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a b s t r a c t

Introduction: Bladder reconstruction is a huge challenge in the field of urology. In recent years, perfusion
methods have brought promising results in the field of tissue engineering. We prepared bladder
decellularized scaffolds by improved perfusion, which may be suitable for bladder reconstruction.
Methods: We prepared decellularized scaffolds of rat bladder by perfusion of SDS (0.5% sodium dodecyl
sulfate), SDS-SDC (0.5% sodium dodecyl sulfate þ0.5% sodium deoxycholate). Histological characteristics
of bladder decellularized scaffolds were assessed by Hematoxylin and eosin, Masson, and DAPI staining.
Moreover, we also prepared a murine bladder transplantation model to evaluate the regenerative po-
tential of scaffolds.
Results: Hematoxylin and eosin, Masson, and DAPI staining indicated almost no cellular component
residues in the SDS-SDC group. Histological analysis (hematoxylin and eosin staining, Masson staining),
CD31 and F4/80 staining analysis, one month after implantation, revealed that the decellularized scaf-
folds had regenerative characteristics, and the SDS-SDC scaffold had better regenerative properties than
the SDS scaffold.
Conclusions: We successfully prepared the decellularized scaffold for the rat bladder by perfusion. Our
results showed that the SDS-SDC scaffold had better decellularization efficiency and reconstruction
ability than the SDS scaffold, which provides a new perspective on bladder reconstruction materials.
© 2023, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Various conditions including bladder exstrophy and chronic
inflammation due to injury may lead to impaired bladder function
and eventually, bladder reconstruction [1]. Currently, bladder
reconstruction remains one of the significant challenges in the field
of urology. Although enterocystoplasty has been applied for
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bladder reconstruction for decades [2], it is associated with com-
plications such as urinary tract infections and urinary incontinence
[3], which seriously affect patients' quality of life. Therefore, some
new methods are also needed to circumvent these adverse effects.

The bladder has been reported to be reconstructed using the
stomach [4] and intestinal tissues [5]. However, bladder recon-
struction using gastric and intestinal tissue is associated with un-
satisfactory complications such as stones, metabolic imbalances,
and absorption defects [6,7]. Synthetic materials such as poly-
caprolactone [8,9], polylactides [10], and poly-lactic-co-glycolic
acid co-polymers [11] have been used for bladder reconstruction.
Similarly, synthetic materials have been reported to cause stones,
graft contracture, urinary tract infections, and rejection reactions
[12]. A previous study found that the extracellular matrix (ECM) is
highly conserved across species [13] and can influence cell adhe-
sion, proliferation, and migration [14]. Meanwhile, it is also
biocompatible and degrades over time when implanted [15].
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Table 1
Rat bladder decellularization protocol.

SDS scaffold SDS-SDC scaffold

(a) 0.01 M PBS for 15 min (a) 0.01 M PBS for 15 min
(b) Deionized water for 1 h (b) Deionized water for 1 h
(c) 0.5%SDS for 4 h (c) 0.5%SDSþ0.5%SDC for 4 h
(d) 0.01 M PBS for 3 h (d) 0.01 M PBS for 3 h
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Consequently, the extracellular matrix may be a promising material
for bladder reconstruction.

Currently, there are limited studies on bladder decellularization
via perfusion. Decellularization by perfusion can shorten the dis-
tance of decellularization reagents from deep tissue, reduce the
processing time of reagents, and better preserve the three-
dimensional structure of the whole organ [16,17]. Previous re-
ports demonstrated that perfusion methods can prepare decellu-
larized scaffolds with in vivo reconstruction abilities [18,19],
suggesting that perfusion methods have broad applicability and
may also be used for bladders. Moreover, the in vivo reconstruction
effect of scaffolds is also an important indicator. Although previous
studies [20e22] attempted to construct bladder scaffolds, the
in vivo reconstructive effects of scaffolds have not been evaluated.
SDS (Sodium dodecyl sulfate) is a widely used decellularization
reagent. Nevertheless, excessive usage of SDS can cause collagen to
become denaturized, whereas SDC (Sodium deoxycholate) can
preserve the extracellular matrix structure. Meanwhile, it has been
shown that combining different detergents for decellularization
can achieve effective decellularization [23]. Therefore, we prepared
the bladder scaffold for the first time using SDS-SDC perfusion and
evaluated its effectiveness in vivo. Our results showed that bladder
scaffolds prepared by perfusion of SDS-SDC had less residual
cellular components, caused less immune rejection in mice, and
might be used for bladder reconstruction.

2. Methods

2.1. Specimen procurement

Twenty male Kunming mice and thirty-five male SD rats that
were 8 weeks old were purchased from the Laboratory Animal
Center at Chongqing Medical University. All procedures were per-
formed according to the National Institute of Health (NIH) Guide for
the Care and Use of Laboratory Animals.

2.2. Rat bladder decellularization

Rats were euthanized by CO2 inhalation followed by cervical
dislocation and blood was removed by apical perfusionwith 0.01 M
PBS. All steps of decellularization were performed on an ultraclean
table at room temperature. The rat bladder is decellularized by the
following steps (perfusion rate of 4 ml/min for all steps) (Table 1):
(a) Two syringe needles (22G, with the tips removed in advance)
were inserted into each of the rights and left common iliac arteries
and tied with 5.0 surgical thread (Fig. 1). (b) Infusion of deionized
water. (c) Infusion of 0.5% SDS (Solarbio, China) or 0.5% SDSþ0.5%
SDC (Solarbio, China). (d) Infusion of 0.01 M PBS. Finally, the
bladder matrix was disinfected with 70% ethanol and washed with
0.01 M PBS for 72 h at 4 �C. The solution was refreshed every day.
Lastly, the decellularized bladders were kept at 4 �C in PBS with 100
U/ml of penicillin and 100 U/ml of streptomycin.

2.3. Hematoxylin and Eosin(H&E) and Masson staining

After rats and Kunmingmice were euthanized by CO2 inhalation
followed by cervical dislocation, fresh, decellularized and trans-
planted tissue samples were removed and fixed in 4% para-
formaldehyde in 0.1 M PBS overnight and dehydrated in 30%
sucrose-PBS until the tissue sank to the bottom. Bladder tissue was
then frozen and sliced (10 mm thickness). H&E staining and Masson
staining were performed according to the reagent instructions
(Solarbio, China). After Masson staining, we randomly selected five
500
fields (200X) of vision in each section and the muscle of areas were
analyzed by Image-pro Plus 6.0.

2.4. DNA analysis

The effectiveness of nuclei removal in the decellularized bladder
matrix compared against native samples was evaluated by 40-6-
diamidino-2-phenylindole (DAPI) staining (Solarbio, China). We
randomly selected five fields (100X) of vision in each section and
the number of nuclei counted by Image-pro Plus 6.0.

The native bladder (n ¼ 5) and decellularized tissues (each
group¼ 5) were dried on filter paper and weighed [24,25]. Residual
DNAwas also evaluated by tissue DNA extraction kit (Omega, USA).
DNA concentration was determined using a spectrophotometer at
260 nm. DNA content was expressed as a ratio between the weight
of DNA per tissue wet weight (ng/mg).

2.5. Immunofluorescence staining and analysis

Fresh and transplanted bladder tissue sections were washed
with 0.01 M PBS and blocked with 4% horse serum for 1 h. Sections
were then incubated overnight at 4 �C with primary antibodies
specific for CD31 (AiFang biological, China) or F4/80 (AiFang bio-
logical, China). Next, sections were incubated for 1 h at room
temperature with fluorescein Cy3-labeled anti-rabbit IgG. Nuclei
were labeled with DAPI (1 mg/ml) for 5 min at room temperature.
Sections were mounted in glycerol and visualized by a fluorescence
microscope (Leica, Germany). After CD31 staining, the number of
vessels was counted [26]. After F4/80 staining, we calculated the
area of the positive region using ImageJ. Specimens were visualized
using a Leica DM3000 fluorescence microscope. Representative
imageswere acquired under 400x imaging by using LAS X software.
We randomly selected five fields of view to calculate the number of
vessels and F4/80-positive areas in each field of view.

2.6. In vivo implantation of decellularized bladder

Rat bladder decellularized tissue was transplanted into the
bladders of mice and removed one month later. The detailed steps
of transplantation are as follows. First, micewere anesthetized with
sodium pentobarbital and placed in the supine position on the
operation board. Second, the hair was shaved and disinfected with
iodophor at a distance of 1 cm above the urethral orifice. Then, the
abdomen was opened along the midline with a longitudinal
opening of 1 cm to expose the bladder (Fig. 2a). Finally, the bladder
tip of the mice was removed (Fig. 2b), and the decellularized
bladder tissue was sutured to the remaining bladder with an
absorbable suture (6.0) (Fig. 2c). Meanwhile, the control group was
sutured immediately after the abdominal incision.

2.7. Statistical analysis

Histograms were created by using GraphPad Prism 8 software
(San Diego, CA, USA). Results of DAPI staining, Masson staining,



Fig. 1. Schematic diagram of a rat decellularized bladder prepared by perfusion.
The left and right peristalic pumps each perfuse the same reagent at the same rate.

Fig. 2. Murine bladder transplantation model.
(a) Expose the mice's bladder. (b) Remove the bladder's top. (c) Integrate the bladder matrix into the bladder wall.
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CD31 staining, and F4/80-positive area content (Control, SDS, SDS-
SDC) are presented as the mean ± S.E.M. One-way ANOVA followed
with Tukey's multiple comparisons test was used to analyze the
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differences between each group. A P value of <0.05 was considered
significant and is indicated in the graphs (*p < 0.05; **p < 0.01;
***p < 0.001).



Fig. 3. Histological characteristics of native (Control) and decellularized rat bladders with SDS and SDS-SDC.
Sections were stained with H&E (a), Masson (b), and DAPI (c). (d) Statistical results of the number of nuclei in different group. 0.5% sodium dodecyl sulfate group (SDS), 0.5%
SDSþ0.5% sodium deoxycholate group (SDS-SDC). (n ¼ 5) (*p < 0.05; **p < 0.01; ***p < 0.001).

Fig. 4. Variation of the SDS group, the SDS-SDC group, and the control group one month after in vivo.
Sections were used for H&E (a) and Masson staining (b). (c) Statistical results of the proportion of muscle in different group. The black arrow denotes uroepithelium. (n ¼ 5)
(**p < 0.01; ns, no significant).
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3. Results

3.1. SDS-SDC treatment had a higher decellularization efficiency
than SDS treatment

We stained the remaining cellular parts with H&E, Masson, and
DAPI to evaluate the decellularization efficiency of SDS and SDS-
SDC. H&E staining showed no cellular remnants in decellularized
bladder tissue compared to natural bladder tissue (Fig. 3a). Masson
staining also showed no muscle fibers in either the SDS group or
the SDS-SDC group compared to natural bladder tissue (Fig. 3b).
DAPI staining showed that the nuclei were removed mainly from
the SDS group and the SDS-SDC group compared with the control
group, while more nuclei remained in the SDS group (Fig. 3c and d).
At the same time, DNA quantification also demonstrated that the
SDS-SDC group had the least amount of residual DNA
(Supplementary Fig. 2a).
3.2. SDS and SDS-SDC scaffolds could promote bladder regeneration

Muscle tissue plays a vital role in the expansion and contraction
of the bladder. Masson staining can distinguish collagen from
muscle tissue, where blue regions show collagen extracellular
matrix and red regions show muscle tissue. We used Masson
staining to assess muscle regeneration in decellularized bladder
tissue after transplantation.

We transplanted decellularized bladder tissue into the bladders
of mice and removed them for examination after one month. By
H&E staining, we found regenerated uroepithelium in the SDS
group and SDS-SDC group (Fig. 4a). Furthermore, we also found
regenerative muscle fibers in the SDS group and the SDS-SDC group
(Fig. 4b and c).
3.3. The SDS-SDC scaffold could better promote vascular formation

Vessels transport nutrients and excrete waste, and the number
of vessels is essential for regenerating decellularized tissues. We
marked the blood vessels with CD31 so we could find the blood
vessels in the bladder tissue that was healing.

One month after surgery, we found that vessels appeared in the
control, SDS and SDS-SDC groups (Fig. 5). CD31 staining also proved
Fig. 5. Morphology of each grou
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that vessels appeared in all groups (Fig. 6a). Moreover, the number
of vessels regenerated in the SDS-SDC group was significantly
greater than in the SDS group (*p < 0.05) (Fig. 6c).
3.4. The SDS-SDC scaffold caused a reduced inflammatory response

After biomaterial implantation, the host inflammatory response
is a normal response to injury and the presence of foreign objects.
Macrophages are one of the main types of cells that control the
immune and inflammatory processes of the host that are caused by
biomaterials.

By F4/80 staining, we found a large number of macrophages in
the SDS group compared to the control group and relatively fewer
in the SDS-SDC group than in the SDS group (*p < 0.05) (Fig. 6b and
d).
4. Discussion

In this article, we successfully prepared for the first time a
decellularized scaffold of the rat bladder by vascular perfusion of
SDS-SDC, transplanted it into mice and promoted bladder tissue
regeneration. The preparation of a bladder acellular matrix by
perfusion decellularization offers a promising alternate approach
for bladder tissue engineering and functional organ replacement.
The biomaterial used for bladder reconstruction should have
similar structure and properties to the natural bladder. It should
also be non-toxic and have good biocompatibility. Previous studies
have shown that the composition and expression patterns of the
ECM are specific to a particular anatomical location to direct or
support the attachment and function of site-appropriate cell
[27,28]. The natural scaffold, extracellular matrix, which we used to
remove cellular components and nuclei, fits exactly the above
requirements.

The choice of perfusion rate, time, and concentration of reagents
is critical for perfusion preparation of decellularized scaffolds. In
this article, we refer to previous studies to determine the concen-
tration of SDS [29], SDC [22]. Our perfusion rate is referenced and
adapted from previous study [20]. In our preliminary experiment,
we found that perfusion was performed through the abdominal
aorta, where one side could be inaccessible to the perfusion re-
agents (Supplementary Fig. 1a). Meanwhile, more nuclear
p one month after surgery.



Fig. 6. One month after surgery, staining with CD31 and F4/80 of regrown bladder domes supported by different decellularized bladder matrices and the control group.
(a) CD31 staining. (b) F4/80 staining. (c) Analysis of CD31þ vessels present in the control and different scaffold groups. (d) Analysis of the F4/80-positive area in different groups.
V denotes vessels. (n ¼ 5) (*p < 0.05; **p < 0.01; ***p < 0.001).
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components of cells remained by 4 h SDS-SDC perfusion through
the abdominal aorta (Supplementary Fig. 2b). The vascular distri-
bution is not uniform on both sides of the bladder, which may lead
to uneven perfusion pressure, which in turn leads to poor entry of
decellularized reagents from one side. In contrast, reagents
perfused through the common iliac artery closest to the bladder
side were more likely to enter the bladder (Supplementary Fig. 1a).
Therefore, we chose to perform simultaneous perfusion through
the common iliac arteries bilaterally. Moreover, we also found that
0.5% SDS destroyed most of the bladder structures after 6 h of
perfusion (Supplementary Fig. 1b). Consequently, we use 4 h as the
treatment time. After perfusion of 4 h SDS, the structure of the
bladder was preserved, but a lot of nuclei remained. Conversely, our
results showed that after 4 h of SDS-SDC perfusion, the structure of
the bladder was preserved and almost no nuclei remained
(Supplementary Fig. 2c), demonstrating that the 4 h treatment time
was appropriate.

We found that rat bladder decellularized scaffolds were better
prepared by using SDS-SDC. SDS-SDC scaffold have better decel-
lularization efficiency, milder levels of inflammation and superior
regenerative capacity. SDS was previously used to prepare decel-
lularized scaffolds for the bladder [30]. However, excessive use of
SDS leads to denaturation of collagen [31]. SDC can preserve the
natural collagen fibril structure [32], but its decellularization effi-
ciency is insufficient [22]. Therefore, we used SDS combined with
SDC to obtain bladder decellularized scaffolds, reducing the pro-
cessing time of SDS and obtaining better results.
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Currently, synthetic materials used for bladder reconstruction
suffer from graft contracture, stone formation, and other problems.
To evaluate the reconstruction effect of the two decellularized
scaffolds, we prepared a bladder reconstruction (or enlargement
model) by removing the mice's apical part of the bladder. In mul-
tiple studies using different materials for bladder reconstruction,
the recovery of the muscular layer was difficult [33,34]. In our
experimental results, there was some muscle and uroepithelial
regeneration in both scaffolds. However, the muscle tissue content
regenerated by both scaffolds was much less than that of the con-
trol group. These results demonstrate that both SDS and SDS-SDC
scaffolds can promote bladder tissue regeneration. This offers a
new hope for bladder reconstruction. However, further efforts are
needed to obtain better regeneration results.

Adequate blood supply is a crucial factor in tissue regeneration.
It has been reported that tissues thicker than 0.8 mm require blood
vessels to provide oxygen and nutrients to all cells [35]. Our results
found the presence of neovascularization in both the SDS-SDC and
SDS groups, but the number of vessels in the SDS-SDC was more
significant. Additionally, we discovered fewer macrophages in the
SDS-SDC group than in the SDS group. This may be because the
residual cellular component within the SDS-SDC group was lower
than the SDS group, causing less immune rejection and more
favorable tissue regeneration. However, the specific mechanisms of
tissue regeneration are complex, involving the action of many cells
and cytokines and a series of steps that require more research and
investigation.
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Our study also has some limitations. We found that SDS-SDC
was superior to SDS for the same time of decellularization, there
was still a difference in the revascularization capacity between the
SDS-SDC group and the control group, and further improvement is
needed to improve the revascularization capacity.
5. Conclusion

We successfully prepared decellularized scaffolds of rat bladder
by the perfusion method. Compared with the natural bladder, both
scaffolds retained the structure of the bladder. The in vivo trans-
plantation results also showed that both scaffolds could promote
bladder tissue regeneration, but the SDS-SDC group showed better
results. This study provides a new idea for bladder reconstruction
materials.
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