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Abstract: Magnesium (Mg) is crucial for bone health. Low concentrations of Mg inhibit the activity
of osteoblasts while promoting that of osteoclasts, with the final result of inducing osteopenia.
Conversely, little is known about the effects of high concentrations of extracellular Mg on osteoclasts
and osteoblasts. Since the differentiation and activation of these cells is coordinated by vitamin D3

(VD3), we investigated the effects of high extracellular Mg, as well as its impact on VD3 activity,
in these cells. U937 cells were induced to osteoclastic differentiation by VD3 in the presence of
supra-physiological concentrations (>1 mM) of extracellular Mg. The effect of high Mg concentrations
was also studied in human bone-marrow-derived mesenchymal stem cells (bMSCs) induced to
differentiate into osteoblasts by VD3. We demonstrate that high extra-cellular Mg levels potentiate
VD3-induced osteoclastic differentiation, while decreasing osteoblastogenesis. We hypothesize
that Mg might reprogram VD3 activity on bone remodeling, causing an unbalanced activation of
osteoclasts and osteoblasts.

Keywords: magnesium; biodegradable magnesium alloys; osteoclasts; hematopoietic U937 cells;
human bone-marrow mesenchymal stem cells; vitamin D3

1. Introduction

Magnesium (Mg) is the second and fourth most abundant cation in the intracellular compartment
and the human body, respectively, where it exists as bound and ionized forms [1,2]. Ionized Mg is
the most likely “second messenger”, together with calcium (Ca), for regulating a wide variety of
reactions involved in cell response through signal transduction pathways [1,3,4]. Apart from being
required for DNA, RNA, and protein synthesis, Mg participates in several biochemical processes
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acting as a cofactor for hundreds of enzymatic reactions. MgATP2− is both the active Mg species
in enzyme binding and the energy-producing form in the cellular active transport [5–8], although
multiple Mg–ATP complexes at different Mg to ATP molar ratio were described ([9] and references
cited therein). Also, Mg is the second element in bone after Ca and part of the Mg on bone surface
(30%) is exchangeable, acting as a dynamic store to maintain intra- and extracellular Mg levels [10,11].
Imbalances in Mg status such as hypomagnesemia are associated with chronic diseases [12–14],
while the effect of local high Mg concentrations remains to be clarified [15–17]. Mg deficiency is
relatively common in the population and may associate with osteoporosis, although it remains to be
determined to which extent. Both restricted and increased Mg concentrations affect osteoclast activity
in vitro [18,19]. Mg-deficient diets may lead to disorders of bone remodeling, increased osteoclastic
activity, and osteoporosis risk in animal models [20,21]. On the other hand, Mg-integrated diets cause
Ca deposition in the bone through the interaction with vitamin D3 (VD3) [22–25], thus increasing bone
mass in animals or humans to prevent or limit osteoporosis [26–29]. In recent years, Mg emerged as
component of a new class of biodegradable biomaterials for tissue engineering and medical devices
to avoid implant removal, as well as to circumvent long-term effects of non-degradable permanent
implants. Mg exhibits key advantages especially for load-bearing orthopedic and cardiovascular
devices [30–34]. Therefore, mechanisms via which Mg regulates bone repair are under investigation
and are fundamental to define the local concentrations of Mg released from the implants [35,36],
as well as the effects of local alkalosis accompanying Mg(OH)2 dissolution [31]. Biocompatibility
of Mg-based implants may be questionable, and effects of Mg alloys degradation on osteogenesis
need careful in vitro and in vivo validation studies [30,37,38]. Mg effect on bone progenitor cells
is a relevant clinical issue, because the resorption of Mg-based implants in the bone may promote
osteoclast differentiation and, consequently, compromise implant efficiency [30]. A gradient of Mg
ions from implant might inhibit osteoclastic activity, being later overridden by either receptor activator
of nuclear factor κB (RANK)/RANK ligand (RANKL) signaling pathway or inflammatory mediators
endowed with osteoclastogenic potential [19,39,40]. Both a reduced [31] and increased number of
osteoclasts were detected in the bone surrounding Mg alloy-based implants in animal models [33,41].
Released particulate material and corrosion products from implants seem to attract osteoclasts from
neighboring tissue [42]. Alternatively, Mg gradients from implants might hamper VD3 action, which
usually coordinates osteoblast and osteoclast balance [43]. Very recently, Mg deficiency was shown to
accelerate osteogenic differentiation of human bone-marrow-derived mesenchymal stem cells (bMSCs),
partly by generating a stressful condition able to modulate stem cell plasticity and, consequently, cell
differentiation potential [44].

In the present study, we utilized hematopoietic U937 cells, as a model of osteoclasts derived from
hematopoietic precursors, to obtain a homogeneous osteoclastic population devoid of phenotypic and
functional differences. The cells were induced to differentiate into osteoclasts by phorbol esters and
VD3 [45–48] in the presence of a range of supra-physiological Mg concentrations (>1 mM). In addition,
we analyzed the effect of supra-physiological extracellular Mg on bMSCs induced to osteoblastic
differentiation by a cocktail containing VD3 [49].

2. Results

2.1. Analysis of the Effects of High Levels of Mg on the Osteoclastic Differentiation of U937 Cells

Initially, we assessed whether high levels of extracellular Mg were able to influence osteoclastic
differentiation in the presence of VD3. To this purpose, the differentiation of U937 cells to osteoclasts
was induced by sequential treatment with phorbol 12-myristate 13-acetate (PMA) and VD3 (see
Section 4 for more details). The cells were exposed to Mg concentrations ranging from 1 to 10 mM for the
duration of the experiment. It is worth considering that 1 mM is the physiological concentration of Mg,
used as a control. At the end of the experiment, the differentiated cells were subjected to (1) QRT-PCR
analysis of messenger RNAs (mRNAs) coding for transcription factors and differentiation markers
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involved in osteoclastic differentiation [18,19,37,50–54]; (2) morphological analysis of cytospins stained
with May–Grünwald Giemsa; (3) mono-parametric flow cytometry analysis of cell cycle distribution
upon propidium iodide (PI) staining. Using QRT-PCR, we showed that most of the investigated
genes underwent an evident upregulation, exhibiting a positive correlation with Mg concentration
(Figure 1A). In particular, this expression trend was observed for all the analyzed transcription
factors, among which the most upregulated were MafB and Tfe3, showing a three- and 2.5-fold
induction, respectively, followed by PU.1, MITF, and NFATC1, with an approximately twofold increase
(upper panel). Similarly, a high concentration of Mg induced the majority of differentiation markers
(Figure 1B). In this regard, the most striking were TRAP and DC-STAMP, both highly specific for
osteoclastic differentiation, since they mediate bone demineralization and cell fusion, respectively.
The increase in transcript levels, in fact, averaged about 17-fold for the former and fourfold for the
latter (lower panel). The MMP9 and CTSO (Cathepsin K) genes, both coding for proteases responsible
for degradation of bone extracellular matrix, underwent about twofold increase of mRNA expression.

The non-significant variation of the OSCAR gene, coding for an osteoclastic collagen receptor,
was not surprising because its induction is strictly dependent on the activation of the RANK/RANKL
pathway. This pathway was not planned in our experimental model, in which its biological function
was replaced by the similar osteopontin VD3 target gene. As expected, the mRNA levels of the cluster
of differentiation 14 (CD14) antigen, typical of the early monocyte phase of osteoclastic differentiation,
did not exhibit any variation [55], whereas the late macrophage CD163 antigen exhibited about twofold
increase of the same parameter, consistent with the macrophage nature/origin of differentiated
osteoclasts [55–57]. The approximately threefold induction of p21 growth arrest gene indicated a
decrease in proliferation activity, largely expected for a terminal differentiated condition. In general,
among all the genes analyzed by QRT- PCR and exhibiting an upregulated mRNA expression in
response to high levels of extracellular Mg, five out of seven transcription factors and five out of eight
differentiation markers resulted statistically significant at least at the highest (10 mM) Mg concentration.

Morphological analysis confirmed QRT-PCR data, showing that exposure to 10 mM Mg
determined the increase of mean osteoclast number from 22% to 36% in comparison with 1 mM
(p < 0.05) (Figure 2A,B). On the same samples, mono-parametric flow cytometry analysis of the cell
cycle highlighted a decrease in cell number in the gap (G0/G1) phases from 68% to 61% (p < 0.05), and
a concomitant increase of cells in the G2/mitosis (M) phases from 15% to 21% (p < 0.05), whereas cells
in the synthesis (S) phase appeared comparable (16% vs. 18%, respectively; non-significant; Figure 2C).

U937 cells incubated with 1 and 10 mM Mg, in the absence or in the presence of
PMA/VD3 were also subjected to quantification of Mg intracellular concentration using a
diaza-18-crown-6-hydroxyquinoline (DCHQ5) fluorescent probe. These data showed an increased
Mg amount dependent on the Mg extracellular quantity, but more evident in the presence of
PMA/VD3 treatment (Table 1). Specifically, 10 mM Mg increased the Mg intracellular amount by about
1.6–1.8 times compared to basal 1 mM both alone (control) and in the presence of PMA + VD3 (treated).
Comparing 1 mM Mg alone or with PMA/VD3, the increase was 4.7 times, becoming 5.3 for 10 mM
treated versus 10 mM control. Future experiments of treatment with intermediate Mg concentrations
will help better characterize this issue.
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Figure 1. Effects of supra-physiological Mg concentrations on U937 cell-derived osteoclasts. U937 
cells were differentiated to osteoclasts upon treatment with phorbol 12-myristate 13-acetate (PMA) 
and vitamin D3 (VD3) for five days and simultaneously exposed to scalar concentrations of Mg 
ranging from 1 to 10 mM. The messenger RNA (mRNA) expression of transcription factors (A) and 
differentiation markers (B), both related to osteoclast differentiation, was then assessed using 
QRT-PCR. The results obtained are represented as histograms indicating analyzed genes on the 
x-axis and relative quantity of mRNA variations on the y-axis. Data are reported as means ± 
standard error of the mean (SEM) values deriving from a triplicate experiment. Asterisks indicate 
statistically significant results. p < 0.05. 

Morphological analysis confirmed QRT-PCR data, showing that exposure to 10 mM Mg 
determined the increase of mean osteoclast number from 22% to 36% in comparison with 1 mM (p < 
0.05) (Figure 2A,B). On the same samples, mono-parametric flow cytometry analysis of the cell cycle 
highlighted a decrease in cell number in the gap (G0/G1) phases from 68% to 61% (p < 0.05), and a 
concomitant increase of cells in the G2/mitosis (M) phases from 15% to 21% (p < 0.05), whereas cells in 
the synthesis (S) phase appeared comparable (16% vs. 18%, respectively; non-significant; Figure 2C). 

Figure 1. Effects of supra-physiological Mg concentrations on U937 cell-derived osteoclasts. U937 cells
were differentiated to osteoclasts upon treatment with phorbol 12-myristate 13-acetate (PMA) and
vitamin D3 (VD3) for five days and simultaneously exposed to scalar concentrations of Mg ranging from
1 to 10 mM. The messenger RNA (mRNA) expression of transcription factors (A) and differentiation
markers (B), both related to osteoclast differentiation, was then assessed using QRT-PCR. The results
obtained are represented as histograms indicating analyzed genes on the x-axis and relative quantity
of mRNA variations on the y-axis. Data are reported as means ± standard error of the mean (SEM)
values deriving from a triplicate experiment. Asterisks indicate statistically significant results. p < 0.05.
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flow cytometry analysis of propidium iodide (PI)-stained cell suspensions. Panel A shows a couple 
of representative microscopic fields obtained with 1 and 10 mM Mg. The histogram presented in 
Panel B indicate the percentages of macrophages and osteoclasts detected in the same cell samples 
and relative statistical analysis. Histograms presented in Panel C indicate cell-cycle distribution and 
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Figure 2. Changes in morphology and proliferation rate in U937 cell-derived osteoclasts after exposure
to supra-physiological Mg concentrations. U937 cells, under the experimental conditions described
in Figure 1, were subjected to morphological analysis, performed by microscopic examination of
May–Grünwald Giemsa-stained cytospins, and cell-cycle assessment, carried out by flow cytometry
analysis of propidium iodide (PI)-stained cell suspensions. Panel A shows a couple of representative
microscopic fields obtained with 1 and 10 mM Mg. The histogram presented in Panel B indicate the
percentages of macrophages and osteoclasts detected in the same cell samples and relative statistical
analysis. Histograms presented in Panel C indicate cell-cycle distribution and relative statistical
analysis elicited by exposure to scalar concentrations of Mg ranging from 1 to 10 mM. Data are reported
as means ± SEM values of a triplicate experiment. Asterisks indicate statistically significant results.

Table 1. Effects of phorbol 12-myristate 13-acetate (PMA)/vitamin D3 (VD3) on the total Mg
intracellular concentration. Measurements were carried out in U937 cells incubated with 1 and 10 mM
Mg, in the absence (control) or presence of PMA/VD3 (treated). Cells were sonicated and the Mg
concentration determined using the fluorescent probe diaza-18-crown-6-hydroxyquinoline (DCHQ5).
Data are reported as means ± standard error of the mean (SEM) values of a triplicate experiment.

Mg Extracellular
Concentration

Mg Intracellular Concentration (nmol/106 cells)
Mean ± SEM

Control (1 mM) 12.2 ± 0.0
Control (10 mM) 19.1 ± 2.1

PMA + VD3 (1 mM) 57.2 ± 2.0
PMA + VD3 (10 mM) 101.6 ± 13.5
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2.2. Comparative Analysis of the Effects Determined by High Level of Mg on Monocyte Differentiation of U937
Cells Induced by VD3 and Macrophage Differentiation of the Same Cells Induced by PMA

The osteoclastic differentiation of U937 cells results from a combination of effects determined
by VD3, an inducer of monocyte differentiation, and PMA, an inducer of macrophage differentiation.
Therefore, to better characterize the effect of Mg so far described, we performed an experiment in
which U937 cells were separately treated with VD3 to induce monocyte differentiation, and PMA
to induce macrophage differentiation. Differentiated cells were then subjected to flow cytometry
analysis of CD11b, CD14, and CD163 surface antigens and QRT-PCR analysis of a selected list of genes,
i.e., MAFB, TFE3, KLF4, CD14, CD163, and MMP9. Under these experimental conditions, exposure
of VD3-treated U937 cells to 10 mM Mg determined an increase of the mean positivity percentage,
compared to 1 mM, from 39% to 53% (p < 0.05) for CD11b, 19% to 27% (p < 0.05) for CD14, and 2%
to 4% (non-significant) for CD163 (Figure 3A). Relative quantities of the analyzed gene transcripts
underwent an approximately 1.5-fold increase for MAFB, TFE3, and CD163, and twofold increase for
KLF4 and CD14 (all but CD163 with p < 0.05) (Figure 3B). The MMP9 mRNA resulted undetectable in
both the analyzed samples (not shown).Int. J. Mol. Sci. 2018, 19, x 7 of 19 
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capacity of Mg to favor the osteoclastic differentiation of U937 cells is most likely VD3-dependent, 
rather than mediated by PMA. In this regard, a crucial role might be played by the 
musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) and transcription factor binding to 
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Figure 3. Effects of supra-physiological Mg concentrations determined on U937 cell-derived monocytes.
U937 cells were differentiated to monocytes by stimulation with VD3 for five days, and contextually
exposed to 1 and 10 mM Mg concentrations. Cell samples were then subjected to flow cytometry and
QRT-PCR analysis of typical markers related to the monocyte–macrophage differentiation lineage.
Panel A shows the results of flow cytometry represented as a histogram, indicating the analyzed surface
antigen on the x-axis and the percentage of positive cells on the y-axis. Panel B shows the results of
QRT-PCR, indicating analyzed genes on the x-axis and the relative quantity of mRNA variations on
the y-axis. Data are represented as means ± SEM values of a triplicate experiment. Asterisks indicate
statistically significant results. p < 0.05.

Application of the same experimental scheme to PMA-treated U937 cells disclosed an increase of
relative quantity of 1.5-fold for KLF4, almost 2.5-fold for CD14, and fourfold for MMP9, but not for
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MAFB and TFE3, remaining substantially unvaried (Figure 4B). Among these genes, only the CD14
exhibited a statistically significant variation, but this result was not confirmed by the flow cytometry
analysis of the corresponding protein (4% vs. 5%, non-significant; Figure 4A). The CD163 antigen
behaved similarly (6 vs. 8%, non-significant), whereas the CD11b antigen underwent a clear increase
from 13% to 33% (p < 0.05). Taken together, these data indicate that, although the supra-physiological
Mg concentration influenced some effects on PMA-treated U937 cells, its differentiation activity
was more evident on VD3-treated U937. This finding suggests that the capacity of Mg to favor the
osteoclastic differentiation of U937 cells is most likely VD3-dependent, rather than mediated by PMA.
In this regard, a crucial role might be played by the musculoaponeurotic fibrosarcoma oncogene
homolog B (MAFB) and transcription factor binding to immunoglobulin heavy constant mu (IGHM)
enhancer 3 (TFE3) transcription factors, based on their demonstrated involvement in VD3 response, as
well as in osteoclast differentiation [50,51,55,58].Int. J. Mol. Sci. 2018, 19, x 8 of 19 
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Figure 4. Effects of treatment with supra-physiological Mg concentrations on U937 cell-derived
macrophages. U937 cells were differentiated to macrophages by exposure to PMA for two days,
and simultaneously exposed to 1 and 10 mM Mg. Cell samples were then analyzed and the results
presented as detailed in the legend of Figure 3. (A) Results from cell samples subjected to flow
cytometry. (B) Results from cell samples subjected to QRT-PCR analysis.

2.3. Analysis of the Osteoblastic Differentiation of Human bMSCs in Response to VD3

After evaluating the osteoclastic differentiation of U937, we focused our attention on osteoblast
precursors, i.e., bMSCs. These cells are known to differentiate into osteoblasts, chondrocytes, or
adipocytes in response to specific environmental stimuli. In particular, we utilized an osteogenic
medium containing VD3, glycerolphosphate, and ascorbic acid (OM) [50,59]. Initially, we evaluated
Ca deposition in the extracellular matrix by staining with Alizarin Red S. To this purpose, confluent
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bMSCs were cultured in medium containing 1, 3, 6, and 10 mM Mg for 14 days either in OM or in their
culture medium (CM) as a control. Figure 5 shows a significant reduction of Ca deposits in bMSCs
induced to differentiate in medium containing high extracellular Mg (3, 6, and 10 mM) compared to
the control cells in physiological Mg concentration (1 mM). We detected a marked reduction of Ca
deposition by bMSCs in medium containing 3 mM Mg, while the cells cultured in 6 and 10 mM Mg
presented a slight but significant increase of the calcified matrix.Int. J. Mol. Sci. 2018, 19, x 9 of 19 
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Figure 5. Effects of supra-physiological Mg concentrations on VD3-induced osteoblastic differentiation.
Alizarin Red staining was performed on bone-marrow-derived mesenchymal stem cells (bMSCs)
cultured in 1, 3, 6, and 10 mM Mg added (OM) or not (CM) with the osteogenic cocktail for 14 days.
Whole-well image (A) and photographs taken at 10×magnification (C) are shown. Absorbance was
measured at 550 nm after acid extraction (B). * p < 0.05, ** p < 0.01, *** p < 0.001.

Then, we analyzed the expression of two osteogenic markers, i.e., RUNX2, which is the master
switch of osteogenesis, and collagen 1A1 (COL1A1), which is essential for the progression of
differentiation at early stages. Confluent bMSCs were cultured for four days in CM or OM containing
physiological or high Mg. As previously described [59], the osteogenic cocktail induced the expression
of RUNX2 in bMSCs cultured in medium containing 1 mM Mg (2.5-fold increase vs. control in CM)
(Figure 6). Interestingly, OM containing 3 mM Mg completely inhibited RUNX2 expression, while the
same medium with 6 and 10 mM Mg slightly induced RUNX2 expression (1.3- and 1.6-fold increase,
respectively). COL1A1 resulted upregulated in bMSCs induced to differentiate in OM containing
1 mM Mg. In the presence of 3 and 6 mM Mg, COL1A1 upregulation by the osteogenic cocktail was
significantly lower than that in control cells.

We previously showed that Mg deficiency accelerates bMSC differentiation through a modest
increase of the production of reactive oxygen species (ROS) [44]. Accordingly, it is enough to treat
the cells with H2O2 for 30 min and then to keep them in culture medium for four days to enhance
RUNX2 expression (Figure 7A) as detected by QRT-PCR. However, Mg is known to contrast ROS
accumulation [60]. To get some insight into the mechanisms involved in the inhibition of bMSC
differentiation by high extracellular Mg, we measured ROS production and found no significant
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differences in ROS generation in cells cultured in high extracellular Mg with or without osteogenic
medium (Figure 7B).Int. J. Mol. Sci. 2018, 19, x 10 of 19 
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Figure 6. Effects of supra-physiological concentrations of Mg on the expression of RUNX2 and COL1A1
in bMSCs exposed to VD3. QRT-PCR was performed on RNA extracted from bMSCs cultured for four
days in 1, 3, 6, and 10 mM Mg, added (OM) or not (CM) with the osteogenic cocktail. Primers designed
on RUNX2 and COL1A1 sequence were used. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 7. (A) The bMSCs were treated for 30 min with H2O2 (50 µM) and then cultured for four days in
culture medium (CM). RUNX2 expression was analyzed using QRT-PCR. The p-value was calculated
vs. untreated cells; *** p < 0.001. (B) Reactive oxygen species (ROS) accumulation was quantified using
2′-7′-dichlorofluorescein diacetate (DCFH, Sigma-Aldrich). Cells were seeded into black-bottomed
96-well plates (Greiner Bio-One) and cultured in 1, 3, 6, and 10 mM Mg, added or not with the osteogenic
cocktail for 24 h. Then, cells were washed with phosphate-buffered saline (PBS) and exposed to DCFH
(20 µM). The rate of intracellular oxidative stress was evaluated by monitoring the emission at 529 nm
of the DCFH dye using a GloMax®-Multi Detection System (Promega, Madison, WI, USA). Three
independent experiments were performed. Data are shown as means ± standard deviation.
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3. Discussion

The cross-talk between osteoblasts and osteoclasts is regulated by a complex network of juxtacrine,
paracrine, and endocrine stimuli. The most important among these signals sustains a positive feedback
between osteoblasts and osteoclasts that is aimed at maintaining the so-called bone-remodeling
cycle, responsible for the replacement of old bone with new bone [61–64]. In this context, the
di-hydroxylated and active VD3 form represents a typical example of an endocrine signal able to
induce a coordinated response of differentiation and activation that involves both osteoblasts and
osteoclasts [65,66]. The crucial role played by VD3 in bone metabolism is mainly due to its capacity
of upregulating the expression of several bone-related genes acting through a direct transcription
mechanism [47]. VD3, in fact, induces osteoblast differentiation, activating the expression of osteocalcin
and osteonectin, which, in turn, promote bone formation [67,68]. On the other hand, VD3 also induces
osteoclast differentiation, upregulating the expression of osteopontin, which anchors these cells to the
bone matrix and allows their activity of bone resorption [69].

Magnesium’s role in bone metabolism is widely investigated. Experiments in vitro and in vivo
clearly demonstrated that Mg deprivation inhibits osteoblasts and activates osteoclasts, leading to
an overall increase of bone resorption [18,24,26,27]. Conversely, only a limited number of reports
considered the effects exerted on osteoclasts and osteoblasts by high Mg levels obtaining, in addition,
partially controversial results [19,36,37]. Starting from these premises, our work specifically focused
on the effects promoted by stimulation with supra-physiological Mg concentrations (>1 mM) in
VD3-differentiated osteoclasts and osteoblasts. The aim of this experimental approach was to
characterize possible interactions between Mg and VD3 in regulating bone metabolism. The results
obtained indicate that high Mg levels potentiate osteoclast differentiation induced by VD3 in U937
cells. This was demonstrated by the upregulated mRNA expression of TRAP and DC-STAMP genes,
which are specific markers of this maturation pathway, and by an increased number of multi-nucleated
osteoclasts. The assessment of the transcription factors that could underlie this biological response
highlights an upregulation of MAFB and TFE3, both implicated in osteoclast differentiation [50,51,58].
Although this finding was initially obtained by inducing osteoclast differentiation with a combination
of VD3 and PMA, a comparable result was subsequently obtained using VD3 alone. Considering
that VD3 is recognized as a monocyte differentiation agent and that monocytes are the upstream
precursors of osteoclasts, it is possible to conclude that Mg-promoted effects may begin at early
stages of the osteoclast differentiation lineage. Other authors reported that MAFB exerts an inhibitory
effect on osteoclast differentiation, but this observation was carried out using RANKL to induce
differentiation [69]. Therefore, differences in the pathways investigated and in the experimental
conditions could provide a plausible explanation for this data discrepancy.

As a further result, we found that high Mg levels decrease the osteoblast differentiation of
bMSCs induced by an osteogenic cocktail containing VD3. Indeed, a reduction of Ca deposits was
particularly evident in bMSCs cultured in 3 mM Mg. Also, RNA levels of RUNX2 and COL1A1 were
significantly downregulated in response to high Mg exposure, in agreement with the evidence of a
lesser matrix calcification in bMSCs. Contrasting results were reported in the literature about the Mg
effect on bMSC fate. Some studies on the effect of Mg alloy degradation show cell mineralization
induction [70,71], while most of the studies demonstrate that high Mg levels potentiate cell proliferation
and inhibit osteogenic differentiation of bMSCs [72–74]. It is worthwhile to note that Mg2ATP
species form at intra-cellular Mg concentration >5 mM to the detriment of MgATP2− [9], the latter
being the biological active species required for enzyme activity and, hence, cellular function. Thus,
high Mg might impair the activity of one or more Mg-dependent protein kinases, which usually
inhibit osteoclast differentiation and promote osteoblast differentiation in physiological conditions.
The transcription programs controlling the abovementioned processes could represent the molecular
targets of Mg-regulated protein kinases. Altogether, Mg might affect bone remodeling activity of VD3,
which commonly coordinates osteoblast and osteoclast activation, giving rise to unbalanced osteoclast
activation and consequent bone resorption. Our previous findings showed that low extracellular
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Mg accelerated the osteogenic differentiation of bMSCs, through an increase of ROS production [44].
Here, we confirm the relevant role of ROS, since exposure for a short time to low concentrations of
H2O2 suffices to upregulate RUNX2 even in the absence of the osteogenic cocktail. Indeed, ROS are
fundamental in promoting cell differentiation partly through autophagy, which is emerging as the
most potent accelerator of matrix mineralization and bone homeostasis [75]. Interestingly, we did not
observe a modulation of ROS in bMSCs cultured in high-Mg conditions. These results indicate that Mg
acts as an anti-oxidant also in bMSCs, and further support the role of ROS in osteogenic differentiation.
As demonstrated by Li et al. [76], autophagy inhibition might play a role in the inhibitory effect of high
Mg on cell differentiation. Recently, Mg alloys, which show a property profile very close to that of
human bone, were used to generate degradable devices for osteosynthesis. While Mg alloy degrades,
local Mg concentration in the bone increases. High extracellular Mg is known to inhibit the activity
of human primary osteoblasts in vitro [77]. We recall that the Mg role in cell differentiation is rather
complex and strictly depends on the cell type [78]. Our findings highlight that high Mg levels can
result detrimental for bone not only through inhibition of osteoblast differentiation and function, but
also through a parallel increase of osteoclast activity. It has to be pointed out that the present study
was entirely carried out using a persistent treatment with supra-physiological Mg concentrations.
Therefore, it will be of great interest to conduct a similar study, in the future, by subjecting cell cultures
to a transitory stimulation with Mg.

In conclusion, we highlighted translational aspects of potential clinical interest that should be
taken into account when utilizing Mg alloy implants. In this regard, it is of crucial importance to
better comprehend which are the biological responses of bone upon different Mg-based treatments
(diet oral administration or biodegradable surgical implants), which may impact on systemic or local
Mg concentration.

4. Materials and Methods

4.1. Culture and Differentiation of U937 Cells

The U937 cell line was obtained from the American Type Culture Collection (ATCC; Rockville,
MD, USA) and cultured at 37 ◦C, 5% CO2 in Roswell Memorial Park Institute (RPMI-1640)
medium (Euroclone, Devon, UK), supplemented with 10% heat-inactivated fetal bovine serum
(FBS) (Biowhittaker, Walkersville, MD, USA) and 1 mM L-glutamine (Euroclone). The osteoclast
differentiation of U937 cells was induced by a sequential stimulation with 48 nM phorbol 12-myristate
13-acetate (PMA) (Sigma-Aldrich, St. Louis, MO, USA) for two days and then with 10−8 M 1α, 25
di-hydroxy vitamin D3 (VD3) (Sigma-Aldrich) for a further three days, as already described [45]. The
procedure inhibits cell proliferation and generates an osteoclastic population without phenotypic
and functional differences [45]. Monocyte and macrophage differentiation of the same cells was
induced by exposure to 10−7 M VD3 for five days and 48 nM PMA for two days, respectively. [54,56].
Morphological analysis of differentiated U937 cells was performed upon cytocentrifugation, followed
by May–Grünwald Giemsa staining.

4.2. Culture and Differentiation of bMSCs

Bone mesenchymal stem cells (bMSCs) were isolated from adult human bone marrow recovered
from bilateral punctures of the posterior iliac crests of normal volunteers and tested for purity by flow
cytometry [44]. The cells were cultured at 37 ◦C, 5% CO2 in Dulbecco’s modified Eagle’s medium
(DMEM) added with 1 g/L glucose, 10% heat-inactivated FBS, and 2 mM L-glutamine (all from
Sigma-Aldrich) (culture medium, CM). Osteogenic differentiation was induced once the cells reached
confluence using bMSCs between passage 2 and 5, and exposing them to an osteogenic cocktail
containing 2 × 10−8 M VD3, 10 mM β-glycerolphosphate, and 0.05 mM ascorbic acid (all from
Sigma-Aldrich) (osteogenic medium, OM). Ca deposition by bMSCs was evaluated on cells rinsed
with phosphate-buffered saline (PBS), fixed with 70% ethanol for 1 h, and stained for 10 min with
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2% Alizarin Red S (pH 4.2) [59]. Then, Alizarin Red S staining was released from the cell matrix by
incubation for 15 min with 10% cetylpyridinium chloride dissolved in 10 mM sodium phosphate (pH
7.0) (all from Sigma-Aldrich); finally, the absorbance was measured at 562 nm.

4.3. Reactive Oxygen Species Evaluation

Intracellular oxidative stress was quantified using 2′-7′-dichlorofluorescein diacetate (DCFH,
Sigma-Aldrich, cat. no. 35845). Cells were seeded into black-bottomed 96-well plates (Greiner Bio-One,
Frickenhausen, Germany), cultured in medium containing 1, 3, 6, or 10 mM Mg. The cells were
then washed with PBS and exposed to DCFH (20 µM). The rate of intracellular oxidative stress was
evaluated by monitoring the emission at 529 nm of the DCFH dye using a GloMax®-Multi Detection
System (Promega, Madison, WI, USA). Three independent experiments were performed. Data were
shown as means ± standard deviation.

4.4. Flow Cytometry Analysis

Cell-cycle distribution was assessed by mono-parametric flow cytometry analysis of U937
cells upon a 30-min incubation at 4 ◦C with an hypotonic fluorochrome solution containing
50 µg/mL propidium iodide (PI), 0.1% sodium citrate, and 0.1% Triton X-100 (all from
Sigma-Aldrich). Evaluation of surface differentiation antigens was carried out using the following
monoclonal antibodies (MoAb): phycoerythrin-conjugated (PE) mouse anti-human CD11b MoAb,
fluorescein isothiocyanate-conjugated mouse anti-human CD14 MoAb, and PE-conjugated mouse
anti-human CD163, all from Miltenyi Biotec, Auburn, CA. Negative controls were performed using
isotype-matched nonspecific antibodies (Miltenyi). Each antibody was incubated, at the proper
dilution, with cell samples, in PBS containing 5% fetal calf serum (FCS) and 1% FcR blocking reagent
(Miltenyi), for 30 min at 4 ◦C. Cells were then washed twice and re-suspended with PBS. All samples
undergoing flow cytometry were finally analyzed using a Coulter Epics XL flow cytometer (Coulter
Electronics Inc., Hialeah, FL) [79].

4.5. RNA Extraction and QRT-PCR Reaction

Total RNA was isolated using the Qiagen total RNA purification kit (Qiagen, Valencia, CA,
USA) and, once extracted, its integrity and concentration were assessed using a NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Quantitative real-time PCR
(QRT-PCR) was performed with an ABI PRISM 7900 sequence detection system (Applied Biosystems,
Foster City, CA, USA) on 100 ng of total RNA reverse-transcribed using the High-Capacity
complementary DNA (cDNA) Archive Kit (Applied Biosystems). Each cDNA sample was run in
triplicate using primers and probes supplied by Applied Biosystems as pre-made solutions and the
Faststart Universal Probe Master Mix (Roche Diagnostics, Mannheim, Germany) containing all the
reagents necessary for amplification. Normalization of signals was obtained using the glyceraldehyde
3-phosphate dehydrogenase (GAPDH) mRNA as an endogenous control. Statistical analysis of
QRT-PCR results was conducted using the (2−∆∆Ct) method, which calculates relative changes in gene
expression of the considered target mRNA normalized to the endogenous control and related to a
calibrator sample. The values obtained were represented in terms of relative quantity of mRNA level
variations [80,81].

4.6. Quantification of Total Cell Mg by Spectrofluorimetric Assay

Intracellular total Mg content was accurately quantified on sonicated samples of U937 cells by
employing the fluorescent dye DCHQ5, as previously described in detail [82,83]. We developed a
chemical synthesis of this dye in order to obtain an Mg determination on a very small number of cells
and to map intracellular Mg distribution and movements.
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4.7. Statistical Analysis

All experiments were repeated at least three times, and results were presented as means ±
standard error of the mean (SEM) values. Pairwise comparisons were carried out using a Student’s t-test
procedure. Results of statistical analysis were considered significant when exhibiting p-values ≤0.05,
as indicated by asterisks.

5. Conclusions

The present results offer new insights into Mg and VD3 interactions in coordinating osteoblast
and osteoclast differentiation and activation, and in the subsequent bone remodeling.

We demonstrated here that supra-physiological levels of intracellular Mg cause opposite effects
in osteoclast and osteoblast differentiation, as they potentiate VD3-induced osteoclast differentiation
in U937 cells, while they inhibit VD3-induced osteoblast differentiation in bMSCs. These observations
prompt an investigation of Mg effect in reprogramming VD3 action on bone remodeling in both
physiological and pathological conditions.
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MafB Transcription factor MafB
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MITF Microphthalmia-associated transcription factor
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Tfe3 Transcription factor E3
TRAP Tartrate-resistant acid phosphatase
VD3 25 di-hydroxy vitamin D3
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