade-
mark of Microsoft Inc., Redmond, USA; R is a product of the R 
Foundation for Statistical Computing, Vienna, Austria2; MATLAB® 
is a registered trademark of The MathWorks, Inc., Natick, USA3; 
PK-Sim® and MoBi® are registered trademarks of Bayer Technology 
Services GmbH, Leverkusen, Germany4.

ApplIcAtIon exAmple model buIldIng
The tumor model presented in the Section “Results” considers rest-
ing (Q), dividing (P), and dead (D) cells. The Q–P transition rate is 
given by p × Q/(Pro

Layer
 + Q) × ERKPP, with p as the proliferation rate 

constant (value of 0.01 cell/molecules × min−1), Q as the number of 
resting cells (initial condition of 1), Pro

Layer
 as a constant accounting 

for the relative size of the proliferative layer (value of 1), and ERKPP 
as the concentration of ERKPP, which is provided through the signal 
transduction model described below. The P–Q transition rate is given 
by ln(2)/cycle

length
 × P, with ln as the natural logarithm, cycle

length
 as a 

constant accounting for the length of a cell division cycle (value of 
1440 min), and P as the number of dividing cells (initial condition of 
0). The Q–D transition is given by the simple first-order rate a_n × Q, 
with a_n as the rate constant (value of 5 × 10−6 min−1), and Q as the 
number of resting cells (see above).

The signal transduction model has been described in detail 
by Brightman and Fell (2000) and was imported via the SCAMP 
import functionally of MoBi®. The only modification/extension 
made, is a reversible binding of Raf to the active metabolite as 
expressed by kon × Rafst × ActMet × fu/K cellpls

 − koff × Rafst
Complex

, with 
kon as the binding rate constant (value of 100 min−1μM−1), Rafst as 
the concentration of the activated Raf (initial condition of 0 mol-
ecules/cell), ActMet as the concentration of active metabolite in the 
pancreas (initial condition of 0 μM) as provided through the PBPK 
model described below, fu/K cellpls

 as a correction factor to account for 
unspecific protein binding and partitioning of the active metabolite 
as is typical for PBPK models (value of 0.0721), koff as the dis-
sociation rate constant (value of 5 min−1), and Rafst

Complex
 as the 

complex of active Raf and the active metabolite (initial condition of 
0 μM). The unit differences between the signal transduction model 
in molecules/cell and the PBPK model in μM is accounted for by a 
stoichiometry entry of 600,000 for Rafst, i.e., 1 μM corresponds to 
600,000 molecules/cell based on the assumption of a cell volume of 
1 pl. The species ERKPP, which is part of the signal transduction 
model, is used in the tumor cell model, as described above.

The basis PBPK model was build using the PK-Sim® default 
settings for a 30-year-old male virtual individual with a body 
weight of 73 kg. The derivation of physiological parameter is 
detailed in Willmann et al. (2003a, 2005). Compound-specific 
inputs for the virtual prodrug were: log lipophilicity = 3.0, fraction 
unbound = 0.112, and molecular weight = 400 g/mol. Compound-
specific inputs for the active metabolite were: log lipophilicity = 2.2, 
fraction unbound = 0.200, and molecular weight = 417 g/mol. 
The application scheme for the prodrug was: bi-daily oral admin-
istration of 1 mg. For both compounds, intrinsic hepatic clear-
ances of 50 l/min were defined. In addition, a hepatic clearance 

xenobiotic absorption, distribution, metabolization, and elimina-
tion (ADME) have been reviewed by different authors, e.g. (Hester 
et al., 2010) and (Nestorov, 2007; Espie et al., 2009), respectively. 
Most of the available tools focus on selected aspects and physio-
logically-based PK (PBPK) models are neither easily extendable 
nor customizable. Moreover, model implementations using flex-
ible general purpose simulation environments are generally time 
consuming, error prone, and difficult to assess considering their 
non-standard formulation.

In the following, the concept, architecture, realization, and 
functionality of a software platform for biological multiscale 
modeling and simulation is introduced and illustrated. The 
software platform is designed to support the integration of 
the different physiological levels from the whole-body scale to 
the molecular level and fields of research as shown in Figure 1. 
First, the platform concept and its realization including common 
components, different graphical user interfaces (PK-Sim® and 
MoBi®), import and export functionalities, as well as command 
line options via interfaces to computing environments (R and 
MATLAB®) will be explained. Second, the use of the software 
will be illustrated with an exemplary multiscale model that 
combines the description of tumor growth and signal transduc-
tion at the cellular level with a chemotherapeutic intervention, 
where a prodrug is bioactivated by a polymorphic enzyme, at 
the whole-body level. In a virtual clinical study, the individual 
outcome of the therapy with the prodrug is simulated based on 
realistic genetic predispositions of the virtual patients in a large 
virtual population.

mAterIAls And methods
softwAre
The software platform presented in the Section “Results” comes 
along with about 400 pages of documentation in the form of 
handbooks. Further information can also be found at www.
systems-biology.com/products. The platform is available to 
academic researchers via a free non-commercial license, please 
 contact   info@systems-biology.com.

Figure 1 | Multiscale modeling and simulation. The software platform is 
designed for modeling and simulation of biological process with a focus on 
pharmacokinetics, pharmacodynamics, and disease progression (including 
biochemical reaction networks). Thereby, the platform allows the combination 
of multiple organizational and physiological scales. PK-Sim® has a focus on 
whole-body physiology and its variability in populations, whereas MoBi® has a 
focus on the cellular and molecular level.

2http://www.r-project.org/
3http://www.mathworks.com/products/matlab
4www.systems-biology.com/products
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manner and does not only include information on the differ-
ent parts of the mathematical model, but also meta-information 
related to simulation and solver parameters, simulation results, 
experimental data, and information for documentation purposes. 
The simulation kernel currently contains the CVODE solver for 
(stiff) ordinary differential equations (Cohen and Hindmarsh, 
1996)5 and the MATLAB®-derived ddesd solver for delay differ-
ential equations (Shampine, 2005)6. A plug-in interface allows 
the straightforward integration of further ODE and DDE solvers. 
The XML model can be formulated with different software tools 
of the platform.

PK-Sim®

The first graphical user interface based tool is PK-Sim®, a whole-
body PBPK modeling software. PBPK modeling has been used for 
decades in the field of toxicological risk assessment (Loizou et al., 
2008) and has in recent years been extended toward the application 
in the drug research and development area (Willmann et al., 2003b, 
2004, 2005, 2007a,b, 2009b; Edginton et al., 2006a,b,c, 2008; Vossen 
et al., 2007; Edginton and Willmann, 2008). PK-Sim® allows rapid 
access to all relevant anatomical and physiological parameters for 
humans and the most common laboratory animals (mouse, rat, 
minipig, dog, and monkey) that are contained in the integrated 
database (Willmann et al., 2003b). In the example below, virtual 
patients with pancreatic tumors are constructed based on the 
whole-body model.

An exemplary screenshot of the stand-alone software is shown 
in Figure 3A. The software’s user interface is structured according 
to the ADME paradigm which ensures ease-of-use and a straight-
forward identification of parameter input requirements. Different 
prediction methods for deducing drug-dependent parameters rel-
evant for absorption and distribution, based on simple physico-
chemical properties of the substance under investigation, can be 
chosen. These include the distribution models for small molecules 
as developed by Willmann et al. (2003a), Rodgers et al. (Rodgers 
et al., 2005a,b; Rodgers and Rowland, 2006, 2007), Poulin et al. 
(Poulin et al., 2001; Poulin and Theil, 2002a,b), Berezhkovskiy 
(2004), Schmitt (2008), as well as a newly developed proprietary 
distribution model dedicated to biologicals. A typical PK-Sim® 
whole-body model includes 17 organs and tissues, which are sub-
divided into the compartments vascular plasma and red blood 
cells, tissue interstitial and cellular space. The organs are con-
nected via a blood flow from an arterial blood pool to a venous 
blood pool. An inverse flow for the lung represents the small 
circulation and closes the mass balance. Convective and diffusive 
uptake into tissue is explicitly represented in the model and an 
arbitrary number of specific active transport and metabolization 
processes in specific organs can be defined by the user to reflect 
substrate properties of a compound. The implemented whole-
body model also includes a gastrointestinal tract to simulate 
oral applications of various formulation types (Willmann et al., 
2003b, 2004) and allows administration of drugs into any other 
organ, e.g., to describe subcutaneous, transdermal, or respiratory 
drug administration.

via  cytochrome P450 2D6 (CPY2D6) specific for the prodrug was 
implemented as a link that serves as a source for the active metabo-
lite and thereby couples the two PBPK models via the first-order 
rate equation CL

2D6
 × ProDrug × fu/K cellpls

, with CL
2D6

 as the clearance 
rate constant [value of 100 l−1 for extensive metabolizers (EMs)], 
ProDrug as the prodrug concentration in liver cells (initial condi-
tion of 0 μM), and fu/K cellpls

 as a correction factor to account for 
unspecific protein binding and partitioning of the prodrug as is 
typical for PBPK models (value of 0.0135).

cYp2d6 ActIvItY And populAtIon sImulAtIon pArAmeter 
settIngs
The activity differences for CYP2D6 between poor (PM), inter-
mediate (IM), extensive, and ultra-rapid (UM) metabolizers were 
derived according to Zanger et al. (2001). For population simu-
lations, variability was superimposed with a geometric SD of 1.6 
according to Zanger et al. (2001). The frequency of the different 
metabolizers within a population was according to Sistonen et al. 
(2007) for Europeans. Where indicated, physiological parameters 
(organ volumes and composition, blood flows, etc.) were varied 
independent of the metabolizers’ phenotype. The derivation of phys-
iological parameter distributions in virtual populations is detailed 
in Willmann et al. (2007b, 2009a) and implemented in the PK-Pop 
module of PK-Sim®. For the population generation the settings were: 
European population (ICRP), age range between 18 and 40, gender 
male, and without further restrictions. Where indicated, variability 
in the protein levels of the signal transduction pathway was super-
imposed with a geometric SD of 1.25, which is in the range reported 
in similar settings (Sigal et al., 2006; Spencer et al., 2009).

results
plAtform concept And reAlIzAtIon
The modular architecture of the software platform is outlined 
in Figure 2. The common core components consist of a speci-
fication of the mathematical model in XML-file format and the 
simulation kernels. The XML file is configured in a hierarchical 

Figure 2 | Modular structure of the software platform. In the center of the 
platform are PK-Sim®, MoBi®, and the MoBi® toolboxes for R and MATLAB®. 
While all tools allow simulation and result visualization, PK-Sim® and MoBi® 
are designed for modeling and low through-put simulations, while the 
toolboxes allow batch simulations and additional analysis tasks. A common 
XML-file format can be interpreted by the different programs. Additional 
flexibility is provided through import and export functions. (Trademark 
information: see Materials and Methods).

5https://computation.llnl.gov/casc/sundials/main.html
6http://www.mathworks.com/products/matlab/
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MoBi®

The second major component of the platform is MoBi®, a flexible, 
stand-alone, general purpose graphical modeling tool. MoBi® is 
fully compatible with PK-Sim®, i.e., it can load and simulate any 
PK-Sim® model. In addition, it allows to make structural modi-
fications of the PBPK model as, for example, the addition of fur-
ther tissues or tissue sub-compartments, the dynamic coupling 
of multiple PBPK models established in PK-Sim® to represent 
drug-metabolite or drug–drug interaction scenarios (Vossen et al., 
2007), but also the integration of metabolic or signaling network 
models as PD effect models of arbitrary complexity. Alternatively, 
MoBi® can also be used to build models “from scratch”. Exemplary 
screenshots are shown in Figures 3B,C. MoBi® can simultaneously 
simulate interacting PBPK models for multiple substances (“spe-
cies,” e.g., drugs or endogenous substances such as plasma pro-
teins, hormones, etc.) and offers predefined structural objects for 
model building such as organs, compartments, links (that define 
the transfer of a species between compartments), and reactions 

For humans, the database for anatomical and physiological param-
eters allows the individualization of the virtual human depending on 
his ethnicity, gender, age, body weight, and height (Willmann et al., 
2007b, 2009a). For pediatric applications metabolization and excretion 
processes are automatically scaled to children of a given age using prior 
knowledge about the age-dependence of organ volumes and blood 
flow rates (growth) as well as the age-dependence of enzyme activities 
and renal or hepatobiliary excretion capacities (maturation; Edginton 
et al., 2006a,c). Besides average values for the anatomical and physi-
ological parameters, prior information about the inter-individual vari-
ability has also been integrated allowing an automated simulation of 
virtual populations including pediatric populations down to term and 
even pre-term neonates. Diverse visualization options for simulation 
results and, if available, imported experimental data are included in the 
software tool as well as routines to derive relevant PK parameters and 
an export of all simulated results to MS Excel®. Altogether, PK-Sim® is 
designed for rapid and efficient PBPK model building and simulation 
for both, modeling experts and modeling non-experts.

Figure 3 | graphical user interface examples. The software is build 
to allow an efficient building, processing, and analysis of computational 
systems biology models. While assisting the user through graphical 
interfaces, full programming flexibility is provided through the interfaces 
to R and MATLAB®. (A) PK-Sim® screenshot. (B) MoBi® screenshot at 

whole body level. (C) MoBi® screenshot at the sub-compartment level. 
(D) MATLAB® help and GUI screenshot to assist in code generating for 
MoBi® model processing. Additional details describing the four 
subfigures as well as enlarged versions of these are available as 
Supplementary Material.
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behavior. The so-called MoBi® toolboxes for R® and MATLAB® con-
tain basic functions for parameter access and manipulation as well 
as simulation result retrieval. The MoBi® toolbox for MATLAB® also 
contains extended analysis functionalities, e.g., to perform sensitiv-
ity analysis. For several tasks, both command line functions and 
graphical user interfaces are available within MATLAB®. Also, exam-
ple and help files are integrated into the MATLAB® environment. 
An exemplary screenshot is shown in Figure 3D. Tools developed 
in R and MATLAB® that are frequently used, have also been com-
piled and integrated into the MoBi® user interface, for example, to 
perform parameter identification or population simulation tasks 
without the need to install the additional software.

ApplIcAtIon exAmple – phArmAcogenomIc ImpAct on cAncer 
therApY
To illustrate the scope of the software platform concept and the 
performance of the current implementation in a case study, we 
present an exemplary multiscale model of a virtual patient with a 
pancreatic tumor and the treatment by a virtual chemotherapeutic 
agent (Figure 4). The chemotherapeutic agent is administered in 
the form of a prodrug, and the active metabolite is formed from 
this prodrug in the liver of the virtual patient by an enzyme that 
has a known polymorphism that alters the metabolization rate 
(CYP2D6). The model is then applied to simulate a virtual clinical 
study scenario, where the individual therapeutic outcome of the 
treatment is simulated based on realistic genetic predispositions of 
CYP2D6 of the virtual patients. While the test case is truly virtual, 
as the properties of the modeled drug are, the preceding scenario 
is prototypical for the application of the platform in pharmaceuti-
cal R&D.

(that define interactions between different species such as spe-
cific binding). Parameters of a model can either be defined as 
constants or as formulas to account for dependencies on other 
parameters or species. The structural objects organism, organ, and 
compartment are inspired by mammalian anatomy. With these 
structural objects MoBi® allows the hierarchical organization of 
models and the representation of the whole-body, organ, and tis-
sue and  sub-cellular level in a graphical working environment. 
Reactions and links couple the different species using parameters 
and functional relations that the user can freely define, e.g., trans-
port kinetics, rate laws such as mass action, Michaelis–Menten, 
Hill, or more sophisticated kinetics. Species appear in a reaction 
or link as educts, products, or modifiers. Reactions between educts 
and products are balanced by a stoichiometry that can be assigned 
by the user, while in contrast modifiers represent catalytic spe-
cies that are neither produced nor consumed in a reaction. The 
above mentioned information is assembled by MoBi® to establish 
a set of differential equations that describe the rate and parameter 
dependent changes of species over time. In addition, all models 
can be extended by so-called observers. Observers are derived from 
state-variables of the differential equation system (species) and 
parameters by user-defined formulas. Furthermore, a model can 
be extended to represent distinct events using so-called switches. A 
switch consists of a conditional expression and two lists of assign-
ments for species and parameters that are either processed, if the 
conditional expression is met, or not processed. It can be used to 
represent changes of (for example experimental) conditions or to 
model rapid processes implicitly rather than explicitly as a part of 
the differential equation. During simulation, i.e., integration of 
the differential equation, when a switch condition is met, MoBi® 
stops the integration, changes the species and parameter values 
according to the switch definition, and then restarts the integra-
tion. In addition to its graphical model building capabilities, MoBi® 
offers import functionalities for two common modeling formats 
frequently used in computational biology (SCAMP; Sauro, 1993 
or SBML; Hucka et al., 2003). As in case of PK-Sim®, simulation 
results can be visualized in MoBi® and exported to MS Excel®. Also, 
the differential equation system can be exported to MATLAB®.

While MoBi® allows full access to all properties of a model and 
provides consistency checks for rate equations and other tools, 
e.g., for checking mass balances, it is truly flexible and will also 
accept models breaching mass balance (unlike PK-Sim®). As a 
consequence, model building in MoBi® requires a higher level of 
expertise than the use of PK-Sim®.

MoBi® toolboxes for R and MATLAB®

A third component of the software platform are interfaces to R and 
MATLAB® that are useful to analyze and interpret PK-Sim® and 
MoBi® models in an fast and automated manner. Advanced model 
analysis may, for example, involve statistical analysis of the results 
obtained or the calculation of local or global sensitivity measures 
to assess model robustness and quality (Kacser and Burns, 1973; 
Heinrich and Rapoport, 1974; Heinrich and Schuster, 1996; Sobol’, 
2001; Zi et al., 2008). Also, repeated simulations in an automated 
manner are useful, for example, to identify uncertain model param-
eters based on a numerical minimization of the error between 
experimental and simulation results or to investigate population 

Figure 4 | Model structure of multiscale PBPK–PD–signal transduction 
(ST) application example. The figure outlines the most relevant processes 
captured in the multiscale model. Details (e.g., additional organs, sub-
compartments, and proteins) are omitted for clarity. A whole-body PBPK 
model is constructed for a prodrug and its active metabolite. The two 
substances are coupled via a hepatic CYP2D6 clearance of the prodrug, which 
is the source for the active metabolite. A tumor (PD) model is contained in the 
pancreas of the whole-body model, considering resting, dividing, and dead 
cell populations. Within the resting cells an EGFR signal transduction model is 
nested. Raf, a kinase participating in the signal transduction process, is the 
target of the active metabolite. ERKPP, a transcription factor, drives the 
transition into the dividing population. The sum of resting and dividing cells 
constitutes the viable tumor mass and serves as a primary output. For 
additional details, see Materials and Methods.
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Figure 5B shows tumor growth without drug treatment (magenta 
line). In this case, tumor growth is biphasic: as the tumor size 
increases, the growth regimen switches from exponential to linear 
after approximately 3 weeks. In individuals undergoing chemo-
therapy, growth retardation or even stagnation is observed dur-
ing the treatment periods (week 5, 6, and 8), and the simulations 
indicate a fast relapse upon treatment interruption (week 7). The 
four curves in Figure 5B refer to individuals with different CYP2D6 
phenotypes termed UM, EM, IM, and PM (Zanger et al., 2001). 
As can be seen, the treatment efficacy decreases with decreasing 
CYP2D6 activity. While the drug is effective for CYP2D6 activities 
found in UM, EM, and, to a lesser extend, IM, the treatment efficacy 
is drastically reduced in PM. In order to investigate whether this 
indeed reflects a strong and specific pharmacogenomic impact or 
just a generally high sensitivity of the model toward model param-
eters, and in order to investigate if a typical variability in CYP2D6 
activities or other physiological parameters can mask the pharma-
cogenomic impact in a realistic population, population simulations 
were performed.

In these population simulations, only the CYP2D6 activity was 
varied between the individuals with reference values and a super-
imposed variability according to Zanger et al. (2001; Figures 6A,B). 
A European population composition was chosen according to 
Sistonen et al. (2007). Second, in addition to the clearance vari-
ability, standard physiological parameters (organ volumes and 
composition, blood flow rates, etc.) were varied according to 
Willmann et al. (2007b, 2009a; Figures 6C,D). Third, in addition 
to clearance and physiological variability, natural biological noise 
at the signal transduction level was considered (Elowitz et al., 2002; 

First, a tumor model is established by creating a tumor com-
partment containing three sets of cells constituting the virtual 
tumor, i.e., quiescent (resting), proliferative (dividing), and apop-
totic or necrotic (dead) cells. For each cell type, initial conditions 
and transition rates are defined (see Materials and Methods). For 
example, only those quiescent cells contained in a so-called pro-
liferative layer can become proliferative. The transition rate of 
cells from the  quiescent to the proliferative state is assumed to 
be proportional to the concentration of a transcription factor of 
special interest, i.e., phosphorylated extracellular-signal regulated 
kinase (ERKPP).

Second, a published epidermal growth factor (EGF) signal 
transduction model (Brightman and Fell, 2000) describing ERK 
activation is imported and coupled to the tumor model by the 
above assumption.

Third, whole-body PBPK models of the two substances of inter-
est, the chemotherapeutic prodrug and its active metabolite, are 
established using PK-Sim®. The prodrug is administered bi-daily (in 
the form of an oral tablet) in two cycles starting in weeks 5 (2-week 
duration) and week 8 (1-week duration). The two PBPK models are 
coupled within MoBi® by defining a link that describes the bioacti-
vation of the prodrug via hepatic enzymatic transformation to the 
active metabolite catalyzed by CYP2D6. This sink for the prodrug 
serves as the source for the active metabolite. The tumor model is 
(arbitrarily) located in the pancreas. Consequently, the time course 
of the active metabolite in the pancreas determines the PD effect. 
The PD effect in this model is mediated by a reversible binding of 
the active metabolite to the Raf kinase in pancreatic tumor cells, 
which is part of the imported signal transduction pathway, and its 
subsequent inhibition. Raf inhibition leads to a decrease in ERKPP 
activation. The transcription factor ERKPP promotes tumor growth 
and, consequently, an inhibition slows or stops tumor growth (see 
Materials and Methods for additional details).

The full model, containing more than a hundred ordinary dif-
ferential equations and several hundred parameters (including 
initial conditions and derived parameters), can be established in 
>1 h by a trained modeling expert. It is important to mention that 
nearly all parameters of the model are either taken from PK-Sim®’s 
database of anatomical and physiological information, calculated 
using prediction models from a small set of drug-dependent 
parameters, or contained in the literature-based and imported 
signal transduction model. Establishing a similar model in a pro-
gramming environment de novo including equation formulation, 
literature research on anatomical and physiological parameters, as 
well as their implementation and validation, would take months 
even for highly experienced individuals. A single simulation on 
a time scale of 4 weeks takes about 1 s (for a single intravenous 
drug application) to 1 min (for multiple oral drug administra-
tions) on a single processor core of a state-of-the-art laptop. For 
large numerical tasks, an interface to the German D-Grid7 has 
been established allowing distributed computing in a fully scalable 
cloud  computing infrastructure.

Results of the multiscale PBPK/PD model are presented in 
Figure 5. Figure 5A shows the plasma concentration time profile 
of the prodrug that was administered during weeks 5, 6, and 8. 

Figure 5 | Tumor development, treatment, and CYP2D6 activity 
influence. Time courses for the prodrug plasma concentration (A) as well as 
viable tumor cells (B) are shown for five different values of CYP2D6 activity. 
Without CYP2D6 activity (magenta), no active metabolite will be generated. 
Regarding tumor growth, this scenario is identical to a scenario without drug 
treatment. The activity differences for CYP2D6 between PM, IM, EM, and UM 
were derived according to Zanger et al. (2001).

7http://www.d-grid.de
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versus Figures 6C,D shows that physiological variability increases 
the overall variability. However, the CYP2D6 clearance phenotypes 
remain the dominating source of variability in the given setting. 
When the proteins of the signal transduction pathway are varied 
in addition (Figures 6E,F), the clear separation appears to be lost. 
However, when treatment efficacy is not simply judged by the pri-
mary endpoint but, for example, by the endpoint normalized to 
the tumor size at the beginning of the treatment (week 4), PM and 
IM phenotypes again separate from each other and from the two 
other groups (data not shown). This indicates that variability in 
the signal transduction process mainly influences tumor growth 
prior to treatment but hardly treatment efficacy itself in the cur-
rent setting.

Rao et al., 2002; Sigal et al., 2006; Cohen-Saidon et al., 2009; Spencer 
et al., 2009). In all settings 1000 individuals were simulated and the 
tumor size (expressed as the number of viable cells) at the end of 
the simulation was used as the primary endpoint. The population 
simulations shown in Figures 6A,B indicate that inter-individual 
variability has a strong influence on the time course and thereby 
on treatment efficacy. However, the CYP2D6 phenotype remains 
the main determinant for variability within a population: even 
the most efficiently treated PM shows less response to the treat-
ment than the least efficiently treated IM. Further, the clearance 
variability propagates most effectively through the network for 
small clearance values, i.e., the sensitivity toward this parameter is 
anti-proportional to its magnitude. A comparison of Figures 6A,B 

Figure 6 | influence of CYP2D6 activity on the population level. Time 
courses (A,C,e) of viable tumor and frequency distribution of endpoints on a 
logarithmic scale (B,D,F) after 4 weeks of untreated tumor growth followed by a 
2-week bi-daily treatment period are shown for a population of 1000 individuals. 
The activity differences for CYP2D6 between PM, IM, EM, and UM were derived 
according to Zanger et al. (2001). The frequency of the different metabolizers was 

according to Sistonen et al. (2007) for Europeans. In (A) only clearance was 
varied between the individuals. In (C) additional physiological parameters (organ 
volumes and composition, blood flows, etc.) were varied independent of the 
metabolizers’ phenotype according to Willmann et al. (2007b, 2009a). In (e) the 
concentrations of the proteins involved in EGFR signal transduction were varied 
in addition to the two before mentioned sources of variability.
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Overall, the example illustrates the complexity of problems that 
can efficiently be addressed with a powerful modeling platform. It 
covers relevant biological phenomena exemplary for pharmaceuti-
cal R&D. The observed non-linear phenomena cannot be identified 
without systems-level thinking and modeling. Such investigations 
can help to contain risks for drug development as well as pave the 
road to individualized therapeutic designs (Kalow, 2006; Tomalik-
Scharte et al., 2008; Deisboeck, 2009). In real-world application 
projects, the model structure and parameterization is adjusted to 
experimental data. The PBPK models are pre-parameterized by 
drug properties and refined using PK profiles. On the PD level 
( disease and signal transduction) models are adapted also to the 
specific situation of interest. For example, other signal transduction 
pathways or detailed models of drug induced processes such as 
apoptosis or inhibition of angiogenesis may have to be considered.

The model presented contains more than a hundred ordinary 
differential equations with several hundred parameters reflecting 
diverse anatomical and physiological properties and processes such 
as lipid content in a certain organ with a specific size and blood flow, 
or catalytic properties of an enzyme. In the face of considerable 
effort for model building and identification it becomes clear that 
efficient tools are of utmost importance in order to decrease the 
time needed for technical implementation. The potential reward 
is considerable. The integration and translation of knowledge can 
enhance the understanding and speed up experimentation and 
thereby research, discovery and development, both in academic 
and industrial settings. The presented software platform is geared 
toward these needs, enabling the efficient integration of different 
levels and disciplines to accelerate modeling. MoBi® in combina-
tion with PK-Sim® allows full flexibility regarding the modeling 
to consider both physiologically-based and classical PK and PD 
models, as well as mixtures of both. Models can be built effi-
ciently, adopted, and combined across multiple hierarchical levels 
to support translational research and medicine. For example, a 

Finally, the model was used to investigate the influence of Ras 
mutations on tumor growth and treatment efficacy. A Ras muta-
tion was introduced in the model by changing the rate constant in 
the tumor model that determines the inactivation of GAP-bound 
Ras. This is a formal representation of the changes associated with 
GAP-insensitive (G12V) mutants, which are frequently found in 
many cancers (Stites et al., 2007). Figure 7 indicates that the muta-
tion has no impact on the exponential tumor growth phase, but 
a strong impact on the linear growth phase. The impact during 
tumor treatment is also minor.

dIscussIon
We present a concept and the implementation of a software plat-
form for multiscale modeling and simulation of biological proc-
esses along with a clinical application example spanning multiple 
physiological scales.

The model presented includes whole-body PBPK models of 
a virtual prodrug and its active metabolite generated via hepatic 
CYP2D6, coupled to a PD tumor and a signal transduction model 
at the cellular level. The untreated virtual tumor shows a switch 
from exponential to linear growth as has been described before 
(Greenspan, 1976; Marusic et al., 1994; Bru et al., 2003; Araujo 
and McElwain, 2004; Block et al., 2007; Radszuweit et al., 2009). 
Investigations on the influence of GAP-insensitive Ras mutations 
indicate that this mutation mainly impacts on the linear growth 
phase in the current setting, potentially reflecting the important 
role of growth-factor signaling during this phase to further pro-
mote cell division although limiting environmental conditions do 
not support exponential growth any more. Treatment success in 
this virtual clinical study is strongly dependent on the CYP2D6 
phenotype, which would likely also have fundamental implications 
for optimal therapeutic dosing. Comparable findings have been 
reported for, e.g., the chemotherapeutic prodrug tamoxifen (Briest 
and Stearns, 2009; Rae et al., 2009).

Figure 7 | influence of rAS mutation. Time course of viable tumor mass on a linear (A) and logarithmic (B) scale for different values of k15, which is the rate 
constant determining the inactivation kinetics of GAP-bound, RAS. Bi-daily treatment is indicated by thick black lines.
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the integrated anatomy and physiology database.
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ming and analysis environments that allow the coding of custom-
ized functionalities addressing specific user needs. They provide 
an environment for large scale simulation studies in an automated 
manner and the implementation of routines and work-flows 
helping in the standardization of tasks accelerating the modeling 
process and making results more reproducible. One example is an 
 established work-flow to automatically simulate and analyze pedi-
atric populations of different age based on validated adult models 
and using age-dependent scaling information on physiological 
parameters (e.g., organ volumes and composition, blood flow 
rates) and involved enzymatic processes (e.g., cytochrome P450 
isoform ontogenies) contained in the PK-Sim® database. Other 
examples are the calculation of local (e.g., flux control coefficients; 
Kacser and Burns, 1973; Heinrich and Rapoport, 1974; Heinrich 
and Schuster, 1996) or global (e.g., Sobol indices; Sobol’, 2001; 
Zi et al., 2008) sensitivity measures. Via the interface to R, also 
the application of non-linear mixed effect modeling techniques is 
possible, offering the option for classical PK/PD analysis (Tornoe 
et al., 2004).

The whole-body model structures that are part of the software 
describe physiological parameters such as organ volumes or blood 
flows using constant parameters, which is sufficient for many ques-
tions of interest. However, specific questions can be thought of, 
where a dynamic implementation of such parameters or processes 
could be of interest. Here, MoBi® offers the full flexibility to modify 
or extend a given model structure. Nevertheless, modeling with 
the presented platform is currently limited to ordinary and delay 
differential equations and spatial effect, for example, can only be 

modeled in a compartmental approximation. Extensions toward 
stochastic or partial differential equations might be desirable for 
specific modeling tasks. Also, additional prior knowledge and 
 information should be integrated into the database to increase the 
level of physiological detail represented. Tissue specific expression 
of proteins is a typical example.

The application example chosen for demonstration purposes 
here comes from the area of pharmaceutical therapies. The soft-
ware platform itself is, of course, not restricted to systems biology 
and pharmaceutical research but can as well be applied to fields 
such as risk assessment or environmental toxicology (Krishan and 
Johanson, 2005; Loizou et al., 2008).

The software platform concept, and its realization through 
the components PK-Sim®, MoBi®, and the toolboxes for R and 
MATLAB®, thus presents a versatile and powerful framework 
allowing fast and reliable model building, simulation, and model 
analysis across multiple physiological scales. The platform is 
designed for the needs of life science and pharmaceutical research 
allowing the integration of physiologically-based and classical 
approaches to model drug PK and PD as well as metabolic and 
signaling networks.
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