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Abstract: Non-ischemic cardiomyopathy (NICM) is one of the most important entities for arrhyth-
mias and sudden cardiac death (SCD). Previous studies suggest a lower benefit of implantable
cardioverter–defibrillator (ICD) therapy in patients with NICM as compared to ischemic cardiomy-
opathy (ICM). Nevertheless, current guidelines do not differentiate between the two subgroups in
recommending ICD implantation. Hence, risk stratification is required to determine the subgroup
of patients with NICM who will likely benefit from ICD therapy. Various predictors have been
proposed, among others genetic mutations, left-ventricular ejection fraction (LVEF), left-ventricular
end-diastolic volume (LVEDD), and T-wave alternans (TWA). In addition to these parameters, cardio-
vascular magnetic resonance imaging (CMR) has the potential to further improve risk stratification.
CMR allows the comprehensive analysis of cardiac function and myocardial tissue composition.
A range of CMR parameters have been associated with SCD. Applicable examples include late
gadolinium enhancement (LGE), T1 relaxation times, and myocardial strain. This review evaluates
the epidemiological aspects of SCD in NICM, the role of CMR for risk stratification, and resulting
indications for ICD implantation.

Keywords: sudden cardiac death; non-ischemic cardiomyopathy; dilated cardiomyopathy; risk
stratification; cardiovascular magnetic resonance imaging

1. Sudden Cardiac Death in Non-Ischemic Cardiomyopathy: General Aspects

Sudden cardiac death (SCD) is one of the major causes of death accounting for approx-
imately 15–20% of all deaths worldwide [1]. Despite decreasing cardiovascular mortality
over the past 20 years, survival rates for out-of-hospital cardiac arrest remains as poor as
10% [2,3]. It is commonly assumed that SCD results from lethal arrhythmias. In this context,
non-ischemic cardiomyopathy (NICM) is considered the second most important entity for
arrhythmias and SCD next to ischemic heart disease, as approximately 30–40% of patients
present with non-ischemic heart failure (HF) [4]. NICM encompasses above all dilated
cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and arrhythmogenic right
ventricular cardiomyopathy (ARVC) [1]. As many studies do not differentiate into NICM
subtypes, this paper includes all entities, but it uses the term “DCM” or “non-ischemic
dilated cardiomyopathy” (NIDCM) whenever clearly indicated in the literature.

Current guidelines recommend ICD implantation for patients with symptomatic HF
(NYHA Class II–III) and left-ventricular ejection fraction (LVEF) ≤ 35% under optimal
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medical treatment, referring to ischemic cardiomyopathy (ICM) as well as NICM [5]. This
is mainly based on the Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT), which
investigated all-cause mortality in patients with NICM and ICM after ICD implantation
vs. amiodarone medication. The trial did not include patients with NYHA class I or LVEF
≥ 35% [6]. Conversely, the Maastricht registry showed that most patients who died from
SCD had a preserved or mildly depressed left ventricular function [7]. Underlying these
findings, a meta-analysis on predictors for SCD including a total of 6,088 patients found
that LVEF had a sensitivity and specificity as low as 71% and 50% in this context [8]. The
predictive value could be improved by adding MR parameters such as late gadolinium
enhancement (LGE) location and pattern to discriminate different cardiomyopathies [9].
Furthermore, these parameters are able to provide early information for an underlying
etiology and myocardial phenotypes predisposing to SCD, which a sole analysis of left
ventricular function cannot provide.

On top of that, the underlying causes for NICM and ICM are completely different.
ICM results from coronary artery disease (CAD) and myocardial infarction. It is commonly
assumed that ventricular arrhythmias (VA) originate from post-infarction scar in ICM, i.e.,
fibrosis [2,3,10–12]. Fibrosis represents a substrate for VA [13] inducing electrical dispersion,
slow impulse conduction, and nonuniform anisotropy. These mechanisms create re-entry
circuits, which form the basis for arrhythmias [14,15]. Apart from re-entry mechanisms
following myocardial fibrosis, primary arrhythmias may as well occur in NICM due to
genetic defects [16].

On the other hand, DCM as a major representative of NICM is characterized by a
dilated left ventricle and systolic dysfunction after the exclusion of CAD, hypertension,
and valvular disease [17]. The underlying causes are heterogeneous, including 20–50%
idiopathic, toxic, infectious, and genetic etiologies [18]. In DCM, fibrosis as a substrate for
VA is thought to be less extended, less confluent, and more heterogeneous than in ICM. This
was shown in studies evaluating the prevalence and characteristics of late potentials. Late
potentials represent myocardium where conduction is slowed by fibrosis. The underlying
molecular mechanisms for the difference in fibrosis between ICM and NICM are still
unclear [19,20]. In ICM, scar tissue, i.e., fibrosis, involves the subendocardium following
a coronary artery territory. In NICM, fibrosis can be located endocardially, epicardially,
intramurally, or exhibit a diffuse pattern, depending on the etiology [21,22].

2. NICM and ICD Indication for Primary Prevention: Current Evidence

Nearly one third (30%) of patients with DCM die of SCD [23], and DCM is the most
common cause for heart transplantation [24]. Sammani et al. found in a meta-analysis an
annual rate for VA of 4.5% in patients with DCM [25]. On the other hand, the Defibrillator
in Non-Ischemic Cardiomyopathy Treatment Evaluation (DEFINITE) and the Danish Study
to Assess the Efficacy of ICDs in Patients with Non-Ischemic Systolic Heart Failure on
Mortality (DANISH) trial showed no overall survival benefit in patients with NIDCM
or NICM, respectively, despite halving the risk for SCD [26,27]. Similarly, the long-term
follow-up of the SCD-HeFT showed no survival benefit for patients with NICM after 10
years [28].

Subsequently, it has been assumed that the varying findings result from the different
standard of medical care at the conduction time of the above-mentioned trials. For instance,
only the minority of patients in the initial SCD-HeFT was treated with mineralocorticoid-
receptor antagonists, and both in SCD-HeFT and DEFINITE, no cardiac resynchronization
therapy (CRT) was used [6,26,27].

Various investigations already demonstrated the favorable effect of CRT on cardiac
reverse modeling and outcome [29–31]. Notably, reverse cardiac remodeling is more
evident in patients with NICM as compared to ICM [32,33]. As a consequence, patients
with NICM may experience a more pronounced overall survival benefit from CRT therapy
irrespective of additional ICD as compared to patients with ICM.
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On top of that, by optimal medical treatment alone, one third of patients with id-
iopathic DCM exhibits reverse cardiac remodeling. As a consequence, cardiovascular
mortality can be reduced by approximately 25% [34]. In accordance, current ESC HF guide-
lines recommend ICD implantation only after persistent LV dysfunction after 3 months of
optimal medical treatment [5]. Merlo et al. found that although 15% of patients showed
a recovery of LV function after a mean follow-up of 19 months, 33% of these patients
suffered again from a deterioration of LV function in the long-term follow-up. Notably, no
predictors apart from significant mitral insufficiency at baseline could be identified [35].
Irrespective of the effects of reverse remodeling, future studies should identify patients to
be referred for instant ICD implantation due to irreversible risk factors for SCD.

Importantly, ICD only protects from lethal arrhythmias, but not from other causes of
cardiac death, e.g., acute HF, which is frequent in DCM patients [18]. Thus, ICD does not
reduce overall mortality, as shown in the DANISH trial. This is also reflected by the overall
low rate of adequate ICD therapies within DANISH, SCD-HeFT and DEFINITE [6,26,27].
In the group treated with ICD in the DANISH trial, only 4.3% suffered from SCD, while
9.5% died from other cardiovascular death [27].

Finally, adverse effects of ICD treatment have to be taken into account. After ICD-
implantation, approximately 10% of patients experience at least one complication within
the first 6 months [36]. Moreover, 11–23% of patients receive inadequate ICD shocks, which
are mainly related to atrial fibrillation or supraventricular tachycardia, resulting in an
impaired quality of life [37–40] and in a doubled mortality risk [38]. Affected patients
tended to be younger and suffered more often from NICM [18,41].

That raises the question of how to determine the subgroup of NICM patients most suscep-
tible for arrhythmias and SCD who therefore might benefit the most from ICD implantation.

3. Risk Stratification by Clinical Parameters, Genetics, and Non-MR Imaging
3.1. Clinical Risk Predictors and Current Risk Scores

Various possible predictors have been discussed in the past, to name but a few:
Nonsustained ventricular tachycardia (NSVT), TWA, NYHA class, and QRS duration. The
next section will give a short overview of the selected criteria and discuss the available
risk scores. We chose especially NSVTs and TWA as representatives of electrical markers
because of their clinical accessibility and their presence in recent meta-analyses [8,25,42,43].
However, the predictive value of non-invasive variables is limited due to contradictory
study findings and low discriminate yield for high-risk vs. low-risk patients [5,43].

NSVTs occur in 40–60% of patients with idiopathic DCM [21] and have repeatedly
been associated with malignant arrhythmias [25]. Gigli et al. found that in DCM with
only mild LV dilatation, NSVTs were an independent predictor for death and heart trans-
plantation [44]. Similarly, DCM patients on optimal medical treatment and an LVEF >35%
and NSVTs were shown to have a higher risk of malignant VA than those without [45].
Recently, in ICD-implanted DCM patients, rapid-rate NSVTs were associated with sub-
sequent VA [46]. Nevertheless, the study findings are contradictory, and some authors
suggest NSVTs rather as a marker for progredient HF than for arrhythmic events [47,48].

TWA has also been discussed as valid risk predictor. It describes the morphologic
change of the T-wave in every heartbeat [25]. However, inconsistent results and the lack of
a large dataset are drawbacks to possible risk stratification [42,47–49].

In a recent meta-analysis, the authors analyzed possible predictors for VTs in DCM.
They found a significant association for hypertension, genetic mutations (LMNA, PLN, and
FLNC), TWA, and the presence of LGE. Interestingly, family history of SCD and NYHA
class did not fulfill statistical significance [25]. Another group suggested an assessment at
different time points, finding different predictors in the course of the disease. For example,
QRS duration and mitral regurgitation were associated with arrhythmic risk at baseline,
whereas left atrial area and indexed LV end-diastolic volume were predictors at later
stages [50]. This approach may be interesting considering the varying course of DCM,
although it may not be very easily applicable in clinical routine.
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Lately, Younis et al. introduced two scores for VT/ventricular fibrillation (VF) vs.
non-arrhythmic mortality based on all four MADIT trials and described a predictive
value for sex, age, prior atrial arrhythmia, LVEF, systolic blood pressure, prior myocardial
infarction, and heart rate. In accordance with the above-mentioned studies, older patients
or patients with higher comorbidity burden (diabetes mellitus, higher NYHA class, higher
body mass index) were less likely to benefit from ICD implantation [51]. The score was
validated in a cohort with 49% NICM patients and can be easily used in the clinical routine
via a dichotomic online tool [51]. The fact that the score includes both ICM and NICM
holds certain limitations. As stated above, NICM represents a heterogenic group with
distinct characteristics and with different risk factors compared to patients with ICM.
For instance, NICM patients are more often younger and female than patients with ICM.
Therefore, future risk scores should focus on NICM or, even more specifically, on DCM
alone. Moreover, CMR findings or genetics were not incorporated [52], which might add
further prognostic information.

3.2. Genetics and their Additional Value for Risk Stratification

In about 30 to 50% of DCM patients, a positive family history can be found [18,41]. Today,
56 genes are commonly included in clinical testing [53]. There is growing evidence for using
genetic testing in clinical routine and including genetics in individual risk stratification [23,54].
Above all, LMNA, FLNC, PLN, and RNA-binding motif protein 20 (RBM20) are associated
with a higher risk for SCD in patients with DCM [41,54].

LMNA encodes for two intermediate filament proteins, lamin A and C [55]. These
proteins form the meshwork underneath the inner nuclear envelope called the nuclear
lamina [56,57] and play a major role for the architecture, integrity, and metabolism of the
nucleus [56]. LMNA mutations can be found in up to 8% of patients with DCM [58,59] and
are associated with arrhythmias, including atrial fibrillation and ventricular tachycardias
(VTs) as well as conduction disorders such as atrioventricular node dysfunction and
musculoskeletal disorders [58,60–62]. Carriers have a significantly lower survival rate than
non-carriers [58] with a mean survival of 50 years [63]. SCD has been found to be especially
high in this group (31 to 46%) [62,63]. Rijsingen et al. found amongst others male sex,
NSVTs, and an ejection fraction of <45% as independent risk predictors for SCD, which are
also adopted in the ESC guidelines for the prevention of sudden cardiac death [5,63]. In
addition, non-missense mutations may impose an increased risk [64] and are mentioned
in the guidelines [5]. Recently, a more accurate risk score for VA also including AV block
has been proposed and validated [65]. Of note, pacemakers may not prevent SCD in this
group [62,64]. In conclusion, LMNA mutation carriers should be closely monitored for the
above-mentioned characteristics and may receive an ICD earlier than other DCM patients.
It should be considered to implant an ICD rather than a pacemaker if necessary [66].

FLNC is the underlying gene for the protein filamin C. Filamin C is actin binding
and is thought to play an essential role in the integrity and signal transduction of cell–
cell connections, in the Z-disc and between sarcomeres and the cell membrane [55,67]. A
truncating mutation was found in patients with DCM and was associated with LV dilatation,
dysfunction, and fibrosis. Moreover, carriers are prone to VA and SCD [55,68]. As a result, a
recent expert consensus recommends a primary prophylactic ICD implantation in patients
with a truncating FLNC mutation and an LVEF < 45% [66].

RBM20 is involved in the post-transcriptional splicing of various proteins in cardiomy-
ocytes, most notably titin and proteins regulating calcium homeostasis [69–71]. Variants
in its underlying gene have been found to be associated with early onset DCM, VA, and
SCD [71–73]. Recently, van den Hoogenhof et al. found a possible treatment option for
this subset of patients in using the calcium channel blocker Verapamil [71]. Due to its high
penetrance and proarrhythmic clinical manifestation, the authors suggest close monitoring
of mutation carriers [72,73].
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The protein phospholamban with its underlying gene PLN also plays a role in the
calcium homeostasis [74]. Phospholamban inhibits the Ca2+-ATPase of the sarcoplasmatic
reticulum, and its phosphorylation leads to muscle relaxation [75]. When mutated, the
inhibitory effect is nonreversible [70]. Mutation carriers are prone to malignant disease
progression, VA, cardiac fibrosis, and SCD [76,77]. It represents a founder mutation in
the Netherlands, where it has been discovered in 15% of DCM patients [77], while the
prevalence has been shown to be <1% in HF patients of another population [78].

3.3. Non-MR Imaging and Risk Prediction
3.3.1. Echocardiography

Global longitudinal strain (GLS) provided by speckle-tracking echocardiography
(STE) is an evolving method for the evaluation of LVEF [79,80]. Nikoo et al. demonstrated
that GLS was superior in predicting VAs as compared to LVEF in a study population of
70 patients with ICM and DCM: by using a cut-off value of −10%, GLS had a specificity
of 90% and sensitivity of 72.2% [80]. This is in line with an earlier study of 308 patients
with chronic HF due to ICM and NICM that showed a sensitivity of 73% and specificity
of 61% in predicting VA events. When combined with LVEF, the prognostic value could
be increased even further [81]. More recently, Tröbs et al. showed an association of GLS
with cardiac death independent of cardiac function and NYHA class in a cohort of 2186
patients with chronic HF [82]. However, few studies investigated the prognostic value of
impaired GLS on arrhythmic events of patients with NICM, and randomized trials with a
high number of patients and focus on NICM or, even more specific, DCM alone are lacking.

When compared to CMR, the advantages of echocardiography remain the cost-
effectiveness, higher availability, and the usability irrespective of renal function or cardiac
devices affecting image quality [83,84]. However, inter-observer variability was lower in
CMR [83]. Nevertheless, a good correlation between CMR-FT and STE-derived GLS was
shown [83,85,86].

3.3.2. Single-Photon Emission Computed Tomography (SPECT)

Impaired sympathetic innervation and activity result in heterogeneous electrical
conductance, act as arrhythmic substrate, and are linked to increased risk of SCD [87–89].
In this context, the norepinephrine analogue meta-iodbenzylguanidine radiolabeled with
iodine-123 (123I-mIBG) has been used to measure neuronal integrity with reference to the
heart/mediastinum (H/M) uptake ratio [90,91]. In a prospective cohort of 961 HF patients,
Jacobson et al. found a higher cardiac mortality and arrhythmic risk in patients with a
H/M ratio <1.60 [90]. In contrast to these findings, De Vincentis et al. failed to show an
independent association between the H/M ratio and arrhythmic events in a population
of 170 patients with chronic ICM or NICM [92]. In summary, current data using SPECT
parameters for risk prediction are limited and controversial, which is possibly due to low
accessibility, expertise, and high costs [88].

4. Risk Stratification by Cardiovascular MR Imaging

So far, a variety of CMR-derived parameters have been evaluated for their usefulness
in risk assessment for SCD in NICM patients. An overview of these parameters including
limitations are provided in Table 1.
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Table 1. Overview of CMR parameters and their limitations in risk assessment for SCD.

Parameter Key Points Limitation

LGE

Visualization of myocardial fibrosis as substrate
for VA

Presence as idependent predictor for VA
and SCD

Contradictory findings concerning role of extent,
localization, and pattern

Contraindications to contrast agent use
Different methods to define presence of scar

Different methods to quantify scar extent

T1 mapping/ECV

Marker of diffuse fibrosis
Higher native T1 values are associated with

arrhythmic endpoints
Applicable independent of renal function

Susceptibility to confounding variables during
acquisition, e.g., gadolinium dose, rate of injection

Lack of standardization of mapping techniques
Lack of standardization of
post-processing techniques

Vendor-dependent cut-off values
Overlap with T1 values of normal myocardium in

early disease stages of NICM

Strain imaging

Parameter for myocardial deformation
and function

Impaired strain asssociated with
adverse outcome

Lack of validation for some strain
assessment methods

Method and software specific cut-off values
Lack of reliability concerning some strain

parameters, e.g., radial and segmental strain
Lack of larger studies

Lack of studies focusing solely on
arrhythmic endpoints

4.1. Late Gadolinium Enhancement
4.1.1. General Aspects

LGE imaging is an accurate and commonly applied technique for the identification of
focal myocardial fibrosis and thus can visualize and quantify substrate for VA [13]. LGE
results from regional abnormalities in myocardial extracellular volume due to myocardial
injury, e.g., myocardial necrosis, edema, and scar tissue [93]. LGE can be characterized by
its overall extension, its location within the LV, and its pattern [94]. In this review, the term
“LGE” will be used to refer to focal myocardial fibrosis only.

4.1.2. Presence of LGE and Association to VA

In NICM, the prognostic value of LGE for adverse cardiovascular outcomes including
SCD was shown in multiple studies, including two meta-analyses [10,95]. The first meta-
analysis demonstrated that NICM patients with LGE had a higher annualized event rate
for a combined outcome of SCD, aborted SCD, and appropriate ICD therapy compared
with patients without LGE (6.0% versus 1.2%; p < 0.001) [95]. The second meta-analysis
revealed a lower OR for arrhythmic events of 5.05 (95% CI: 2.73 to 9.36) in studies only
comprising ICM patients compared with 6.27 (95% CI: 4.15 to 9.47) in studies on NICM
patients [10].

In addition, LGE was reported to be a strong independent predictor for VA and SCD
after adjusting for other clinical or functional prognostic parameters [96–101]. One study
analyzed NICM patients referred for primary ICD implantation. Patients with LGE had a
composite outcome event including non-sudden and sudden cardiac death, ICD discharge,
or hospital admission due to HF in 44% compared with 8% in patients without LGE. After
controlling for EF, LV mass, LV volume, or NYHA class, LGE-positive patients still had an
8-fold higher risk for the composite endpoint [101]. The presence of LGE not only predicted
the composite endpoint but also ICD firings or SCD alone. However, in a multivariable
analysis of Müller at al., the presence of LGE was not an independent predictor of outcome
in NICM patients. Only LVEF ≤ 40% and elevated Troponin I ≥0.03 µg/l independently
predicted a composite of all-cause mortality, heart transplantation, aborted SCD, sustained
VT, or hospitalization due to decompensated HF [102].
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For NIDCM in particular, the LGE-related risk for VA and SCD was also described
by two meta-analyses [97,98], several prospective studies [96,99,103–108], and also several
retrospective cohorts [109–113]. The meta-analysis by Becker et al. showed that LGE-
positive patients had an OR of 4.52 (CI 3.41–5.99) for a combined endpoint of VA [98]. A
review by Aljaroudi et al. [9] looked at six studies [99,101,114–118] with different endpoints
including sustained VT, inducible VT, ICD therapy, SCD, or hospitalization for HF. In
all studies, myocardial scar by LGE represented an independent predictor of adverse
outcome. Studies focusing on a specific subset of DCM, such as patients with lamin A/C
mutations or muscular dystrophies, could also confirm the prognostic relevance of LGE in
the assessment of VA and SCD [119,120].

A severely reduced EF is the central parameter in current guidelines for risk strat-
ification of SCD. However, evaluation of LGE as a risk predictor has not only yielded
interesting results in patients with severely reduced EF but also in patients with mild
to moderate LV dysfunction and even preserved EF. In DCM patients with an LVEF >
40%, LGE predicted the composite endpoint of SCD and aborted SCD (HR, 9.3; 95% CI,
3.9–22.3; p < 0.0001) [96]. A meta-analysis of Di Marco et al. examined twenty-nine studies,
with a wide spectrum of DCM and a mean EF between 20% and 43%. The association
between LGE and an arrhythmic endpoint was significant in studies with a mean EF below
35% as well as in those with an EF above 35%. However, the association was stronger
in populations with a mean EF > 35% (EF > 35%, OR: 5.2, 95% CI: 3.4 to 7.9; EF < 35%,
OR: 4.2, 95% CI: 2.4 to 7.2) [97]. On the contrary, others showed a doubling in risk for an
arrhythmic event in case of detected LGE and an EF < 30% compared to an EF > 30% [10].
In some studies, LGE predicted adverse events, although LVEF did not. In a group of
NICM patients, adding LVEF to a multivariate prediction model with clinical data for
a combined cardiovascular endpoint of cardiac death, onset of chronic HF, and aborted
SCD did not improve the prediction of outcome. Yet, including the presence or extent
of LGE in the model significantly supported outcome prediction [100]. Likewise, Neilan
et al. could demonstrate that while LVEF was not predictive, the presence and extent of
LGE was the strongest predictor of recurrent events in survivors of SCD [121]. A recent
study in NICM also showed that LGE was strongly related to SCD, while there was no
significant association between LVEF ≤ 35% and the risk for SCD [122]. Another study
in NICM patients with a LVEF < 35% reported that implantation of ICD led to decreased
mortality only in patients with detectable LGE (without LGE: HR = 1.22, CI: 0.53–2.78, p =
0.64 vs. with LGE: HR = 0.45, 95% CI: 0.26–0.77, p = 0.003) [123].

Electrophysiological studies using CMR-guided substrate ablation further support
the inclusion of LGE into risk stratification. They indicate that LGE comes close to what
is identified as arrhythmic substrate. LGE is displayed in the form of color-coded PSI
maps which are obtained from high spatial resolution CMR images. They can be added
to the navigation system to assist VT ablation and have a reasonably high correlation
with the electroanatomic maps (EAMs). In a study with a mixed cohort of NICM and
ICM patients, there was lower VT inducibility and fewer VT recurrences with CMR-aided
substrate ablation than in the control group [124]. The authors considered the technique to
be particularly promising in NICM [125]. A prior study solely investigating NICM patients
could make similar observations [126].

Overall, there is substantial evidence for an association of LGE and risk for VA in
NICM, which is also independent from traditional risk factors such as EF.

4.1.3. Extent of LGE and Association to VA

Methods to assess LGE comprise visual analysis, the evaluation of signal intensity val-
ues of 2 to 6 standard deviations (SD) above the intensity of remote myocardium [127–129],
the evaluation of signal intensity >50% of the maximal signal intensity within the en-
hanced area (= full-width at half maximum) [130], or the evaluation of signal intensity
above peak remote myocardium [131]. In ICM, the so-called “gray zone” defines a region
at the periphery of myocardial infarction, where the viable myocardium is intertwined
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with fibrosis and therefore has an intermediate signal intensity. This zone is suspected
to be particularly vulnerable for generating VA [12,131,132]. In NICM, no “gray zone”
equivalent has been described so far. The literature on the relation of LGE extent and
manifestation of VA contains divergent results [97,133]. Although some studies indicate a
clear association between the amount of scar and arrhythmic risk, others do not. In NICM,
studies confirming a relationship showed LGE extent to be associated with SCD [104], the
occurrence of VT [134], and a composite endpoint of cardiovascular death and VA [108].
Some studies additionally demonstrated that LGE extent is more predictive than the mere
LGE presence alone. The extent of total scar in the form of fibrosis was the most important
predictive parameter in a mixed group of ICM and NICM patients [114] and in groups
of NICM patients only [99,117]. A recent study, using no arrhythmia-specific endpoint
but a primary outcome of all-cause mortality also found that LGE extent showed stronger
associations to the outcome compared to LGE presence alone [135].

Studies have also assessed arrhythmic risk with respect to specific cut-offs in LGE
extent. In a study population undergoing evaluation of ICD implantation, with half of
patients suffering from ischemic heart disease, an LV scar size >5% was found to be the
strongest predictor of the primary endpoint of death of VT or appropriate ICD discharge
for VT. Patients with an LVEF > 30% and a scar with >5% of LV mass were determined to
have a high risk for VA compared to patients with an LVEF < 30%. In contrast, patients
with an LVEF < 30% and minimal or no scar had a low risk for VA, similar to those with
an EF > 30% [114]. However, although LGE above 5% of LV mass was accompanied with
significant additional risk for VA, the association reached a plateau at higher levels of LGE
extent [114].

In a population with NICM, the percentage of LGE that predicted a primary outcome
of death and hospitalization was 4.8% [99]. Lehrke et al. reported a similar LGE cut-
off in DCM. LGE with >4.4% of LV mass was an optimal discriminator for a composite
cardiovascular endpoint of cardiac death, hospitalization for decompensated HF, or ICD
firing [106]. Neilan et al. defined a slightly higher threshold with LGE involving >6.1%
of LV myocardium [108]. However, none of these studies assessed an endpoint only
comprising arrhythmic events. Focusing on a pure arrhythmic endpoint, Piers et al. defined
an optimal cut-off of LGE with a mass ≥7.2 g to predict monomorphic VT in NICM patients
who underwent ICD implantation (AUC 0.84). However, LGE extent did not predict
occurrence of polymorphic VT or VF [111].

In addition to defining specific cut-offs, studies investigated a possible association of
the transmurality of scars with adverse outcomes. In 26 NICM patients, a scar involving 26%
to 75% of wall thickness was discovered to be the most significant predictor of inducible
VT [117]. In another study, risk for monomorphic VT was especially high when LGE
showed 51–75% of transmurality [111].

Contrary to the above stated studies, others found only a limited value of LGE extent
for prediction of SCD or VA [96,105,113,136]. For example, Halliday et al. could not relate
LGE extent to a primary endpoint of aborted SCD in DCM patients. Patients with an
LGE extent of up to 2.5% showed a similar HR as patients with an LGE extent >5% (HR
10.6 (95% CI, 3.9–29.4) vs. 11.8 (95% CI, 4.3–32.3)) [96]. This was also reported in further
studies [105,113].

In summary, the association of LGE extent and risk for VA still remains unclear.
Although some studies report an incremental risk with greater LGE extent and similar
cut-offs of around 5% of LV mass, other studies do not attribute additional prediction value
to the extent of LGE on top of the presence of LGE alone.

4.1.4. Location and Pattern of LGE and Association to VA

Beyond the presence and extent of LGE, the predictive value of location and pattern
of LGE has also been investigated. The most common LGE patterns in NICM are linear
midwall, subepicardial, or patchy enhancement patterns not following a coronary artery
territory [101]. Some patients also present an infarct-like pattern in the absence of CAD,
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presumably after coronary spasms or embolic events. Studies mainly differentiate between
septal and free-wall location. Examples of different LGE patterns and localizations are
given in Figure 1.
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NICM patients with septal midwall LGE were reported to be at an increased risk for
SCD [99,102,104,107,109]. Some studies associated septal midwall LGE with greater risk
for SCD, exceeding the risk of other distribution patterns. For instance, Almehmadi et al.
found that in patients with systolic dysfunction due to mixed etiology, septal midwall
LGE was the exclusive predictor of SCD or appropriate ICD therapy among different LGE
patterns [137]. Shin et al. showed that a subepicardial distribution of LGE in NICM patients
was an independent predictor of a composite of major arrhythmic events [138].

In a different predictive model applied in NICM patients, coexistent septal LGE and
free-wall LGE indicated a higher risk for SCD. The combination of LGE presence and
location was superior to the combination of LGE extent and pattern [105]. Out of the
different visually assessed LGE distributions in NICM patients, Mikami et al. also reported
septal and/or RV insertions site fibrosis to strongly predict a composite endpoint of cardiac
mortality or appropriate ICD discharge. Additionally, the authors found that septal LGE
with approximately 3% or more of the LV mass was linked to a 9-fold higher risk of cardiac
death or appropriate ICD therapy [139].

Piers et al. compared a basal vs. non-basal distribution of LGE in NICM patients
who underwent ICD implantation. They were followed for the occurrence of VA [111].
Basally located LGE was a stronger predictor for monomorphic VT. VT ablation studies
have also reported that substrates for monomorphic VT in NICM show a predominantly
basal location [140].

Other studies have not demonstrated an association of LGE location and additional
SCD risk in NICM and NIDCM [101,106,108,109,112,113,117,137]. In a study of NICM
patients, LGE was strongly related to arrhythmias regardless of the segmental pattern. Mul-
tivariate analysis showed that both septal and lateral midwall LGE were associated with
arrhythmias [109]. Electrophysiological studies also reported no significant relationship
between the location of LGE and the occurrence or inducibility of VT (p = 0.60) [117,134].

In summary, current data concerning the role of LGE localization and pattern are partly
contradictory, and the distribution associated with the highest risk for VA is still unclear.

4.1.5. Limitations of LGE

Applying LGE as a risk predictor for the assessment of SCD holds limitations.
First, there are limitations inherent to the technique of MRI [141], such as partial

volume effects, long acquisition time, costs, as well as restrictions to the use of a contrast
agent in case of renal impairment, which is often concomitant to advanced NICM.
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Second, the different assessment methods to define scars make an overall comparison
of results difficult. However, a meta-analysis could show that significant associations
between LGE and VA or SCD were preserved in studies with visual analysis of LGE and
in studies with threshold-based methods [97]. Approaches to the quantification of scar
extent are also heterogeneous. Extent is either defined as the sum of hyperenhanced
segments [100,142,143], percentage [104,108,139], or absolute weight [98,111]. There is also
no consensus on cut-offs [115,128]. These aspects further impede the comparability of
studies and complicate meta-analysis. Importantly, the absence of LGE does also not insure
the absence of risk for VA [101]. LGE imaging visualizes focal myocardial fibrosis but is
not able to detect diffuse fibrosis. Therefore, the application of additional CMR parameters
to address diffuse myocardial fibrosis is necessary.

4.2. T1 Mapping and Extracellular Volume
4.2.1. General Aspects

The second important CMR technique for the detection of myocardial fibrosis is T1
mapping and the assessment of extracellular volume fraction (ECV). In contrast to LGE, T1
mapping and ECV imaging are able to detect and to quantify diffuse myocardial fibrosis.
Briefly, T1 mapping assesses longitudinal, T1 relaxation times of myocardial tissue. Abso-
lute T1 relaxation times are illustrated pixel-wise on T1 maps. Myocardial T1 times reflect
myocardial tissue composition and e.g., can be altered due to an excess in free water and
collagen, but also protein, lipid, or iron deposition. Myocardial ECV can be estimated from
myocardial and blood T1 times before and after contrast agent administration as well as the
hematocrit and targets the relative proportion of myocardial extracellular space [144,145].
Diffuse myocardial fibrosis results in longer native T1 relaxation times compared with nor-
mal myocardium [145,146]. Collagen deposition and consecutive expansion of extracellular
space can be assessed by an increased contrast-media distribution volume with subse-
quently shortened post-contrast T1 relaxation times [145,147,148]. A recent meta-analysis
revealed an overall favorable correlation between pre- and post- T1 mapping values, as
well as ECV and histological analysis in different types of cardiac diseases [149]. Native
and post-contrast T1 values provide a high diagnostic accuracy, sensitivity, and specificity
in the discrimination of normal and diffusely diseased myocardium in DCM [150].

4.2.2. Role in NICM

Results from ECV and T1 times analyses are especially valuable in NICM, as patients
are suspected of having considerable diffuse fibrosis besides focal scarring [151], which has
also been histologically confirmed [152]. Diffuse fibrosis is thought to form an essential part
in the remodeling process of NICM [151]. The mechanisms of arrhythmias in diffuse fibrosis
are less understood but are expected to depend on re-entry mechanisms as well [151]. T1
mapping and ECV calculation can also depict fibrosis in the absence of LGE [133,153,154].
Additionally, studies demonstrated that changes in T1 values are already present at early
stages of DCM, when LVEF is only mildly reduced [155].

Abnormal T1 or ECV values were described as independent predictors for adverse
clinical outcomes in various cardiomyopathies [156] and also HF with preserved ejection
fraction [157,158].

In NICM, ECV was shown to independently predict cardiovascular death, HF hospi-
talization, and appropriate ICD shock [159]. In a larger, multicenter cohort study with 637
NICM patients, native T1 and ECV values were both strongly associated with all-cause
mortality and HF [135]. The prognostic value of T1 mapping was stronger than that of LGE
for the HF endpoint.

Studies investigating arrhythmic endpoints have also come to interesting results. In a
mixed cohort of ICM and NICM patients undergoing ICD implantation, native T1 mapping
was independently associated with an endpoint of appropriate ICD firing or documented
sustained VT. Every increase of 10 ms in native T1 times increased the HR for VA by
1.06 (CI 1.01–1.11, p = 0.021). Remarkably, the association persisted even after correction
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for LGE burden. ECV showed no association, which was probably due to procedure-
related limitations such as contrast kinetics and variations in hematocrit levels [160]. In
another study on NICM, patients with a history of complex VA presented higher native T1
values compared to patients without any prior complex VA. Native myocardial T1 values
remained associated with complex VA after controlling for LV function and LGE [151].

On the basis of prior studies, T1 mapping and ECV imaging assessment could form an
important part in VA risk stratification of NICM patients. The technique could be especially
interesting in patients without depicted LGE. As there is no need for contrast media
application, native T1 mapping could further be useful in patients with contraindications
to contrast agents.

4.2.3. Limitations of T1 Mapping and Extracellular Volume

The technique of T1 mapping and ECV calculation has limitations concerning the
data acquisition, the post-processing assessment method, and the interpretation of data.
Mapping is known to be affected by confounding variables [161,162] such as gadolinium
contrast agent dose, rate of injection, and relaxivity, and also time between T1 mapping
measurement and gadolinium administration. Until now, there has been no standardization
of mapping techniques [133]. Post-processing assessment methods also lack standardiza-
tion. The most commonly used approach is a single-section technique at the mid-ventricle.
However, this method might not adequately represent inhomogeneous fibrosis [162]. An-
other obstacle to the comparison of studies is that cut-offs for abnormal values are still
vendor dependent. The overlap of ECV values between controls and early DCM patients,
who are defined as only having mild LV dysfunction with an EF >45%, represent a further
limitation to the interpretation of abnormal results [155].

Nevertheless, mapping is a valuable tool for SCD risk assessment, especially in pa-
tients with NICM. Future directives should include the standardization of data acquisition
and post-processing [163].

4.3. Myocardial Strain
4.3.1. General Aspects

Myocardial strain describes myocardial deformation [164] and is a parameter of
myocardial function in addition to EF. GLS defines longitudinal shortening of the LV from
base to apex. Global circumferential strain (GCS) represents LV shortening along the
circular outline, and global radial strain (GRS) depicts the thinning and thickening of the
LV muscle [165]. The two main techniques in the assessment of strain via CMR are MR
tagging and MR feature tracking (MR-FT). CMR-FT is currently the most feasible method,
as tracking can be applied to standard cine images, and no additional sequences are needed.
Cut-offs for strain values vary among methods, modalities, and software [164].

4.3.2. Role in NICM

Recent studies have investigated the association between myocardial fibrosis and
strain abnormalities. If strain is able to accurately detect areas of fibrosis and therefore
a possible substrate for arrhythmias, it could be valuable for the prediction of VA. For
instance, midwall fibrosis in NICM patients was associated with reduced LV GCS, strain
rate, and torsion defined by CMR-FT [166]. In end-stage DCM, histologically assessed
LV myocardial fibrosis also correlated strongly with GLS. However, GLS was assessed by
STE [167].

Similar to LGE and mapping, abnormal strain values were shown to be associated
with prognosis in DCM patients. A study using CMR-FT found impaired GLS and mean
longitudinal strain to be an independent prognostic parameter for a composite cardiac
endpoint of cardiac death, heart transplantation, and aborted SCD. Strain values were
shown to be superior in risk prediction compared to NYHA, EF, and LGE [103]. In a mixed
cohort of non-ischemic and ischemic DCM, GLS assessed by CMR-FT showed to support
risk stratification for all-cause death incremental to EF and LGE [168].
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Riffel et al. assessed long axis strain (LAS) in NICM by a different method without
using a deformation analysis software [169,170]. The authors measured LAS as a displace-
ment of the mitral annulus. LAS was reported to be an independent predictor for cardiac
events including aborted SCD by appropriate ICD firing. The association was described
in patients with and without LGE. The authors further introduced a three-point scoring
model for risk stratification, including LVEF < 35%, LAS >−10%, and the presence of
LGE. Patients with three points had a significantly higher risk than those with two or less
points [170].

To our knowledge, a CMR study solely focusing on an arrhythmic endpoint in NICM
has not been conducted. In post-infarct patients, an MR-tagging study showed that shorter
time to peak circumferential shortening strain was associated with inducible VA [171].

Overall, the results on strain in the risk assessment for VA are promising. However,
the literature is still scarce, and further investigations are needed.

4.3.3. Limitations of Myocardial Strain

Strain values vary depending on the assessment method and software version used [172].
Thus, method and software specific cut-off values have been implemented. However, this
limits a broad and straightforward comparison of study results. Some methods have
also not been properly validated. Therefore, studies have argued for a widespread val-
idation and cross-modality as well as vendor standardization [164]. Additionally, some
strain parameters, particularly radial strain values and segmental strain values, still lack
reliability [164,165].

In conclusion, similar to EF where there is no available cut-off to discriminate patients
at risk for sudden or non-sudden cardiac death [173], there is no single CMR parameter
able to accomplish that today. CMR parameters have not been used in trials that current
guidelines are based on and have not been implemented in standard risk scores [174]
despite having the potential to add insightful information.

4.4. CMR Risk Scores

To the best of our knowledge, for NIDCM, only one CMR-based risk score has been
reported so far. The ESTIMATED Risk Score [175] is the first and only algorithm that
combines LGE and conventional risk factors for SCD. A total of 395 NIDCM patients
with an average EF of 28.8% were recruited and followed over a 3-year period. The
primary outcome was a composite of SCD events (SCD, aborted cardiac arrest, appropriate
ICD therapy).

The score was developed in 295 NICM patients without prior VA. 100 patients with
documented VA were used for validation. The predictive value was assessed by comparing
SCD events between high-risk patients defined by the score and the validation group. The
score integrated LGE extent > 14%, syncope, atrial flutter/fibrillation, NSVT, advanced
AV block, and age < 20 or >50 years. The extent of LGE strongly predicted SCD risk,
while an LGE extent > 14% was not detected in the low-risk group but present in nearly
100% in the high-risk group. The most important limitations of the study were the small
sample size and the unspecified SCD endpoint not restricted to sudden death due to
tachyarrhythmias [175]

4.5. CMR Parameters and Their Role in Risk Stratification of SCD in HCM and RCM

Apart from DCM, there is growing evidence for MR-based risk stratification for SCD
in other NICM entities, especially in HCM and restrictive cardiomyopathy (RCM).

LGE has been described in approximately 50% of HCM patients [176,177]. It can most
commonly be found within hypertrophic segments and at RV insertion points in a patchy
mid-myocardial pattern [178–180].

Several studies have shown an association of LGE with increased risk for VA or
SCD [179,181–185], and similar to DCM, they have not only investigated SCD risk in
relation to the mere presence of LGE but also in relation to LGE extent. One meta-analysis



Int. J. Mol. Sci. 2021, 22, 7115 13 of 25

demonstrated that extensive LGE represented an independent risk marker for SCD. A 10%
increase in LGE extent was linked to a 36% relative increase in risk for SCD and a total LGE
extent of 20% of LV mass was associated with a nearly two-fold increase in SCD risk. [186].
Another study described a 15% increase in risk for the primary endpoint of cardiovascular
death, unplanned hospital admission, sustained VT/VF, or appropriate ICD discharge
for every 5% increase in fibrosis [182]. Some studies further examined specific cut-offs of
LGE extent in relation to SCD risk prediction [176,187]. Chan et al. could show that an
LGE extent ≥ 15% of LV mass was associated with a two-fold increase in risk for SCD.
Considering LGE in addition to the traditional factors introduced by the American College
of Cardiology (ACC)/American Heart Association (AHA) guidelines improved the overall
risk stratification [178]. Similarly, Mentias et al. also found that LGE extent ≥ 15% of LV
mass increased the risk of a composite outcome of SCD and appropriate ICD firing [180].

On the other hand, Maron et al. could not report LGE to be a risk factor for a composite
primary endpoint of SCD, appropriate ICD discharge, and progressive HF symptoms of
≥1 NYHA class. Although patients with LGE reported a higher rate of adverse events
compared to those without LGE, the comparison did not prove statistically significant [188].

The above-mentioned studies hold limitations due to different scanning protocols
and in particular due to different LGE assessment and quantification methods [177]. As
a result of this lack of a larger body of reliable evidence, guidelines up to 2019 did not
implement CMR parameters as first-line criteria in risk stratification for SCD. The 2011
ACC/AHA guidelines for SCD risk stratification gave a class IIb recommendation for
CMR LGE imaging in selected patients with known HCM, when SCD risk stratification
was inconclusive after assessment of the conventional risk factors (a family history of
SCD, history of VF or tachycardia, prior resuscitation for SCD, unexplained syncope, and
maximal LV wall thickness (MWT) ≥30 mm) [176]. The HCM Risk SCD calculator also
only relies on MWT, family history of SCD, NSVT, unexplained syncope in addition to
left atrial diameter, maximal LVOT gradient (rest/Valsalva provoked), and age [189]. Yet,
a study by Freitas et al. showed that the amount of LGE showed higher discriminative
power in the identification of HCM at risk for SCD than the HCM Risk-SCD score and the
ACC/AHA algorithm [190]. However, the enhanced ACC/AHA risk factor strategy of
2019 then did incorporate LGE with diffuse or extensive distribution as a major SCD risk
marker in HCM. Its diffuse or extensive appearance was quantified as about 15% or more
of LV mass or estimated as being extensive or diffuse through visual assessment [188]. The
adapted strategy proved to be highly sensitive for predicting SCD events.

The ESC 2014 guidelines stated that although LGE imaging might be useful in pre-
dicting cardiovascular mortality, the data did not allow using LGE in standardized risk
prediction for SCD [177]. In a study of Hinojar et al., the extent of LGE was an independent
predictor between ESC low- and high-risk groups with nearly all of the high-risk patients
showing an LGE extent > 15%, but they did not support distinguishing intermediate from
high-risk patients [191].

In addition to LGE imaging, myocardial mapping and risk for VA have also been
studied in HCM. One study found heightened T2 times consistent with myocardial edema
to potentially increase the risk for SCD [192]. Avanesov et al. further showed an association
of ECV with SCD [193]. Global ECV predicted SCD superior to LGE size with an area
under the curve (AUC) of 0.83.

CMR studies could also report significant strain impairment in HCM [194,195] and
furthermore an association to adverse outcome. In a CMR-FT study, GLS, GCS, and GRS
were associated with a primary endpoint of all-cause mortality and a secondary combined
endpoint of hospital admission related to HF, lethal VA, or cardiovascular death. A review
of 14 studies using STE identified an association of impaired LV GLS with a composite
endpoint including VA, cardiovascular mortality, and ICD firing.

RCM is a heterogeneous disease that may overlap with HCM and can transform
into a DCM phenotype. Various underlying etiologies can lead to RCM such as storage
diseases (e.g., iron overload) and infiltrative disorders (above all amyloidosis) [18]. In this
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context, LGE pattern can provide valuable information regarding the specific subtype [196].
In amyloidosis, SCD is often caused by initial bradycardia and consequent pulseless
electrical activity, whereas VA are uncommon; thus, the benefit of ICD implantation is
questionable [18,197]. In amyloidosis, LGE is usually found subendocardially both in the
ventricle and in the atrium. The proportion of atrial involvement can help differentiate from
hypertensive heart disease and DCM [198,199]. Transmural or global LGE extension along
the whole LV circumference significantly impairs prognosis [200–202]. Further prognostic
yield can be achieved by examining T1 values and LV strain. They have been shown to
independently predict mortality in AL amyloidosis [198,201,203,204]. It is noteworthy that
the discussed studies did not specifically address SCD but overall mortality. Considering
that amyloidosis is a multiorgan disease and death may be related to other non-cardiac
causes, risk stratification should focus on SCD alone.

Although HCM and RCM represent different entities of myocardial diseases com-
pared with NIDCM, the discussed CMR parameters are similarly helpful and applicable in
risk stratification of SCD.

5. Lack of Evidence in Current Risk Stratification

Studies on NICM are mostly observational, single-center studies that are limited to a
small sample size [25,98] and lack uniform endpoints. Due to the overall small number of
events, researchers use composite endpoints. However, these are not easily interchangeable,
and some endpoints are no substitute for SCD [205].

To summarize, various reasons demand a new, precise risk score for SCD referring
exclusively to NICM patients. First, the current clinical recommendations for ICD implan-
tation focus on patients with LVEF ≤ 35%, despite a substantial proportion of patients
at risk with higher LVEF and conflicting results of previous ICD trials addressing NICM.
Second, NICM represents a heterogenous entity that substantially differs from ICM, need-
ing targeted risk scores for each specific subtype (DCM, ARVC, HCM, etc.). The fact that
most studies mix DCM with other NICM patients possibly blurs results and hampers
comparability. Finally, genetics and newer imaging modalities such as CMR or STE have
not been incorporated in risk stratification tools and guidelines so far, despite increasing
importance in clinical routine and mounting evidence supporting their use. Some genetic
mutations such as LMNA, RBM20, FLNC, and PLN are clearly linked to arrhythmic pheno-
types. CMR techniques including the presence, extent, and distribution of LGE, mapping,
and strain have also been shown to add value to risk stratification. For a summary of all
discussed risk parameters, see Figure 2.
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6. Future Perspectives

Investigations using CMR for risk stratification of SCD still lack larger prospective
randomized trials [174]. New insights are hoped to be gained from the still ongoing CMR-
Guide Trial ([206] (NCT01918215)) including patients with mild to moderate reduced EF
and the presence of LGE who are randomized to loop recorder or primary preventive
ICD implantation. All patients are on optimal medical HF therapy and followed for 4
years. The primary endpoint is defined as time to SCD or hemodynamically significant
VA (VF or VT). Results are expected for 2024. The authors hypothesize that in patients
with mild to moderate EF reduction, a CMR-guided strategy for ICD implantation based
on the presence of LGE is superior to the current standard care. Another recently started
multi-center, prospective, randomized, and controlled study, the CMR-ICD-DZHK23 trial
(NCT04558723), investigates NIDCM patients with an LVEF < 35% and myocardial fibrosis
detected by CMR. Patients are either randomized to ICD implantation or optimal medical
HF therapy including CRT-P treatment. The goal of the study is to find out whether ICD
implantation reduces overall mortality in NIDCM patients with an LVEF < 35% and with
myocardial fibrosis on CMR compared to optimal medical treatment alone.

All in all, to fill current knowledge gaps for risk stratification, future studies should
focus only on patients with NICM and assess patients irrespective of LVEF. Such trials
should evaluate on the one hand whether LGE can help to discriminate patients with ICD
indication for primary prevention according to current guidelines who nevertheless may
not benefit in terms of survival. On the other hand, studies should identify patients without
ICD indication based on current guidelines, who are yet at increased risk for SCD and who
might therefore benefit from ICD implantation. Finally, as no single risk factor to date has
the discriminant power for safely identifying patients at risk for SCD, clinical, genetic, and
imaging parameters should be considered simultaneously.
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