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Carotid atherosclerosis is a major reason of stroke, a leading cause of death and disability. In this paper, a segmentation method
based onActive ShapeModel (ASM) is developed and evaluated to outline common carotid artery (CCA) for carotid atherosclerosis
computer-aided evaluation and diagnosis. The proposed method is used to segment both media-adventitia-boundary (MAB) and
lumen-intima-boundary (LIB) on transverse views slices from three-dimensional ultrasound (3DUS) images.The data set consists
of sixty-eight, 17× 2× 2, 3DUS volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with
80mg atorvastatin and ninewith placebo), who had carotid stenosis of 60%ormore, at baseline and after threemonths of treatment.
Manually outlined boundaries by expert are adopted as the ground truth for evaluation. For the MAB and LIB segmentations,
respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 94.4%± 3.2% and 92.8%± 3.3%, mean absolute distances
(MAD) of 0.26 ± 0.18mm and 0.33 ± 0.21mm, and maximum absolute distances (MAXD) of 0.75 ± 0.46mm and 0.84 ± 0.39mm.
It took 4.3 ± 0.5mins to segment single 3D US images, while it took 11.7 ± 1.2mins for manual segmentation. The method would
promote the translation of carotid 3DUS to clinical care for themonitoring of the atherosclerotic disease progression and regression.

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death
globally based on the World Health Organization (WHO,
2009). The main precursors of CVD are smoking, obesity,
hypertension, and a disturbed serum lipid profile [1]. The
therapy evaluation and clinical data analysis are important to
the cerebrovascular and cardiovascular pathologies diagno-
sis. Because thrombosis generation and subsequent cerebral
emboli have a high risk leading to death, carotid atheroscle-
rosis is becoming a significant issue for researches recently
[2]. Measurement accuracy and geometric understanding
of common carotid artery (CCA) play an important role
in carotid atherosclerosis assessment and management [3],
which requires precise segmentation.

Ultrasound (US) has been employed as a routine exam-
ination for inexpensive and noninvasive clinical diagnosis
of atherosclerosis (the hardening of the arteries) [4, 5].
Furthermore, the three-dimensional ultrasound (3D US) [6]
imaging can be used to quantitatively monitor carotid plaque
progression or regression without ionizing radiation [7–10].

Among various US image segmentation methods for
carotid atherosclerosis quantification [11–15], intima-media
thickness (IMT) measurement is proved to work efficiently
on longitudinal views of two-dimensional (2D) US images
[16]. The media-adventitia boundary (MAB) and lumen-
intima boundary (LIB) can be extracted simultaneously.
This work focuses on the MAB and LIB segmentation on
the transverse views US images and is expected to reduce
diagnosticians’ manual workload (Figure 1). The potential
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Figure 1: US image of a carotid artery with the expert-drawn
contours delineating the LIB (red solid contour) and MAB (yellow
hollow point contour).

applications mainly include patient management, genetic
research, and therapy evaluation [17].

Several automatic and semiautomatic methods for the
segmentation of LIB and/or MAB on 2D transverse US
images have been reported [18, 19]. Mao et al. [20] pro-
posed a deformable contour model approach for carotid LIB
semiautomated segmentation. One seed point was located
on the image by the user firstly. Then, the local gradient
difference was obtained with local grey level ratio between
the exterior and interior of the deformable contour. The
methodwas validated by a group of seven B-modeUS images.
Abolmaesumi et al. [21] presented a method to fulfill real-
time extraction of carotid LIB on 2D US image sequences.
Theymodified the star algorithmby using a temporal Kalman
filter to track the center of LIB and adopting a spatial
Kalman filter to extract LIB contour. Digitized US video
images were used for validation. Zahalka and Fenster [22]
introduced a carotid LIB segmentation method on 3D US
images with geometrically deformablemodel (GDM). Li et al.
[23] also developed a GDM with automatic merge function
to segment carotid contours, but only tested their method
on simulated 3D US images. A scheme for detecting the
normal regions in carotid artery US images was proposed by
Balasundaram and Banu [24]; however, no process was taken
to remove the noise in the images. Lou and Ding [25] used
particle motion mechanics to segment object boundaries.
The method was sensitive to noise. Fast Marching Method
(FMM) [26] originally for intravascular ultrasound (IVUS)
image segmentation was also adopted for vascular US image
segmentation. Common carotid artery (CCA) boundary
identification pipeline, a simple and effective method, was
proposed according to mathematical morphology [27], but it
was only tested for limited lumen boundaries segmentation.
The latest segmentation method for carotid MAB and LIB
in transverse US images was proposed by Ukwatta et al.
[28]. They adopted an active contour based on level set
method. A combination of image information from energy,
geodesic energy, and anchor constraint energy was used to
drive the deformable contour to the desired one. However,
the global optimum of the searching parameters cannot be
guaranteed. Other studies by application of regional growing

Figure 2:Three-dimensional ultrasound carotid artery longitudinal
view in clinical trials [40]. Both baseline and follow-up 3D images,
constructed from the set of 2D frames, were examined simultane-
ously to visually match the bifurcation (BF) points in both images
by an operator blinded to time point and treatment. Each 3D US
image was manually segmented starting from the bifurcation point
extending into around 10–15mm of common carotid artery (CCA)
and about 10mm into internal carotid artery (ICA) at 1mm interval
perpendicular to the artery axis; refer to Figure 3. This study was
only carried out on the CCA, since the focus was on stroke risk.

[29], diffusion-based filters [30], edge detection combined
with morphology methods [31], and Hough transforms [32],
were also reported.

Our purpose is therefore to develop and validate a new
segmentation approach, which would be used to delineate
the lumen-intima boundary (LIB) and media-adventitia
boundary (MAB) of the common carotid artery (CCA)
from 3D US images. The key innovation of this work is
applying the Active ShapeModel (ASM) segmentation to two
separate time points, which used baseline data for training
and follow-up data for segmentation. And the technology
enables the accurate, inexpensive, and noninvasive method
for progression and regression monitoring of atherosclerosis
and drug therapy evaluation.

The following of this paper is organized as follows. In
Section 2, the proposed method is explained in details. The
results are shown in Section 3. Sections 4 and 5 will contain
the discussion and conclusion.

2. Methods

The proposed algorithm is validated by comparing the LIB
and MAB segmentation results with the manual ones from
the expert. The typical US images used in this paper are
shown in Figures 1 and 2. Figure 1 shows a transverse view of
a CCA with manually annotated MAB and LIB boundaries
superimposed. Figure 2 shows the surface of the manual
segmented inner and outer walls, including CCA, internal
carotid artery (ICA), external carotid artery (ECA), and
carotid sinus (bifurcation (BF)).

The atheromatous plaque has been well described in
terms of its progression, and the clinical characterization
of the atherosclerotic lesion has also been well documented



Computational and Mathematical Methods in Medicine 3

Figure 3: Sagittal cross-section of a common carotid artery (CCA)
in 3D US image. The contours on the image show the manual
delineations done by the physician. The inner boundary is lumen-
intima boundary (LIB), and the outer boundary is the media-
adventitia boundary (MAB).The segmentations were performed on
parallel images with interslice distance (ISD) 1mm.

[33]. Furthermore, it is true that plaques (a) extend into the
internal carotid artery and (b) that rupture of these plaques
will lead to strokewhich has beenwell documented.However,
the vulnerable plaque in terms of its concepts is still a novel
area [34]. “Vulnerable plaque” is a term that has been derived
from a subgroup known as stenotic plaques.They are prone to
both rupture and erosion, sometimes causing acute coronary
syndromes and sudden cardiac death. Rupture prone plaques
have been shown in postmortem evaluation to have specific
characteristics [35]. Depending on the severity level of the
plaque, dietary change, drug treatment, or eventually surgical
treatment such as carotid endarterectomy (CEA) may be
introduced to prevent major heart attacks or strokes.

As will be described in the following sections, the
assessment of plaque vulnerability and risk of potential
rupture is very difficult noninvasively [36, 37]. And the
three-dimensional (3D) US vessel wall volume (VWV) mea-
surement is a 3D measurement of the vessel wall thick-
ness plus plaque within the carotid arteries. 3D US VWV
measurements are sensitive to changes in both intima-
media thickness and plaque and thus provide alternative
and complementary information to IMT [38, 39]. The MAB
and LIB segmentation on cross-section is a vital step for
both qualitative and quantitative evaluation. In most cases,
the CCA can be used to reflect and evaluate the carotid
atherosclerosis severity much more comprehensively and
accurately than ICA and ECA; this may be due to the
significant amount of plaque present proximal to the BF of the
carotid artery.Therefore, the proposed segmentationmethod
was only carried out on the CCA, since the focus was on the
essential part of stroke risk.

In this study, we only segmented a portion of the
common carotid artery (CCA). However, in the future, we
will investigate the segmentation of the internal and external
carotid arteries (ICA, ECA) as well. The proposed algorithm
segments each transverse slice independently and is a first
step toward reducing the operator interaction for carotid
segmentation. As for a future work, we will investigate the
use of both slice-by-slice propagation and direct 3D segmen-
tation to reduce the operator interaction further by utilizing
the image information along the out of plane direction as
well.

2.1. ImageAcquisition. Themechanical 3DUS systemutilized
in this study was described previously in [40]. The images
were acquired by driving a linear ultrasound transducer (L12-
5, Philips, Bothell, WA, USA, 8.5MHz central frequency)
with a motorized linear device along the neck of the subject
at a uniform speed of 3mm/s for about 4 cm without cardiac
gating [6].

The 2D ultrasound frames were captured by the US
machine (ATL HDI 5000, Philips, Bothell, WA, USA) and
reconstructed to 3D images with 3D Quantify (a multiplanar
visualization software) [41].The voxel size was approximately
0.1 × 0.1 × 0.15mm3.

The 3D Quantify generates 2D images of the artery by
slicing through the 3D image orthogonally to themedial axis,
in the inferior direction from the bifurcation (BF), with an
interslice distance (ISD) of 1mm (Figure 3).

2.2. Study Subjects. Seventeen patients with carotid stenosis
over 60% were enrolled in this study [6]. The presence of
stenosis was verified using carotidDopplerUS flow velocities.
8 subjects, 4 males and 4 females with mean age ± SD (65 ±
6.6 years), were supplied with 80mg atorvastatin daily for
3 months. The remaining 9 subjects, 4 males and 5 females
with mean age ± SD (68 ± 8.4 years), were assigned to
the placebo. Baseline and follow-up (3 months later) 3D
US images were acquired for each subject, for both left
and right carotid arteries. All subjects, in this study, were
recruited from the Premature Atherosclerosis Clinic and
the Stroke Prevention Clinic at University Hospital (London
Health Sciences Center, London, Canada) and the Stroke
Prevention and Atherosclerosis Research Center (Robarts
Research Institute, London, ON, Canada).

A written informed consent of the study protocol
approved by the University of Western Ontario Standing
Board ofHumanResearch Ethics was provided to all subjects.

2.3. Manual Segmentation. Manual segmentation of CCA
boundaries is labor intensive and time consuming [42].There
are several studies on semiautomated segmentation methods
for delineating carotid walls with 2D US images [21].

The manual segmentation method used in our work was
proposed by Egger et al. [18]. Prior to contouring, the expert
first located the BF and defined an approximatemedial axis of
the carotid artery by choosing two end points of the axis.The
multiplanar 3D viewing software then presented 2D images of
the artery by slicing through the 3D image orthogonally to the
medial axis, in the inferior direction from the BF, with an ISD
of 1mm.The expert then performed contouring of arteries on
each of these images. Figure 1 showed a transverse view of a
common carotid artery with manually annotated boundaries
overlaid. An expert outlined the vessel boundaries for five
times within one-day intervals. The image sequences were
randomized, and the operators were blinded to the image
order during each repetition to reduce memory bias [28].

2.4. Preprocessing. Several preprocessing steps were applied
prior to LIB and MAB segmentation. Firstly, contrast limited
adaptive histogram equalization (CLAHE) [43] was applied
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Figure 4: Nine equally spaced landmark points (red points) along themanual contour (green points) were averagely picked for ASM training
((a): LIB; (b): MAB; refer to Figure 1). Three hundred and forty images were labelled by senior physicians. Some of the points may locate on
weak edges.

to enhance the local contrast of the US image. CLAHE
partitioned the images into contextual regions and applied
histogram equalization by fitting a Rayleigh distribution
to each region [44]. Next, Speckle Reducing Anisotropic
Diffusion Method (SRAD) was used for US speckle noise
reduction [45]. The SRAD was used to enhance the edges by
inhibiting diffusion across edges and allowing diffusion on
either side of the edges.

2.5. Active Shape Model (ASM). Active Shape Model (ASM)
is one of the statistical shape models (SSMs) developed
by Cootes et al. in 1995 [46]. The shape of an object is
usually represented by a set of 𝑛 points in ASM. By analysing
the variations in shape, a statistical model is built which
can mimic the variation [47]. The ASM algorithm seeks to
match a set of model points to an image, constrained by
the statistical model of shape which learns the valid ranges
of shape variation from the training set of labelled images
[48]. The general working steps of ASM are as follows: (a)
look in the image around each point for a better position for
that point (to locate a better position for each point one can
look for strong edges, or an expected match to a statistical
model at the point); (b) compute the changes in the pose
and shape parameters based on (a); (c) update the model
parameters to improve thematch between a shapemodel and
image instance to ensure the model only deforms into shapes
consistent with the training set.

The technique is widely used to analyse images of faces,
mechanical assemblies, and medical images in 2D applica-
tions. Given a rough starting approximation (𝑋0), the ASM
matches the CCA model points to a new image using an
iterative technique. An ASM is defined by (1):

𝑋 = 𝑋 + 𝑃 ⋅ 𝑏, (1)

where 𝑋 represents the mean shape of the training set, 𝑃 is
a matrix of the first few principal components of the shape,
created by using Principal Component Analysis (PCA), and
𝑏 is shape parameters for the model, along with parameters
defining the global pose (the position, orientation, and scale)

[48], whose standard deviation from the mean shape ranges
between −3 and +3. Therefore,𝑋 is defined by the variable 𝑏.
Given a set of landmark points𝑋𝑖 for iteration 𝑖, the goal is to
find the landmark points ̇𝑋𝑖 closest to the object border. The
shape is then updated by (2):

𝑏 = 𝑃
𝑇
⋅ (
̇
𝑋
𝑖
− 𝑋
𝑖
) , (2)

where each element of 𝑏 can only be within ±3 standard
deviations of the mean shape.The final ASM segmentation is
denoted as 𝑋Final. The training set of the ASM to determine
𝑋 and 𝑃 is performed by manual delineation of the artery
boundaries followed by manual alignment of 9 equally
spaced landmark points (red points) along the contour (green
points) on both LIB and MAB as shown in Figure 4.

It should be noted that once the ASM is trained with
the training set, it can be used for the new CCA image
segmentations without significant manual intervention. Six
hundred and eighty 2D CCA images in total, extracted from
the 3D US data (10 two-dimensional images per each of 17
patients of two sides at 2 time points), have had their arterial
walls manually segmented previously as the golden standard.
Three hundred and forty (10 × 17 × 2) 2D CCA baseline
images data and manual boundaries results were used for
ASM learning as shown in Figure 5, while another three
hundred and forty treatment images data were used for ASM
segmentation and evaluation. And a demonstration of MAB
segmentation progress is shown in Figure 6.

CVD morbidity and mortality rates are higher in
atherosclerosis patients than in the general population [49],
leading to a reduced lifespan, lower quality of life, and
increased medical expenditures. Cross-sectional studies have
shown that underlying these higher CVD rates is a greater
burden of atherosclerosis in both the coronary [50] and
carotid [51] vasculature of patients. Therefore, imaging tech-
nique needs to be considered to monitor substantial plaque
progression or regression of atherosclerosis [52], even though
the progression or regression of the diseasemay be significant
or not between the two time points [6].
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(a) Modelling LIB shape and its variations of training set: the fixed blue-solid contours are the mean lumen shapes,
while the red-solid contours are deformed lumen shapes of the first four eigenvectors
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(b) Modelling MAB shape and its variations of training set: the fixed blue-solid contours are the mean adventitia
shapes, while the red-solid contours are deformed adventitia shapes of the first four eigenvectors

Figure 5: Mean shapes in each panel are the fixed (in blue); the first four eigenvectors-corresponded deformed shapes are diverse (in red),
because of the variety shapes of the LIB (a) and MAB (b) of training set. The units of both 𝑥- and 𝑦-axes of every subpicture are (mm).
The training results are generated from three hundred and forty 2D CCA baseline images data. The blue contour is the average shape of
baseline images data (training set), while the red one is the deformed shapes. The average shape contour would be superposed on follow-up
images data (test set) as the initialization contour for ASM segmentation (refer to movie I in Supplementary Material available online at
http://dx.doi.org/10.1155/2013/345968).

http://dx.doi.org/10.1155/2013/345968
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(a) (b)

(c) (d)

Figure 6: Adventitia results comparison after the three-month therapy: (a) original image with the manual segmentation result as
a golden standard; (b) ASM segmentation process (refer to movie II in Supplementary Material available online at http://dx.doi.org/
10.1155/2013/345968); (c) segmentation result of the proposed method; (d) segmentation result of the training set without the example data.

The main findings in the study [53] is that dietary
interventions can induce a significant regression of carotid
atherosclerosis, which could be detectable by B-mode and 3-
dimensional ultrasound (3DUS).What is more, based on the
research of [40], the change is also significant during three-
month statin treatment (atorvastatin) [54].

Since carotid anatomy varies considerably within indi-
viduals between left and right carotid arteries even in two
different time points, which affects the development of
plaque, and the low correlation coefficient between the left
and right sides, each carotid artery can be considered an
independent object [55]. Thus, the data sets used in this
study could be considered as different objects, which were
lowly correlated ones with statistical significance significant
change.

Also, the authors would use completely different slices
from various scans of diverse patients in future work as
totally uncorrelated individual data to thoroughly separate
the test and training data sets. And a preliminary test results
showed that therewas no obvious subjective differences, from
which the training set is within (Figure 6(c)) and without
(Figure 6(d)) the example baseline data.

Furthermore, external or internal carotid arteries (ECA,
ICA) stenosis is less frequent and clinically less important
than CCA stenosis, and the segmented contours of CCA
could be used for drug treatment evaluation between baseline
time and follow-up time.

2.6. Evaluation Metrics. The Dice Similarity Coefficient
(DSC) was used as a region-based measure to compare seg-
mentation results on slice-by-slice basis. The DSC quantifies
the overlapping areas of two segmentation methods by the
following equation (3):

DSC = 2
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where 𝑅
𝑀

and 𝑅
𝑃
denote the region of the manual and

proposed method boundaries, respectively.
The mean absolute distance (MAD) and maximum abso-

lute distance (MAXD) were used as boundary distance-based
metrics. The averages of MAD (see (4)) and MAXD (see
(5)) were computed using all vessels in the testing images to
obtain an overall estimate of boundary disagreement. And the
computational time is also estimated:

MAD
𝑀,𝑇
=

1
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∑

𝑖=1





𝑑 (𝑚
𝑖
, 𝑇)




, (4)

MAXD
𝑀,𝑇
= max
𝑖∈[1,𝐾]

{




𝑑 (𝑚
𝑖
, 𝑇)




} , (5)

where 𝑑(𝑚
𝑖
, 𝑇) is the distance between the vertex 𝑚

𝑖
of the

manual drawn contour and its corresponding vertex on ASM
contour 𝑇, and𝐾 is the number of vertices.

http://dx.doi.org/10.1155/2013/345968
http://dx.doi.org/10.1155/2013/345968
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3. Results

Figure 6 shows the MAB segmentation progress after follow-
up treatment. Figure 7 shows the segmentation results of 18
slices with the proposed approach and manually contours for
3 subjects with a moderate level of plaque.

3.1. Validation. Thevalidation of our segmentation algorithm
will require comparison with manual segmentation results.
The accuracy, variability, and reproducibility of the proposed
algorithm were evaluated by comparing with the physician-
drawn contours. Three to five experts delineated the CCA
boundaries on 340 2D slices. The method of Chalana and
Kim [56] was used to compute the mean boundary from the
repeated manual and algorithm-generated segmentations.
The ordering of the images was randomized to reduce
learning effects.

DSC, MAD, and MAXD were computed from 3D US
images to obtain overall estimates of each metric for the
image set. Table 1 shows the overall evaluation results of the
proposed algorithm for 340 transverse 2DUS slices extracted
from 17 subjects after treatment.

The proposedmethod yielded aDSC of 94.4% ± 3.2%and
92.8% ± 3.3% for theMAB and LIB, respectively.Themethod
gave submillimeter error values for the MAD of 0.26 ±
0.18mm and 0.33 ± 0.21mm and MAXD of 0.75 ± 0.46mm
and 0.84 ± 0.39mm for the MAB and LIB, respectively. Our
approach took 4.3 ± 0.5mins comparing to 11.7 ± 1.2mins
of operator processing time for manual segmentation to
initialize/delineate a single 3D image [44].

4. Discussion

ASM performs exceptionally well when compared to other
deformable models, especially when segmenting objects
that do not have a clear, continuous boundary like the
CCA. It can capture expert prior knowledge in the training
examples annotation and compare resulting shapes easily
simultaneously, since they have a strict point correspon-
dence between landmark points. Therefore, ASM has been
extensively explored and still under investigation as well in
methodological aspects as in concrete applications.

The ASM algorithm is an iterative approach. It would be
applied to the training set of CCA arteries to locate the other
arteries. Assuming there is not a big difference between the
frames, the shape for one frame can be used as the starting
point for the search in the next, and it will require a few
iterations to lock on. This approach is particularly useful for
cases where the objects have a well-defined shape with a
representative and available set of examples [57]. In medical
image segmentation, because of the complexity of human
anatomy and the volatility of the appearance, traditional
approaches cannot obtain desired results. It requires a flexible
framework which can combine the properties of the image
itself with its prior knowledge.

In this paper, we introduced the ASM segmentation
method to delineate the LIB and MAB boundaries of the
CCA on transverse view sliced from 3D US images. The
proposed method was evaluated by comparing the resulting

boundaries and expert manually outlined boundaries which
act as a surrogate for ground truth. The algorithm yielded
a higher DSC for the MAB than for the LIB, and the
algorithm gave similar MAD and MAXD errors for both
vascular walls. It was obvious that the adventitia value is
better than lumen, which implies that we got the better MAB
segmentation result. The observations may result from (a)
weak image edges, particularly on boundary segmentation
that are parallel to the US beam direction and are not hard for
ASM learning and segmentation; (b) different components
between the two layers caused the different performance.
Inside lumen is liquid blood, while the outside adventitia is
complex connective tissue from the view of CCA physiology;
(c) the initialized average contours from baseline training
data have differences with the test data.

Most previous studies of the relationship between hemo-
dynamic factors and plaque stability have used in vitro
models. It is difficult to determine how accurate these models
represent conditions in vivo.

By studying carotid bifurcation angiograms, Schulz and
Rothwell [58] found the relationship between vessel anatomy
and plaque stability in vivo. And they have shown that carotid
anatomy varies considerably between individuals and can be
very asymmetrical within individuals, which is not similar
to faces or hands at all. Although it is possible that the
variation in arterial anatomymight influence training and test
results, there have been no previous studies of the association
between arterial anatomy and ASM algorithm stability in
either the coronary or carotid circulations of atherosclerosis.

Ideally, a study of the association between carotid
anatomy and statistical model would require a large
community-based cohort imaged with double-blinded
randomly selected. Unfortunately, given the relatively low
prevalence of moderate or severe carotid disease in the
community (only dozens of cases) is not possible. And
training and testing in this study may be performed within a
round-robin (leave-one-case-out) protocol later.

The ASM approach has been demonstrated in 2D data.
Our future work will extend it to 3D application. More
3D data needed to be collected. In addition, the definitions
of surfaces and 3D topology are more complex than those
required for 2D arteries boundaries. However, 3D models
which represent shape deformation can be successfully used
to locate structures in 3D data sets.

5. Conclusion

Themain purpose of this work was to develop and evaluate a
new segmentation algorithm for outlining bothMABandLIB
of CCA on 2D transverse views sliced from 3D US images.
From a quantitative evaluation of the results, we concluded
that the proposedmethod could accurately segment the CCA
and also the saved time on average was substantial.

Wehave used the point distributionmodel to represent an
object as a set of labelled points, giving their mean positions
and a small set of modes of variation. Applying limits to the
parameters of the model enforces global shape constraints.
The constraints ensure that the properties of the testing one
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Figure 7: In order to subjectively and objectively evaluate the performance between the proposed approach and manually method, both
inner and outer contours are synchronized overlapped together. Green-solid-line outer contour and red-dotted-line inner contour represent
manual MAB and LIB, respectively; while yellow-starred outer contour and white-plus-signed inner contour represent algorithm-generated
MAB and LIB, respectively. Each column represents the images of individual patient. For each row from the top to the bottom, there are
images at different distance of 0, 2, 4, 6, 8 and 10mm from the slice to the bifurcation (BF).

are similar to those of the training set. Given a set of shape
parameters, ASM can match the generated model to a new
similar image rapidly.

Preliminary experimental results showed that the seg-
mented areas could accurately define the locations of CCA
contours. This method could save the physicians’ time. Our

work provides an easy-handle technique to simplify the job of
labeling the contours in CCA manually. Therefore, it would
be helpful to promote the translation of 3D carotid US to
clinical care for the fast, safety, and economical monitoring of
the atherosclerotic disease progression and regression during
therapy.
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Table 1: Overall performance results of the proposed algorithm. Validation results of segmentation for 340 transverse slices of both left and
right sides from seventeen subjects (eight with 80mg atorvastatin and nine with placebo, resp.,) after three-month treatment.

Metric DC (%) MAD (mm) MAXD (mm)
Media-adventitia boundary (MAB) 94.4 ± 3.2 0.26 ± 0.18 0.75 ± 0.46
Lumen-intima boundary (LIB) 92.8 ± 3.3 0.33 ± 0.21 0.84 ± 0.39

In this method, the segmentations of the MAB and
LIB can be used as a fundamental step in the analysis of
carotid plaque composition for the early identification of
vulnerable plaques and treatment evaluation to prevent a
possible stroke [40]. The proposed approach has another
merit, as clinical trials will be carried out temporal continuity
on the same patients by serially imaging them.Thus, manual
segmentation of the first time point followed by the authors,
more automated method would save analysis time.

Future work would be focused on (a) ICA and ECA
segmentation, (b) directly artery segmentation, and (c) thor-
oughly reducing the potential correlation between training
and test sets for reasonable double-blinded test.
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