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GABAergic interneurons provide the main source of inhibition in the neocortex and are
important in regulating neocortical network activity. In the presence 4-aminopyridine
(4-AP), CNQX, and D-APV, large amplitude GABAA-receptor mediated depolarizing
responses were observed in the neocortex. GABAergic networks are comprised of
several types of interneurons, each with its own protein expression pattern, firing
properties, and inhibitory role in network activity. Voltage-gated ion channels, especially
A-type K+ channels, differentially regulate passive membrane properties, action potential
(AP) waveform, and repetitive firing properties in interneurons depending on their
composition and localization. HCN channels are known modulators of pyramidal cell
intrinsic excitability and excitatory network activity. Little information is available regarding
how HCN channels functionally modulate excitability of individual interneurons and
inhibitory networks. In this study, we examined the effect of 4-AP on intrinsic excitability
of fast-spiking basket cells (FS-BCs) and Martinotti cells (MCs). 4-AP increased the
duration of APs in both FS-BCs and MCs. The repetitive firing properties of MCs were
differentially affected compared to FS-BCs. We also examined the effect of Ih inhibition
on synchronous GABAergic depolarizations and synaptic integration of depolarizing
IPSPs. ZD 7288 enhanced the amplitude and area of evoked GABAergic responses
in both cell types. Similarly, the frequency and area of spontaneous GABAergic
depolarizations in both FS-BCs and MCs were increased in presence of ZD 7288.
Synaptic integration of IPSPs in MCs was significantly enhanced, but remained unaltered
in FS-BCs. These results indicate that 4-AP differentially alters the firing properties
of interneurons, suggesting MCs and FS-BCs may have unique roles in GABAergic
network synchronization. Enhancement of GABAergic network synchronization by ZD
7288 suggests that HCN channels attenuate inhibitory network activity.

Keywords: HCN channels, A-type K+ channels, 4-AP, synchronization, Ih, neocortex, GABAergic interneurons,
Martinotti cells, basket cells
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Introduction

GABAergic interneurons are the main source of inhibition in
the neocortex and regulate the output of neocortical networks.
GABA released from interneurons acts on a variety of recep-
tors located both pre- and post-synaptically (Martin and Olsen,
2000; Farrant and Kaila, 2007). Activation of GABAA receptors
produces gating of Cl− permeable channels resulting in phasic
inhibition via membrane hyperpolarization (Avoli and de Curtis,
2011). During the early postnatal period, GABAA receptor medi-
ated responses can be depolarizing due to a lack of KCC2, a
K+-Cl− co-transporter that extrudes Cl− (Ben-Ari et al., 1989;
Rivera et al., 1999). These depolarizing responses are involved in
network synchronization during development (Khazipov et al.,
1997; Allene et al., 2008). In response to iontophoretic appli-
cation of GABA, depolarizing GABAA-mediated responses
can also be seen in mature animals (Andersen et al., 1980;
Alger and Nicoll, 1982; Weiss and Hablitz, 1984). Application
of the A-type K+ channel blocker 4-aminopyridine (4-AP)
results in generation of a GABAergic, long-lasting depolariza-
tion (termed giant depolarizing potentials; Avoli and Perreault,
1987; Avoli et al., 1988). These responses persist when excitatory
glutamatergic transmission is blocked with CNQX and D-APV
(Aram et al., 1991; Michelson and Wong, 1991; Avoli et al., 1994;
Benardo, 1997). These depolarizing GABA responses, which
propagate across the neocortex (DeFazio and Hablitz, 2005), are
assumed to result from synchronous firing of inhibitory interneu-
rons. The present study examines activity in specific classes of
neocortical interneurons during such depolarizing events.

GABAergic interneurons are involved in processes such
as modulation of synaptic integration (Pouille and Scanziani,
2001; Klausberger and Somogyi, 2008), control of spike timing
(Wehr and Zador, 2003), and synchronization of network activ-
ity (McBain and Fisahn, 2001). Subpopulations of GABAergic
interneurons can be identified based on cell morphology,
intrinsic excitability, and inherent protein expression patterns.
Each GABAergic interneuron subtype has a unique synap-
tic target. The largest class of GABAergic interneurons in the
neocortex are the parvalbumin (PV)-expressing cells, which
constitute roughly 40% of the interneurons in the neocor-
tex (Rudy et al., 2011). A subclass of PV-expressing cells, the
fast-spiking basket cells (FS-BCs), have a multipolar morphol-
ogy, vary in size, and target the proximal dendrite and soma
of pyramidal cells (Kawaguchi and Kubota, 1997). These cells
exhibit low input resistance, high frequency repetitive firing
and no accommodation (Kawaguchi and Kubota, 1997). They
have been shown to exhibit powerful feed-forward inhibi-
tion (Pouille and Scanziani, 2001) and initiate oscillatory activ-
ity (Traub et al., 2005). Importantly, FS-BCs also contribute
to the control of the excitation/inhibition balance necessary
to maintain the functional integrity of the cortical network
(Haider and McCormick, 2009), induce gamma rhythm activity
(Cardin et al., 2009), and entrain excitatory neurons (Fries et al.,
2001; Kawaguchi, 2001; Hasenstaub et al., 2005). In contrast to
FS-BCs, Martinotti cells (MCs) express the peptide somatostatin
(SOM) and synaptically target the apical and basal dendrites
of pyramidal neurons. MCs display vast arborized axons that

densely innervate layer I across multiple columns. These cells
demonstrate burst firing in response to depolarizing steps and
show accommodation (Kawaguchi and Kubota, 1997). Excitatory
inputs from pyramidal cells onto MCs are strongly facili-
tating and drive feedback inhibition (Silberberg and Markram,
2007).

4-aminopyridine sensitive, A-type K+ channels encompass
a subset of voltage-gated K+ channels comprised of the Kv1,
Kv3, and Kv4 subunit subfamilies (Jerng et al., 2004). Differential
expression of these channels gives rise to the different character-
istic repetitive firing patterns among interneurons (Martina et al.,
1998; Serodio and Rudy, 1998; Wang et al., 1998; Chow et al.,
1999; Erisir et al., 1999; Lau et al., 2000; Lien et al., 2002). In
situ hybridization and immunofluorescent labeling demonstrate
Kv3.1 and Kv3.2 transcripts and proteins co-localize with PV-
positive interneurons (Weiser et al., 1994; Sekirnjak et al., 1997;
Chow et al., 1999). Furthermore, pharmacological inhibition and
genetic disruption of presynaptic Kv1 and somatodendritic
Kv3 channels impairs fast-spiking firing patterns in interneu-
rons (Martina et al., 1998; Erisir et al., 1999; Lau et al., 2000;
Goldberg et al., 2008). Alternatively, SOM positive interneurons
have been shown to contain a significant higher density of soma-
todendritic Kv4 channels and the associated K+ current, con-
tributing to their characteristic firing pattern (Serodio and Rudy,
1998; Lien et al., 2002; Lai and Jan, 2006; Bourdeau et al., 2007).
Kv3.2 channels are also highly expressed in non-fast-spiking SOM
positive interneurons in the neocortex, where they may play a
different role in repetitive firing (Weiser et al., 1994; Chow et al.,
1999). Consistent with their role in regulating intrinsic excitabil-
ity, the genetic loss or pharmacological blockade of A-type K+
channels is epileptogenic (Smart et al., 1998; Avoli et al., 2001;
Bagetta et al., 2004; Monaghan et al., 2008). It remains unclear
how the inhibition of A-type K+ channels induces interneuron
synchronization.

Cortical network excitability can be modulated by
hyperpolarization-activated cyclic nucleotide-gated (HCN)
channels, and their associated Ih current. In excitatory pyra-
midal cells, the Ih current contributes to the cell’s intrinsic
excitability by depolarizing the membrane, increasing the
membrane conductance, and decreasing dendritic excitability
(Magee, 1998; Williams and Stuart, 2000; Berger et al., 2001;
Robinson and Siegelbaum, 2003). During synaptic activation, Ih
normalizes the decay time of distal excitatory postsynaptic poten-
tials (EPSPs; Williams and Stuart, 2000) and decreases temporal
summation (Berger et al., 2001). It also functions to constrain
excitatory network activity (Albertson et al., 2013). Furthermore,
loss of HCN channels has been reported in experimental epilepsy
models (Jung et al., 2007; Powell et al., 2008; Shin et al., 2008;
Albertson et al., 2011). Neocortical GABAergic interneurons do
not typically stain with HCN channel antibodies (Lorincz et al.,
2002), but do display varying amounts of Ih. FS-BCs demon-
strate small or absent “sag” responses upon hyperpolarization
(Okaty et al., 2009; Albertson et al., 2013). In contrast, MCs
display a prominent “sag” response to hyperpolarizing current
pulses and a “rebound” response to repolarization, charac-
teristic of Ih (Lupica et al., 2001; Wang et al., 2004; Ma et al.,
2006). The role of HCN channels in modulating GABAergic
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interneuron excitability and inhibitory network activity is not
well established.

In the present study, we examined the influence of A-type
K+ channels on AP and repetitive firing properties of L2/3
FS-BCs and MCs in the 4-AP model of interneuron network
synchronization. We further investigated the role of HCN chan-
nel inhibition in modulating 4-AP induced GABAergic network
synchronization. We found that 4-AP differentially alters the
repetitive firing properties of FS-BCs and MCs. We also found
that Ih inhibition enhances the magnitude of evoked and sponta-
neous depolarizing GABAergic potentials as well as the frequency
of spontaneous depolarizing GABAergic potentials in L2/3 neo-
cortical interneurons. These results indicate that interneuron
excitability is both up- and down-regulated by voltage-gated ion
channels.

Materials and Methods

Ethics Statement
All experiments were performed in accordance with the
National Institutes of Health Guide for the Care and Use of
Laboratory Animals using protocols approved by the University
of Alabama at Birmingham Institutional Animal Care and Use
Committee.

Slice Preparation
To prepare acute neocortical slices, vesicular GABA transporter
(VGAT)-Venus-expressing Wistar rats (Uematsu et al., 2008)
from PND 20 to 36 were anesthetized with isoflurane and rapidly
decapitated. Brains were removed and immediately placed in
ice-cold oxygenated (95% O2/5% CO2, pH 7.4) cutting solu-
tion consisting of (in mM): 135 N-Methyl-D-glucamine, 1.5 KCl,
23 NaHCO3, 0.4 ascorbic acid, 25 D-glucose, 1.5 KH2PO4, 1.25
CaCl2, and 8.75 MgCl2 (Tanaka et al., 2008). Using a Microm
HM 650 vibratome (Microm, Walldorf, Germany), coronal brain
slices (300 μm thick) of somatosensory cortex were made. After
slicing was completed, neocortical slices were placed in a holding
chamber in a water bath at 37◦C for 45–60 min in saline consist-
ing of (inmM) 125NaCl, 3.5 KCl, 10 D-glucose, 26 NaHCO3, 1.25
NaH2PO4, 2.5 CaCl2, 1.3 MgCl2. Slices were subsequently kept at
room temperature until recording.

Whole Cell Recording
Slices were visualized using a Zeiss AxioExaminer D1 (Carl
Zeiss Inc., Thornwood, NY, USA) microscope, equipped with
Dodt contrast optics, a 40X-water immersion lens and infrared
illumination. Individual slices were held in a submerged record-
ing chamber continuously perfused with oxygenated saline
(3 ml/min at 32◦C). Whole-cell access was obtained using glass
patch electrodes with an open tip resistance of 3–5 M�. Pipettes
were filled with an intracellular solution consisting of (in mM):
125 K-gluconate, 10 KCl, 10 HEPES, 10 creatine phosphate, 2
Mg-ATP, 0.2 Na-GTP, 0.5 EGTA, with an adjusted pH of 7.3
and osmolarity of 290 mOsm. In most experiments, biocytin
(0.5%; Sigma, St. Louis, MO, USA) was added to the intracellular
solution for post hocmorphological analysis.

Data Acquisition and Analysis
Whole-cell recordings were obtained using an ELC-03XS
npi bridge balance amplifier (npi Electronic GmbH, Tamm,
Germany) with Clampex 8.2 software via a Digidata 1322A inter-
face (Molecular Devices, Union City, CA, USA), filtered at 2 kHz
and digitized at 10 kHz. Analysis of all recordings was performed
using Clampfit 9.0 software (Molecular Devices). Interneurons
were physiologically identified by the response to a series of
800 ms hyperpolarizing and depolarizing current pulses ranging
from -200 – 350 pA. Resting membrane potential (RMP) was
monitored and maintained throughout the recording process.
Input resistance was measured in current clamp with 800 ms,
25 pA hyperpolarizing current steps. Initial and final firing fre-
quencies were calculated from the time interval between the first
and last two APs, respectively, in an 800 ms depolarizing cur-
rent pulse. Accommodation ratio was defined as the initial firing
frequency/final firing frequency in response to a depolarizing cur-
rent pulse. The amplitude of the after-hyperpolariztion (AHP)
was measured form the AP threshold the the peak of the AHP.
The slow after-depolarization (sADP) following an 800 ms cur-
rent pulse was measured from the RMP before the current pulse
to the peak of the sADP. Synaptic responses were evoked using
a bipolar nichrome electrode positioned 100–200 μm adjacent to
the recording electrode. Evoked depolarizing GABAergic poten-
tials were triggered using a single 50–320 μA current pulse of
100 μs duration. A train of 5 stimuli at 25 Hz was used to
study synaptic integration. Amplitude of evoked depolarizing
GABAergic potentials was measured from RMP at the time of
stimulation to the peak of depolarization. Evoked and sponta-
neous responses area was measured from the time of stimula-
tion to the point at which the membrane potential returned to
baseline.

Drugs and Drug Application
Drugs were obtained from the following sources: 4-AP,
Sigma, St. Louis, MO, USA; 6-cyano-7-nitroquinoxaline-2,3-
dione (CNQX), Abcam, Cambridge, MA, USA; D-(-)-2-Amino-
5-phosphonopentanoic acid (D-APV) and 4-Ethylphenylamino-
1,2-dimethyl-6-methylaminopyrimidinium chloride (ZD 7288;
Tocris, Ellisville, MO, USA).

To induce synchronous GABA-mediated events, slices were
incubated in 100 μM 4-AP for at least 1 h prior to recording.
After control recordings were obtained in the presence of 10 μM
CNQX and 20μMD-APV, 20μMZD 7288 was applied to inhibit
HCN channels. All drugs were bath applied and each neuron
served as its own control.

Statistics
All statistical analysis was performed using GraphPad Prism
4 (LaJolla, CA, USA). Data are expressed as mean ± SEM.
Sample size (n) is the number of cells used for each exper-
iment, with a maximum of three cells per animal. Statistical
comparisons of responses before and during drug application
was performed using a one- or two-tailed Student’s t-test, for
which p < 0.05 was considered significant. For analysis of IPSP
summation before and after Ih inhibition, a two-way ANOVA
was used.
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Results

Identification of FS-BC and MCs in Rat
Neocortex
Neocortical GABAergic interneurons represent approximately
25% or less of the total cortical neuron population (Fairen et al.,
1984; Peters and Jones, 1984) and are highly heterogeneous
(Ascoli et al., 2008). FS-BCs and MCs are two major classes of
inhibitory GABAergic interneurons in rat neocortex (Rudy et al.,
2011). FS-BCs innervate somatic and perisomatic regions of
pyramidal cells, forming dense and unspecific connections
(Packer and Yuste, 2011). In contrast, MCs target apical, basal,
and distal tuft dendrites of pyramidal cells and contact somas of
L1 neurons (Wang et al., 2004; McGarry et al., 2010). In order to
facilitate visual identification of specific cell types in L2/3, record-
ings were obtained in transgenic rats co-expressing the yellow
fluorescent protein, Venus, with the vesicular GABA transporter
(Uematsu et al., 2008).

The laminar distribution of Venus positive cells is shown
in Figure 1A. Recordings were obtained from fluorescent cells
in L2/3. It was possible to morphologically discriminate FS-
BCs and MCs prior to recording. FS-BSs were identified on
basis of depth below the pial surface and presence of a round
soma. Neurons with oval shaped somas and bi-tufted appear-
ance were classified as MCs. Biocytin was included in the patch
electrode to allow for post hoc confirmation of cell identifica-
tion. Examples of a Venus-positive GABAergic FS-BC and a MC
labeled with biocytin are shown in Figure 1B. Cells were further
identified by their firing properties and response to strong hyper-
polarizing current pulses. Typical MC responses are shown in
Figure 1C. In the present series, most MCs showed initial burst
responses followed by accommodation. A marked “sag” upon
hyperpolarization, indicative of Ih activation, was seen upon
membrane hyperpolarization. In contrast, FS-BCs (Figure 1D)
displayed high frequency, non-accommodating firing and lacked
significant sag responses. The combination of anatomical and

FIGURE 1 | Identification of neocortical GABAergic interneurons in
VGAT-Venus transgenic rats. (A) Confocal image of Venus-expressing
interneurons in upper layers of rat neocortex. Morphologically distinct
subtypes of interneurons can be identified. (B) Confocal image of
Venus-expressing interneurons (yellow) and biocytin labeled interneurons
labeled (red). Neurons were labeled with biocytin during whole cell recording.
Distinct morphological differences were observed. Leftmost neuron had

characteristics of a Martinotti cell (MC) whereas rightmost neuron was
classified as a fast spiking basket cell (FS-BC). (C) Response of MC to
depolarizing and hyperpolarizing current pulses demonstrate typical repetitive
firing properties and prominent sag responses. (D) Representative response
of FS-BC to depolarizing and hyperpolarizing current pulses. High frequency
repetitive firing, prominent after hyperpolarizations and lack of a pronounced
sag response were typical of fast spiking basket cells.
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electrophysiological characteristics allowed for clear identifica-
tion of these two classes of cells and allowed us to address the
question of differential modulation by 4-AP and inhibitors of Ih
channels.

Alterations in the Intrinsic Excitability of
GABAergic Interneurons Induced by 4-AP
Fast-Spiking Basket Cells
Previous studies of L1 fast-spiking interneurons have shown
that low concentrations (50 μM) of 4-AP broadened APs and
induced burst firing (Zhou and Hablitz, 1996). In the present
study, under control conditions, L2/3 FS-BCs had an average
RMP of −68.7 ± 0.7 mV and input resistance of 97.3 ± 18.1 M�
(n = 10). APs were evoked by somatic injections of depolariz-
ing current pulses before and after bath application of 100 μM
4-AP, 10 μM CNQX, and 20 μM D-APV. Under control con-
ditions, suprathreshold current pulses elicited repetitive firing
in L2/3 FS-BCs (Figure 2A, black). APs under control and 4-
AP conditions are shown superimposed in Figure 2B. APs had
a half-width of 0.42 ± 0.03 ms (n = 10) and were followed by a
characteristic fast afterhyperpolarization (fAHP) with an ampli-
tude of 14.8 ± 1.4 mV (n = 10; Figures 2A,D). In the presence of
4-AP, the shape of the AP was distinctly different with a signifi-
cant increase in the AP half-width (0.9 ± 0.04 ms; t-test p < 0.05,
n = 10). The fAHP was blocked and a slower AHP with a sig-
nificantly lower amplitude was observed (5.5 ± 0.1 mV, t-test
p < 0.05, n = 10). The effects of 4-AP on AP duration and AHP
amplitude are summarized in Figures 2C,D, respectively.

A-type K+ channels have been implicated in the repolariza-
tion of APs and, therefore, repetitive firing properties of certain
subclasses of interneurons (Massengill et al., 1997; Erisir et al.,
1999; Lau et al., 2000; Rudy and McBain, 2001). These alterations
in repetitive firing properties can lead to changes in network

activity (Lau et al., 2000; Harvey et al., 2012). To determine if
4-AP induced similar alterations in repetitive firing properties
in neocortical FS-BCs and possibly inhibitory network activ-
ity, suprathreshold depolarizing current pulses were applied for
800 ms to measure repetitive firing properties. L2/3 FS-BCs
demonstrated sustained firing throughout the current pulse with
no significant accommodation (Figures 3A,B). Upon application
of 4-AP, burst firing was induced at the onset of the depo-
larizing current pulse (Figures 3A,B). As shown in Figure 3C,
the initial firing frequency, calculated from the first interspike
interval, significantly increased in the presence of 4-AP (con-
trol: 81.7 ± 12.2 Hz, 4-AP: 172 ± 16.4; t-test p < 0.05, n = 10).
A ratio of the first and last interspike intervals was determined
before and after wash-in of 4-AP. As shown in Figure 3D, this
ratio was near 1 under control conditions indicating little or no
accommodation. The ratio was significantly decreased showing
firing frequency was significantly decreased in the presence of 4-
AP, indicating increased accommodation. These results suggest
that inhibition of A-type K+ channels with 4-AP significantly
alters the AP and repetitive firing properties of neocortical L2/3
FS-BCs.

Martinotti Cells
Martinotti cells express mRNA for all three major subclasses
of A-type K+ channels (Wang et al., 2004), but it is unclear
how these channels contribute to the intrinsic and repetitive
firing properties of these critical feed-back inhibitory cells. To
address this, recordings were made from L2/3 Venus-positive
MCs. It is well established that MCs are a heterogeneous sub-
class of interneurons and can be further classified based on their
repetitive firing properties (Wang et al., 2004; Xu et al., 2006;
McGarry et al., 2010). In this series of experiments, two electro-
physiologically distinct classes ofMCswere encountered: classical

FIGURE 2 | Effects of 4-AP on action potential (AP) properties of
FS-BCs. (A) Representative firing from a L2/3 FS-BC during a 400 pA
depolarizing current pulse before (black) and after (red) bath application of
100 uM 4-AP. 4-AP induced spike widening and decreases in fAHP
amplitude. (B) Superimposition of APs from A before and after 4-AP

demonstrates significantly increased AP duration and decreased AHP
amplitude. (C) Summary plot showing that bath application of 4-AP
significantly increases AP half width of FS-BCs (n = 10). (D) Summary
plot illustrating that 4-AP significantly decreases AHP amplitudes in FS-BCs
(n = 10). ∗p < 0.05.

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 March 2015 | Volume 9 | Article 89

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Williams and Hablitz Ih and GABAergic network synchronization

FIGURE 3 | 4-aminopyridine induced changes in the repetitive firing
properties of FS-BCs. (A) Representative response of a FS-BC to a 400 pA
depolarizing current pulses before (black) and after (red) bath application of
4-AP. (B) Expanded view of the initial firing at the onset of responses shown in
A. 4-AP induced an increase in the initial firing frequency. (C) Summary plot
illustrating that bath application of 4-AP significantly increases the initial firing
frequency at the onset of a depolarizing current (n = 10). (D) Summary plot
showing that the accommodation ratio, calculated by dividing the first
interspike interval by the last interspike interval, was significantly increased
after bath application of 4-AP, indicating that accommodation was increased
(n = 10). ∗p < 0.05.

FIGURE 4 | Action potential (AP) properties of b-AC Martinotti cells
(b-AC MCs) are modified in the presence of 4-AP. (A) Representative AP
firing of a L2/3 b-MC during a 475 pA depolarizing current pulse before (black)
and after (red) bath application of 4-AP. (B) Superimposition of APs from A
before and after bath application of 4-AP showing spike widening and burst
firing in presence of 4-AP. (C) Summary plot demonstrates that bath
application of 4-AP significantly increases AP duration in MCs (n = 10).
(D) Summary graph illustrating that the AHP after each AP in b-AC MCs was
significantly reduced by bath application of 4-AP (n = 10). ∗p < 0.05.

accommodating (c-AC; 3/13) and burst accommodating (b-AC)
MCs (10/13 cells; Wang et al., 2004). Only b-ACMCs were exam-
ined and analyzed for the following set of experiments.

Under control conditions, b-AC MCs fired a burst of APs
at onset of a depolarizing current pulse followed by a slowly
accommodating train of single APs (Figure 5A, black). Following
application of 4-AP, the same current pulse elicited repetitive
burst firing (Figure 5A, red). Initial burst responses are shown
at higher time resolution in Figure 5B. In the presence of 4-
AP, single APs were transformed into bursts in a subset of cells;
small, prolonged APs were observed following the initial AP
in these burst (Figures 4A,B). AP half width was significantly
increased by 4-AP (control: 0.8 ± 0.1 ms, 4-AP: 1.3 ± 0.2; t-
test p < 0.05, n = 10; Figure 4C). The amplitude of the AHP
following individual APs was also significantly decreased in the
presence of 4-AP (control: 8.1 ± 0.7 mV, 4-AP: 6.2 ± 0.8 mV;
t-test p > 0.05, n = 10; Figure 4D). In contrast to FS-BCs, the
initial firing frequency at the onset of the depolarizing current
injection did not change following 4-AP application (control:
130.4 ± 14.1 Hz, 4-AP: 112.3 ± 18.7 Hz; t-test p > 0.05, n = 10;
Figure 5C). However, firing following the initial burst displayed
increased accommodation with cells firing at a lower frequency
(control: 27.7 ± 1.7, 4-AP: 18. 8 ± 1.6 Hz; t-test p < 0.05, n = 10;
Figure 5D). In addition to the above described changes, a slow
afterdepolarization (sADP) was observed in presence of 4-AP
(control: 1.2 ± 0.2 mV, 4-AP: 7.6 ± 1.9 mV; t-test p < 0.05,
n = 9; Figure 6). These results suggest that alterations in the fir-
ing patterns of b-AC MCs could alter network excitability and
increase synchronization.

FIGURE 5 | Alterations in repetitive firing of b-AC MCs following bath
application of 4-AP. (A) Representative response of a b-AC MC to a 475 pA
depolarizing current pulse before (black) and after (red) bath application of 4-
AP. (B) An expanded view of the initial firing pattern at the onset of a 475 pA
depolarizing current pulse before and after bath application of 4-AP.
Enhanced, continuous, burst firing was seen in presence of 4-AP.
(C) Summary plot illustrating that the initial firing frequency at the onset of a
depolarizing current pulse is not altered by 4-AP (n = 10). (D) Summary plot
showing that the final firing frequency of b-AC MCs is significantly decreased
after bath application of 4-AP (n = 10). ∗p < 0.05.
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FIGURE 6 | Emergence of slow afterdepolarizations (sADPs) in b-AC
MCs in presence of 4-AP. (A) Representative response of a L2/3 b-AC MC
to a 475 pA depolarizing current pulse before (black) and after (red) bath
application of 4-AP. Following application of 4-AP, a sADP was observed
following repetitive firing. (B) Summary plot showing that a significant s-ADP
was observed in all b-AC MCs in presence of 4-AP (n = 10). *p < 0.05.

Inhibition of Ih Increases Synchronous
GABAergic Network Activity
GABAergic interneurons in rat neocortex do not typically
stain with HCN channel antibodies (Lorincz et al., 2002;

Notomi and Shigemoto, 2004). However, there is electrophysio-
logical evidence for the presence of functional HCN channels
in specific subclasses of neocortical interneurons (Lupica et al.,
2001; Aponte et al., 2006; Ma et al., 2006). The role of HCN chan-
nels in excitability of GABAergic interneurons and synchronous
GABAergic network activity is poorly understood. In neocor-
tex and hippocampus, application of 4-AP, in the presence of
CNQX and D-APV to block excitatory glutamatergic transmis-
sion, induces synchronized bursting of inhibitory interneurons
(Avoli, 1990; Aram et al., 1991). We first examined the effects
of Ih inhibition on inhibitory network activity in MCs, which
express the largest Ih current among interneurons (Ma et al.,
2006).

Martinotti Cells
Ih activation is associated with a “sag” in the peak voltage
response evoked by large hyperpolarizing current pulses coupled
with a rebound depolarization on pulse offset (Lupica et al., 2001;
Ma et al., 2006). Figure 7A shows a sag (arrow) and rebound
(arrow head) response in an identified MC. ZD 7288, a spe-
cific HCN channel antagonist, reduced both sag and rebound
responses when bath applied at 20 μM (Figure 7A). In the pres-
ence of 4-AP, CNQX, and D-APV, electrical stimulation in L2/3
reliably produced a depolarizing GABAergic response in the
recorded MCs. With the given intracellular Cl− concentration
of the pipette solution and the extracellular Cl− concentration
of the bath solution, the calculated reversal potential for evoked
GABAergic responses is −66 mV. These responses are inhib-
ited by bicuculline (20 uM), indicating they are GABAergic in

FIGURE 7 | Effect of Ih inhibition with ZD 7288 on magnitude of
evoked depolarizing GABAergic potentials in MCs. (A) Superimposition
of representative responses of a L2/3 MC to a 250 pA hyperpolarizing
current pulse. Characteristic sag (arrow) and rebound responses (arrow head)
observed under control conditions (black) were inhibited following application
of ZD 7288 (red). (B) Representative responses of evoked depolarizing

GABAergic potentials in a L2/3 MC before (black) and after (red) bath
application of ZD 7288. (C) Summary graph showing a significant increase in
the amplitude of evoked depolarizing GABAergic potentials in MCs upon
inhibition of Ih. (D) Summary plot indicating that ZD 7288 significantly
increases the area of evoked depolarizing GABAergic potential responses in
MCs (n = 7). ∗p < 0.05.
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nature (data not shown; see also Aram et al., 1991). Inhibition
of HCN channels with ZD 7288 enhanced evoked depolar-
izing GABAergic responses (Figure 7B). Summary graphs in
Figures 7C,D show that ZD 7288 significantly increased evoked
depolarizing GABAergic response amplitude and area, respec-
tively. These results suggest that HCN channels, presumably via
Ih, normally restrict network activity in this model of GABAergic
synchronization.

We further investigated the effect of Ih inhibition on net-
work activity bymeasuring spontaneously occurring depolarizing
GABAergic responses in L2/3 MCs. Examples of spontaneous
depolarizing GABAergic responses are shown in Figures 8A,B.
In the presence of 4-AP, CNQX, and D-APV, spontaneous events
occurred at a low rate. When examined at higher time resolution,
spontaneous events in MCs were seen to consist of a membrane
depolarization with few or no superimposed APs (Figure 8B). ZD
7288 significantly increased the frequency of spontaneous depo-
larizing GABAergic responses (control: 0.009 ± 0.002 Hz, ZD:
0.018 ± 0.003 Hz; t-test p < 0.05, n = 9; Figure 8C). Similar
to the effects on evoked depolarizing GABAergic responses, bath
application of ZD 7288 significantly increased the area of sponta-
neous depolarizing GABAergic responses (control: 2585 ± 556
mv∗ms, ZD: 9079 ± 3126 mV∗ms; t-test p < 0.05, n = 5;
Figure 8D). These results show that inhibition of HCN chan-
nels leads to an increase in the amplitude and area of evoked
and spontaneously occurring depolarizing GABAergic responses,
as well as an increase the frequency of spontaneous depolarizing
GABAergic responses in L2/3 MCs.

Fast-Spiking Basket Cells
These cells display small Ih current upon hyperpolarization
(Aponte et al., 2006). Nonetheless, it was hypothesized that HCN
channel inhibition would also enhance activity in FS-BCs due
to enhanced network activity. Recordings were obtained from
YFP-positive cells that displayed FS-BC intrinsic and repetitive
firing properties, as described above. Figure 9A shows that hyper-
polarizing current pulses were associated with small rapid sag
responses (arrow) and rebound response (arrow head). ZD 7288
(20 μM) application abolished both sag and rebound responses
(Figure 9A).

Slices were incubated in 4-AP for >1 h to develop robust
synchronous network activity. In the presence of 4-AP, CNQX,
and D-APV, electrical stimulation evoked depolarizing GABA-
mediated responses when cells were held at −80 mV in cur-
rent clamp (Figure 9, black). Depolarizing GABAergic responses
were reliably evoked in FS-BCs (Figure 9B) with an average
amplitude of 14.5 ± 1.9 mV and area under the curve of
5783 ± 1270 mV∗ms (Figures 9C,D). Bath application of ZD
7288 significantly increased the amplitude (ZD: 19.3 ± 2.5 mV;
t-test p < 0.05, n = 6; Figure 9C) and area (ZD: 15269. ± 2428
mV*ms; t-test, p < 0.05, n = 7; Figure 9D) of evoked depolariz-
ing GABAergic responses. In 6/7 cells, the previously subthresh-
old stimulation initiated large amplitude events with superim-
posed APs.

Spontaneous depolarizing GABAergic responses with super-
imposed APs were observed in FS-BCs (Figure 10A, arrow). In
addition, FS-BCs demonstrated a persistent membrane potential

FIGURE 8 | Frequency and area of spontaneous depolarizing
GABAergic potentials in L2/3 MCs increase with inhibition of Ih.
(A) Specimen records showing spontaneous depolarizing GABAergic
potentials before (black) and after (red) bath application of ZD 7288. A
significant increase in the frequency of depolarizing GABAergic potentials
was observed following inhibition of Ih. (B) An expanded view of a single

spontaneous depolarizing GABAergic potential before (black) and after (red)
bath application of ZD 7288. (C) Summary plot demonstrating a significant
increase in the frequency of spontaneous GABAergic events following
application of ZD 7288 (n = 9). (D) Summary graph demonstrating that
inhibition of Ih significantly increases the area of spontaneous depolarizing
GABAergic potentials. (n = 5). ∗p < 0.05.
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FIGURE 9 | Evoked depolarizing GABAergic potentials are enhanced
in FS-BCs following Ih inhibition. (A) Superimposition of representative
responses of a L2/3 FS-BC to a 250 pA hyperpolarizing current pulse.
Characteristic small amplitude sag (arrow) responses and rebound
depolarizations (arrow head) were observed in FS-BCs under control
conditions (black). Sag and rebound responses were blocked in presence
of ZD 7288 (red). (B) Superimposed specimen records of evoked

depolarizing GABAergic potentials in a L2/3 FS-BC before (black) and
after (red) bath application of ZD 7288. (C) Summary plot demonstrating
a significant increase in the amplitude of evoked depolarizing GABAergic
potentials in FS-BCs upon Ih inhibition (n = 6). (D) Summary plot
demonstrating ZD 7288 significantly increases the area of evoked
depolarizing GABAergic potential responses in FS-BCs (n = 6).
∗p < 0.05.

oscillation often accompanied by APs on the depolarizing phase
(Figure 10A). These baseline oscillations and bursts of APs
were not accompanied by a significant membrane depolariza-
tion and were not included in the analysis of depolarizing
GABAergic responses. This activity was not observed following
application of ZD 7288 whereas spontaneous depolarizing GABA
responses were significantly enhanced (Figure 10B). ZD 7288
significantly increased the frequency of spontaneous depolariz-
ing GABAergic responses in FS-BCs (control: 0.007 ± 0.002 Hz,
ZD: 0.014 ± 0.003 Hz; t-test, p < 0.05, n = 7; Figure 10C).
HCN channel inhibition also significantly increased the area
of spontaneous depolarizing GABAergic responses (control:
14709± 2257mV∗ms, ZD: 23951± 3306mV∗ms; t-test p< 0.05,
n = 7; Figure 10D). This increase in depolarizing GABAergic
response frequency and area was accompanied by a decrease or
loss of baseline oscillations observed under control conditions.

Temporal IPSP Summation in GABAergic
Interneurons
In neocortical pyramidal cells, temporal integration of EPSPs is
reduced or prevented by Ih and Ih inhibition results in enhanced
synaptic integration (Berger et al., 2001). Modulation of synap-
tic integration in interneurons is relatively unexplored. However,
it has been observed that facilitating EPSPs from pyramidal
cells onto MCs were only slightly changed in the presence of
ZD 7288 to block Ih (Berger et al., 2010). In the present study,
IPSPs are depolarizing due to alterations in the Cl− equilib-
rium potential (Aram et al., 1991). It was hypothesized that the

increased network excitability observed in the presence of the
HCN channel inhibitor ZD 7288 was due to changes in tem-
poral integration. To test this, five IPSPs were evoked at 25 Hz
in both MCs and FS-BCs. EPSPs in MCs typically show tempo-
ral integration (Berger et al., 2010). In MCs, when depolarizing
IPSPs were evoked at 25 Hz, modest temporal integration was
observed (Figure 11A, control). These IPSPswere associated with
a pronounced underlying depolarization. Inhibition of Ih signif-
icantly increased the amplitude of IPSPs 1-5 (Two-way ANOVA,
p < 0.05; Figure 11B). Paired pulse ratios (PPRs) for IPSPs1 and
5 in MCs were significantly increased in the presence of ZD 7288
(1.67 ± 0.3 in Control and 2.4 ± 0.3, t-test, p < 0.05, n = 6). The
area of the underlying depolarization was significantly enhanced
(Figure 11C) and was occasionally associated with the onset of
a depolarizing GABAergic response (Control: 1566 ± 189 mV∗s,
ZD: 4806 ± 803 mV∗ s; t-test, p = 0.05).

Ih currents and the effect of Ih on synaptic integration have not
been extensively examined in FS-BCs. The small sag responses
observed here (Figure 9A) led us to hypothesis that synaptic
integration would not be affected in FS-BCs, but an enhanced
underlying depolarization would be seen following Ih inhibition.
Superimposed records in Figure 11D show that IPSPs displayed
depression during the train of 25 Hz stimulation. Averages of
these responses are shown in Figure 11E. Inhibition of Ih had
no significant effect on the amplitude of first IPSP (Control:
3.3 ± 0.4 mV, ZD: 3.2 ± 0.4 mV; t-test, p = 0.25) or IPSPs
1–5 (two-way ANOVA, p = 0.08). PPRs were not significantly
changed in presence of ZD 7288 (0.575 ± 0.1 Control and
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FIGURE 10 | Frequency and area of spontaneous depolarizing
GABAergic potentials in L2/3 FS-BCs increase with Ih inhibition.
(A) Representative trace of a spontaneous depolarizing GABAergic potential
(arrow) in a L2/3 FS-BC. Specimen record also shows characteristic 4-AP
induced baseline burst firing in FS-BC, which precede and follow spontaneous
depolarizing GABAergic potentials. (B) Representative trace of spontaneous

events following bath application of ZD 7288. (C) Summary plot demonstrates
that inhibition of Ih with ZD 7288 significantly increases the frequency of
spontaneous depolarizing GABAergic potentials in FS-BCs (n = 7).
(D) Summary plot demonstrates that the area of spontaneous depolarizing
GABAergic potentials significantly increases with inhibition of Ih (n = 7).
∗p < 0.05.

0.86 ± 0.1 in presence of ZD 7288; t-test, p < 0.05, n = 4). Ih
inhibition was, however, accompanied by a increased late depo-
larization and associated with evoked depolarizing GABAergic
responses (Control: 2314 ± 1276 mV∗ s, ZD: 4354 ± 1671 mV∗
s; t-test, p = 0.05; Figure 11F). These results suggest that HCN
channels differentially modulate synaptic integration of depolar-
izing IPSPs in MCs compared to FS-BCs.

Discussion

This study investigated the effect of 4-AP on the firing
properties of L2/3 FS-BCs and MCs. In the presence of 4-
AP, AP durations increased and AHP amplitudes decreased
in both L2/3 FS-BCs and MCs. FS-BCs demonstrated an
increase in initial firing frequency upon suprathreshold depo-
larization and an increase in accommodation in the pres-
ence of 4-AP. Initial burst firing was maintained in b-AC
MCs and persistent repetitive burst firing was also observed.
Additionally, we investigated the effect of HCN channel inhi-
bition on GABAergic network synchronization. In the pres-
ence of ZD 7288 to inhibit Ih, the area of evoked GABAergic
depolarizations was increased in both FS-BCs and b-AC
MCs. Similarly, inhibition of Ih increased the area and fre-
quency of spontaneous depolarizing GABAergic events in
these cells. These results indicate that 4-AP differentially
alters the intrinsic firing patterns of interneurons. Acute inhi-
bition of HCN channels enhances GABAergic interneuron

synchronization indicating that Ih modulates inhibitory network
excitability.

4-AP Alters the Intrinsic Firing Properties of
FS-BCs and b-MCs
The mechanism by which application of 4-AP in the presence
of CNQX and D-APV induces GABAA receptor-mediated
synchronization of neocortical GABAergic interneurons
remains unclear. Early studies with 4-AP examined role of
potassium channels in synaptic transmission at the squid
giant synapse (Llinas et al., 1976). It was later shown to have
convulsant effects in vitro and in vivo (Spyker et al., 1980;
Thesleff, 1980; Jack et al., 1981; Voskuyl and Albus, 1985;
Rutecki et al., 1987; Szente and Baranyi, 1987; Mihaly et al.,
1990; Perreault and Avoli, 1991). Subsequent investigation into
the mechanism of action concluded that 4-AP blocks transient
outward K+ currents through A-type K+ channels in a variety
of systems (Hermann and Gorman, 1981; Choquet and Korn,
1992; Mei et al., 1995). Additionally, 4-AP blocks the delayed
K+ current ID (Storm, 1988; Wu and Barish, 1992; Barish et al.,
1996; Coetzee et al., 1999).

Application of 4-AP enhances release of both excita-
tory and inhibitory neurotransmitters (Rutecki et al., 1987;
Tibbs et al., 1989; Perreault and Avoli, 1991; Otis and Mody,
1992). A-type K+ channels are predominantly expressed
in the soma and dendrites of pyramidal neurons, increas-
ing in density distal to the soma, with sparse expres-
sion in axons and terminals (Hoffman et al., 1997; Bekkers,
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FIGURE 11 | Changes in temporal integration of depolarizing IPSP in
MCs and FS-BCs after Ih inhibition. (A) Ten superimposed responses of a
L2/3 MC to a train of five stimuli at 25 Hz (20–50 μA) before (top, black) and
after (bottom, red) bath application of Z7288. Temporal integration of IPSPs was
observed under control conditions. This was significantly enhanced upon
inhibition of Ih. (B) Superimposed averaged responses of the individual
responses shown in (A). (C) Summary plot demonstrating ZD 7288 significantly
increases in IPSP area in L2/3 MCs (n = 7). (D) Superimposed individual

responses of a L2/3 FS-BC to a similar 25 Hz train before (top, black) and after
(bottom, red) bath application of ZD7288. Characteristic IPSP depression was
observed in the control condition. (E) Averaged responses of the individual
traces shown in (D). Alterations in IPSP depression was not observed in
FS-BCs following inhibition of Ih. However, ZD 7288 did cause the appearance
of a late depolarization that could initiate depolarizing GABAergic potentials.
(F) Summary plot illustrating that bath application of ZD 7288 significantly
increases the area of depolarization after 25 Hz stimulation (n = 7). ∗p < 0.05.

2000; Korngreen and Sakmann, 2000; Johnston et al., 2003;
Dodson and Forsythe, 2004; Foust et al., 2011). These channels,
mainly consisting of Kv4 subunits, in addition to shaping the
AP waveform, regulate back propagation of APs into distal den-
drites, and control excitability and output of pyramidal neurons
(Stuart et al., 1997; Bekkers, 2000; Kang et al., 2000; Yuan et al.,
2005). The isoform composition and cellular localization of A-
type K+ channels is more variable in interneurons compared to
pyramidal cells (Weiser et al., 1995; Du et al., 1996; Martina et al.,
1998; Chow et al., 1999; Coetzee et al., 1999).

The dissimilar effects of 4-AP onAP and repetitive firing prop-
erties in FS-BCs and MCs observed here may be attributable to
differential expression and localization of A-type K+ channels
in various classes of interneurons (Chow et al., 1999; Erisir et al.,
1999; Jerng et al., 2004; Goldberg et al., 2008; Rudy et al., 2011).
In the presence of 4-AP, we observed that AP duration was simi-
larly increased in both FS-BCs andMCs, consistent with a known
global enhancement of synaptic transmission (Jankowska et al.,
1977; Buckle and Haas, 1982; Otis and Mody, 1992). The char-
acteristic fAHP of FS-BCs was markedly reduced and accom-
modation was increased. Axons and nerve terminals of FS-BCs
express Kv3 and Kv1 which may directly affect the AP repo-
larization in these structures (Massengill et al., 1997; Erisir et al.,

1999; Lau et al., 2000; Goldberg et al., 2008). The blockade of the
Kv1 current is most likely responsible for the switch from a sin-
gle AP to a burst of APs at the onset of a depolarizing current
pulse (Wu and Barish, 1992; Goldberg et al., 2008). Furthermore,
Kv3 channels are necessary for the FS phenotype of FS-BCs
(Rudy and McBain, 2001; Lien and Jonas, 2003). The inhibition
of Kv3 channels likely resulted in the observed increase in AP
accommodation in the present study.

In contrast to FS-BCs, MCs express the Kv4 family of chan-
nels at a higher density in the somatodendritic region. It remains
unknown if these channels are expressed in a similar gradient
pattern along the dendrites in interneurons as seen in pyrami-
dal neurons. However, they function to tightly regulate den-
dritic Ca2+ spikes and back-propagating APs in other cells
(Serodio and Rudy, 1998; Lien et al., 2002; Chen and Johnston,
2004; Lai and Jan, 2006; Bourdeau et al., 2007; Sun et al., 2011).
Our observed effects of 4-AP on repetitive firing properties in
neocortical MCs can be attributed to blockade of Kv4 chan-
nels. By blocking Kv4 channels, back-propagating APs and Ca2+
spikes would be able to antidromically invade the dendrites caus-
ing a prolonged depolarization and possibly initiating further
AP firing, directly contributing the transformation of single APs
to repetitive burst responses observed in MCs. Additionally, the
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dendritic hyperexcitability resulting from inhibition of somato-
dendritic Kv4 channels could underlie the unmasking of a sADP
following repetitive firing in the presence of 4-AP.

4-AP Induced GABAergic Network
Synchronization
GABAergic synapse formation often precedes that of excitatory
glutamatergic synapses (Ben-Ari et al., 1989). Since immature
neurons have higher intracellular chloride concentrations due
to early lack of KCC2 chloride transporters, GABA depolarizes
and excites immature neurons (Ben-Ari et al., 2007). Early in
development, excitatory GABAergic transmission is associated
with spontaneous giant depolarizing potentials (Garaschuk et al.,
1998; Bonifazi et al., 2009). Similar appearing responses are seen
in more mature animals under appropriate pharmacological con-
ditions. In the presence of glutamatergic antagonists, bath appli-
cation of 4-AP induces a GABAA-receptor mediated network
synchronization of interneurons (Aram et al., 1991; Avoli et al.,
1998). This hyperexcitability in inhibitory networks produces
large amplitude depolarizing potentials that propagate through
the cortex (DeFazio and Hablitz, 2005). The enhancement in
inhibitory synaptic transmission associated with broadened APs
could produce an increase in the intracellular Cl− concentra-
tion through the activation of GABA-gated chloride channels
producing an activity-dependent shift in the concentration gra-
dient for Cl− resulting in the observed membrane depolar-
ization (Ling and Benardo, 1995; Staley et al., 1995). The syn-
chronous firing of neurons associated with depolarizing GABA
responses produces an elevation in the extracellular K+ concen-
tration contributing to the persistence of interneuron synchro-
nization (Gilbert et al., 1984; MacVicar et al., 1989; Avoli et al.,
2002). Synchronous GABAergic discharges have been predom-
inantly investigated in brain slice preparations. However, co-
perfusion of 4AP and glutamate receptor blockers in an in
vitro isolated guinea pig brain preparation produced sponta-
neous synchronized propagating events that exhibited sensitivity
to the GABAA receptor antagonist bicuculline (Uva et al., 2009).
It is likely that synchronization of GABAergic networks also
occurs in vivo. The intrinsic changes that occur in interneu-
rons to initiate this form of synchronous activity are not well
understood. The subclasses of interneurons that initiate and
participate in network synchronization have not been clearly
established.

We observed robust spontaneous and evoked GABAergic
depolarizations in FS-BCs and MCs in the presence of 4-
AP and glutamatergic antagonists. The GABAergic depolar-
izations observed in FS-BCs were noticeably different from
those seen in MCs. Large GABAergic depolarizations in FS-BCs
were accompanied by high frequency firing. Similar firing has
been seen in other fast spiking interneurons (Benardo, 1997;
Keros and Hablitz, 2005). GABAergic depolarizations rarely ini-
tiated AP firing in MCs. Differential expression and localization
of 4-AP sensitive channels in FS-BCs versus MCs may contribute
to this variability. The inhibition of Kv1 and Kv3 currents in
the axons of FS-BCs can lower threshold and increase the onset
of AP firing (Rudy and McBain, 2001; Goldberg et al., 2008).
The repetitive firing of FS-BCs in association with GABAergic

depolarizations in the presence of 4-AP may contribute to net-
work synchronization and support propagation of synchronous
activity.

In addition to firing APs in coordination with GABAergic
depolarizations, FS-BCs repeatedly fired single APs or bursts of
APs from baseline. These ectopic APs (EAPs) are generated dis-
tally in either the axons or dendrites and propagate into the soma
(Gutnick and Prince, 1974; Stasheff et al., 1993). EAPs are known
to be associated with 4-AP induced spontaneous GABAergic
depolarizations (Perreault and Avoli, 1989; Avoli et al., 1998) and
have been observed previously in GABAergic interneurons
(Benardo, 1997; Keros and Hablitz, 2005). FS-BC are known to
rapidly synchronize due to the high incidence of reciprocal
connections and gap junctions, allowing them to initiate cor-
tical gamma oscillations and control theta oscillations in the
hippocampus (Pouille and Scanziani, 2001; Connors and Long,
2004; Cardin et al., 2009; Pouille et al., 2009). The enhanced out-
put of FS-BCs associated with GABAergic depolarizations in
combination with their electrical coupling through gap junc-
tions suggests a role in the initiation and propagation of the
depolarizing GABA responses observed here.

Fast-spiking basket cells and MCs are only two classes
of interneurons out of many in the neocortex. A third
interneuron subclass of great interest in the regulation of
network synchronization is the neurogliaform (NGF) cell.
Unlike many other interneuron subclasses, NGFs form electri-
cal synapses with homologous and heterologous interneurons
(Zsiros and Maccaferri, 2005), making them critical in the gen-
eration of synchronized neuronal network activity (Price et al.,
2005). Also, this subclass of interneuron can uniquely modulate
local network activity through volume transmission or non-
synaptic transmission (Olah et al., 2009). Further investigation
of the effects of 4-AP on the firing properties of NGFs and
of 4-AP induced synchronous events in these cells would pro-
vide insight into their role in modulating GABAergic network
synchronization.

Ih Modulation of Network GABAergic
Synchronization
The inhibitory role of Ih in regulating the excitability of pyrami-
dal neurons is well established (Magee, 1999;Williams and Stuart,
2000; Berger et al., 2001). Ih also acts to constrain epileptiform
activity in the L5 pyramidal cells (Albertson et al., 2013). Genetic
deletion of HCN1 channels in the forebrain enhances theta oscil-
lations in the hippocampus (Nolan et al., 2004). Additionally, loss
of HCN channels enhances oscillatory activity related to epilep-
tic activity in the neocortex (Strauss et al., 2004; Kole et al., 2007).
HowHCN channels modulate synaptic integration in GABAergic
interneurons and synchronous neocortical inhibitory network
activity remains unclear.

Hyperpolarization-activated cyclic nucleotide-gated channels
and Ih have been shown to be present in both FS-BCs and MCs
at varying densities (Kilb and Luhmann, 2000; Santoro et al.,
2000; Wang et al., 2004; Luján et al., 2005; Wu and Hablitz, 2005;
Aponte et al., 2006; Albertson et al., 2013). In the present study,
MCs displayed robust Ih activation upon hyperpolarization
whereas minimal Ih responses were observed in FS-BCs. Despite

Frontiers in Cellular Neuroscience | www.frontiersin.org 12 March 2015 | Volume 9 | Article 89

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Williams and Hablitz Ih and GABAergic network synchronization

the difference in Ih expression between FS-BCs and MCs, a
significant enhancement of the amplitude and area of evoked
and spontaneous synchronous GABAergic events was observed
in both cell types after inhibition of HCN channels. Furthermore,
the frequency of spontaneous events was also enhanced in both
types of interneurons. The increase in amplitude and area sug-
gests an effect on the presynaptic release of GABApossibly caused
by a depolarization of the terminals after Ih inhibition, consistent
with previous findings (Southan et al., 2000; Aponte et al., 2006;
Boyes et al., 2007). The increase in frequency may be attributable
to enhanced intrinsic excitability, perhaps resulting in recruit-
ment of small synchronized groups of interneurons to a point
where a propagating network event occurs. Ih inhibition was
associated with a loss or decrease in spontaneous EAP firing
between synchronous depolarizing GABAergic events. In rodent
painmodels, HCN channel inhibition has been shown to decrease
spontaneous APs and burst firing in dorsal root ganglion cells
(Chaplan et al., 2003; Lee et al., 2005; Sun et al., 2005).

We further investigated the mechanism by which Ih inhi-
bition modulated network activity by examining changes
in synaptic integration. Excitatory inputs in MCs show
facilitation whereas FS-BCs show depression (Buhl et al.,
1997; Galarreta and Hestrin, 1998; Reyes et al., 1998; Gil et al.,
1999; Wang et al., 2004; Silberberg and Markram, 2007;
Thomson and Lamy, 2007). Similar findings were observed here
with depolarizing IPSPs. Depolarizing IPSPs evoked at 25 Hz in
MCs were facilitating. Facilitation and the underlying depolariza-
tion were enhanced by inhibition of Ih with ZD 7288. In FS-BCs,
synaptic responses showed depression. Following inhibition of
Ih, no significant effect on synaptic depression was observed in
FS-BCs. However, a delayed synchronous GABAergic network
event was reliably evoked. This suggests that inhibition of Ih was
associated with significant excitability changes in other neurons
which resulted in a propagating response that was seen in FS-BCs.

The subcellular distribution of HCN channels in cortical MCs
and FS-BCs may be the cause for the differences we observed in
IPSP summation in these two cell types. Given that MCs exhibit
large Ih currents upon hyperpolarization, it is assumed that there
is a corresponding high density of HCN channels. Since ZD
7288 caused an increase in summation of depolarizing IPSPs,
it is possible that HCN channels are located in the somatoden-
dritic region of MCs where they would be able to exert control

over synaptic regulation. We also observed an increase in IPSP
area with summation in MCs, consistent with somatodendritic
localization of HCN channels. Conversely, presynaptic localiza-
tion of HCN channels in cortical FS-BC may account for the
small density of Ih recorded in the soma and lack of an effect
on somatodendritic summation of synaptic inputs. Functional
HCN channels have been localized in the axon and presynap-
tic terminal of interneurons in the hippocampus, cerebellum,
and basal ganglia and have been shown to regulate GABAergic
synaptic transmission (Southan et al., 2000; Aponte et al., 2006;
Boyes et al., 2007). Inhibition of Ih with ZD 7288 results in an
increase in miniature inhibitory postsynaptic currents (mIPSCs),
suggesting a presynaptic mechanism of action (Southan et al.,
2000; Boyes et al., 2007). It is possible that the inhibition of HCN
channels in the synaptic terminal causes hyperexcitability of the
terminal resulting in an increase of GABA release, thus leading to
a further enhancement of GABAergic network synchronization.
This is consistent with our results showing that the robust firing
associated with depolarizing GABAergic events in FS-BCs is sig-
nificantly enhanced following the inhibition of Ih. Further studies
are needed to directly determine if release probability is regulated
by HCN channels.

In summary, the data presented here show that 4-AP differ-
entially alters the AP and repetitive firing properties of FS-BC
and MCs in the neocortex. MCs and FS-BCs display different
patterns of activity during depolarizing GABA responses sug-
gesting different classes of interneurons subserve diverse roles
in generation and propagation of these responses. Although the
role of HCN channels in regulating normal GABAergic synap-
tic transmission needs to be established, our results suggest that
HCN channels restrict inhibitory synaptic transmission as well as
network activity in the presence of 4-AP, CNQX, and D-APV.

Acknowledgments

This work was supported by NIH grants NS090041 and
NS0474666. VGAT-Venus transgenic rats were generated by Drs.
Y. Yanagawa, M. Hirabayashi, and Y. Kawaguchi in the Institute
for Physiological Sciences, Okazaki, Japan, using pCS2-Venus
provided by Dr. A. Miyawaki. We thank Alison Margolies for
excellent technical assistance.

References

Albertson, A. J., Williams, S. B., and Hablitz, J. J. (2013). Regulation of epileptiform
discharges in rat neocortex by HCN channels. J. Neurophysiol. 110, 1733–1743.
doi: 10.1152/jn.00955.2012

Albertson, A. J., Yang, J., and Hablitz, J. J. (2011). Decreased hyperpolarization-
activated currents in layer 5 pyramidal neurons enhances excitability in focal
cortical dysplasia. J. Neurophysiol. 106, 2189–2200. doi: 10.1152/jn.00164.2011

Alger, B. E., and Nicoll, R. A. (1982). Pharmacological evidence for two kinds of
GABA receptor on rat hippocampal pyramidal cells studied in vitro. J. Physiol.
(Lond.) 328, 125–141. doi: 10.1113/jphysiol.1982.sp014256

Allene, C., Cattani, A., Ackman, J. B., Bonifazi, P., Aniksztejn, L., Ben-Ari, Y.,
et al. (2008). Sequential generation of two distinct synapse-driven net-
work patterns in developing neocortex. J. Neurosci. 28, 12851–12863. doi:
10.1523/JNEUROSCI.3733-08.2008

Andersen, P., Dingledine, R., Gjerstad, L., Langmoen, I. A., and Laursen, A. M.
(1980). Two different responses of hippocampal pyramidal cells to application
of gamma-amino butyric acid. J. Physiol. 305, 279–296. doi: 10.1113/jphys-
iol.1980.sp013363

Aponte, Y., Lien, C. C., Reisinger, E., and Jonas, P. (2006). Hyperpolarization-
activated cation channels in fast-spiking interneurons of rat
hippocampus. J. Physiol. 574, 229–243. doi: 10.1113/jphysiol.2005.
104042

Aram, J. A., Michelson, H. B., andWong, R. K. S. (1991). Synchronized GABAergic
IPSCs recorded in the neocortex after blockade of synaptic transmission medi-
ated by excitatory amino acids. J. Neurophysiol. 65, 1034–1041.

Ascoli, G. A., Alonso-Nanclares, L., Anderson, S. A., Barrionuevo, G., Benavides-
Piccione, R., Burkhalter, A., et al. (2008). Petilla terminology: nomenclature of
features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci.
9, 557–568. doi: 10.1038/nrn2402

Frontiers in Cellular Neuroscience | www.frontiersin.org 13 March 2015 | Volume 9 | Article 89

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Williams and Hablitz Ih and GABAergic network synchronization

Avoli, M. (1990). Epileptiform discharges and a synchronous GABAergic potential
induced by 4-aminopyridine in the rat immature hippocampus. Neurosci. Lett.
117, 93–98. doi: 10.1016/0304-3940(90)90125-S

Avoli, M., D’Antuono, M., Louvel, J., Kohling, R., Biagini, G., Pumain, R., et al.
(2002). Network and pharmacological mechanisms leading to epileptiform syn-
chronization in the limbic system in vitro. Prog. Neurobiol. 68, 167–207. doi:
10.1016/S0301-0082(02)00077-1

Avoli, M., and de Curtis, M. (2011). GABAergic synchronization in the limbic sys-
tem and its role in the generation of epileptiform activity. Prog. Neurobiol. 95,
104–132. doi: 10.1016/j.pneurobio.2011.07.003

Avoli, M., Mattia, D., Siniscalchi, P., Perreault, P., and Tomaiuolo, F. (1994).
Pharmacology and electrophysiology of a synchronous GABA-mediated poten-
tial in the human neocortex. Neuroscience 62, 655–666. doi: 10.1016/0306-
4522(94)90467-7

Avoli, M., Methot, M., and Kawasaki, H. (1998). GABA-dependent generation
of ectopic action potentials in the rat hippocampus. Eur. J. Neurosci. 10,
2714–2722. doi: 10.1046/j.1460-9568.1998.00275.x

Avoli, M., and Perreault, P. (1987). A GABAergic depolarizing potential in the
hippocampus disclosed by the convulsant 4-aminopyridine. Brain Res. 400,
191–195. doi: 10.1016/0006-8993(87)90671-8

Avoli, M., Perreault, P., Olivier, A., and Villemure, J.-G. (1988). 4-Aminopyridine
induces a long-lasting depolarizing GABA-ergic potential in human neocortical
and hippocampal neurons maintained in vitro. Neurosci. Lett. 94, 327–332. doi:
10.1016/0304-3940(88)90039-0

Avoli, M., Rogawski, M. A., and Avanzini, G. (2001). Generalized epileptic disor-
ders: an update. Epilepsia 42, 445–457. doi: 10.1046/j.1528-1157.2001.39800.x

Bagetta, G., Palma, E., Piccirilli, S., Del Duca, C., Morrone, A. L., Nappi, G., et al.
(2004). Involvement of a glutamatergic mechanism in δ-dendrotoxin-induced
hippocampal neuronal cell loss in the rat. Basic Clin. Pharmacol. Toxicol. 94,
132–138. doi: 10.1111/j.1742-7843.2004.pto940306.x

Barish, M. E., Ichikawa, M., Tominaga, T., Matsumoto, G., and Iijima, T. (1996).
Enhanced fast synaptic transmission and a delayed depolarization induced by
transient potassium current blockade in rat hippocampal slice as studied by
optical recording. J. Neurosci. 16, 5672–5687.

Bekkers, J. M. (2000). Properties of voltage-gated potassium currents in nucleated
patches from large layer 5 cortical pyramidal neurons of the rat. J. Physiol. 525,
593–609. doi: 10.1111/j.1469-7793.2000.t01-1-00593.x

Ben-Ari, Y., Cherubini, E., Corradetti, R., and Gaiarsa, J. L. (1989). Giant synaptic
potentials in immature rat CA3 hippocampal neurones. J. Physiol. (Lond.) 416,
303–325. doi: 10.1113/jphysiol.1989.sp017762

Ben-Ari, Y., Gaiarsa, J. L., Tyzio, R., and Khazipov, R. (2007). GABA: A pioneer
transmitter that excites immature neurons and generates primitive oscillations.
Physiol. Rev. 87,1215–1284. doi: 10.1152/physrev.00017.2006

Benardo, L. S. (1997). Recruitment of GABAergic inhibition and synchronization
of inhibitory interneurons in rat neocortex. J. Neurophysiol. 77, 3134–3144.

Berger, T., Larkum, M. E., and Lüscher, H.-R. (2001). High Ih channel density
in the distal apical dendrite of layer V pyramidal cells increases bidirectional
attenuation of EPSPs. J. Neurophysiol. 85, 855–868.

Berger, T. K., Silberberg, G., Perin, R., and Markram, H. (2010). Brief bursts
self-inhibit and correlate the pyramidal network. PLoS Biol. 8:e1000473. doi:
10.1371/journal.pbio.1000473

Bonifazi, P., Goldin, M., Picardo, M. A., Jorquera, I., Cattani, A., Bianconi, G.,
et al. (2009). GABAergic hub neurons orchestrate synchrony in developing
hippocampal networks. Science 326,1419–1424. doi: 10.1126/science.1175509

Bourdeau, M. L., Morin, F., Laurent, C. E., Azzi, M., and Lacaille, J. C. (2007).
Kv4.3-mediated A-type K+ currents underlie rhythmic activity in hippocam-
pal interneurons. J. Neurosci. 27, 1942–1953. doi: 10.1523/JNEUROSCI.3208-
06.2007

Boyes, J., Bolam, J. P., Shigemoto, R., and Stanford, I. M. (2007). Functional presy-
naptic HCN channels in the rat globus pallidus. Eur. J. Neurosci. 25, 2081–2092.
doi: 10.1111/j.1460-9568.2007.05463.x

Buckle, P. J., and Haas, H. L. (1982). Enhancement of synaptic transmission by 4-
aminopyridine in hippocampal slices of the rat. J. Physiol. (Lond.) 326, 109–122.
doi: 10.1113/jphysiol.1982.sp014180

Buhl, E. H., Tamís, G., Szilígyi, T., Stricker, C., Paulsen, O., and Somogyi, P. (1997).
Effect, number and location of synapses made by single pyramidal cells onto
aspiny interneurones of cat visual cortex. J. Physiol. (Lond.) 500, 689–713. doi:
10.1113/jphysiol.1997.sp022053

Cardin, J. A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., et al.
(2009). Driving fast-spiking cells induces gamma rhythm and controls sensory
responses. Nature 459, 663–667. doi: 10.1038/nature08002

Chaplan, S. R., Guo, H. Q., Lee, D. H., Luo, L., Liu, C., Kuei, C., et al. (2003).
Neuronal hyperpolarization-activated pacemaker channels drive neuropathic
pain. J. Neurosci. 23, 1169–1178.

Chen, X., and Johnston, D. (2004). Properties of single voltage-dependent K+
channels in dendrites of CA1 pyramidal neurones of rat hippocampus.
J. Physiol. (Lond.) 559, 187–203. doi: 10.1113/jphysiol.2004.068114

Choquet, D., and Korn, H. (1992). Mechanism of 4-aminopyridine action on
voltage-gated potassium channels in lymphocytes. J. Gen. Physiol. 99, 217–240.
doi: 10.1085/jgp.99.2.217

Chow, A., Erisir, A., Farb, C., Nadal, M. S., Ozaita, A., Lau, D., et al. (1999).
K+ channel expression distinguishes subpopulations of parvalbumin- and
somatostatin-containing neocortical interneurons. J. Neurosci. 19, 9332–9345.

Coetzee, W. A., Amarillo, Y., Chiu, J., Chow, A., Lau, D., McCormack T., et al.
(1999).Molecular Diversity of K+ Channels.Ann. N. Y. Acad. Sci. 868, 233–255.
doi: 10.1111/j.1749-6632.1999.tb11293.x

Connors, B. W., and Long, M. A. (2004). Electrical synapses in
the mammalian brain. Annu. Rev. Neurosci. 27, 393–418. doi:
10.1146/annurev.neuro.26.041002.131128

DeFazio, R. A., and Hablitz, J. J. (2005). Horizontal spread of activ-
ity in neocortical inhibitory networks. Dev. Brain Res. 157, 83–92. doi:
10.1016/j.devbrainres.2005.03.008

Dodson, P. D., and Forsythe, I. D. (2004). Presynaptic K+ channels: electrifying
regulators of synaptic terminal excitability. Trends Neurosci. 27, 210–217. doi:
10.1016/j.tins.2004.02.012

Du, J., Zhang, L., Weiser, M., Rudy, B., and McBain, C. J. (1996). Develpomental
expression and functional characterization of the potassium-channel subunit
Kv3.1b in parvalbumin-containing interneurons of the rat hippocampus. J.
Neurosci. 16, 506–518.

Erisir, A., Lau, D., Rudy, B., and Leonard, C. S. (1999). Function of specific
K+ channels in sustained high-frequency firing of fast-spiking neocortical
interneurons. J. Neurophysiol. 82, 2476–2489.

Fairen, A., DeFelipe, J., and Regidor, J. (1984). “Nonpyramidal neurons General
account,” in Cerebral Cortex: Cellular Components of the Cerebral Cortex, Vol.
1, eds A. Peters and E. G. Jones (New York: Plenum Press), 201–245.

Farrant, M., and Kaila, K. (2007). “Progress in Brain Research“ in Gaba and
the Basal Ganglia From Molecules to Systems, Vol. 160, ed. M. T. James
(Amsterdam: Elsevier), 59–87. doi: 10.1016/S0079-6123(06)60005-8

Foust, A. J., Yu, Y., Popovic,M., Zecevic, D., andMcCormick, D. A. (2011). Somatic
membrane potential and Kv1 channels control spike repolarization in cortical
axon collaterals and presynaptic boutons. J. Neurosci. 31, 15490–15498. doi:
10.1523/JNEUROSCI.2752-11.2011

Fries, P., Reynolds, J. H., Rorie, A. E., and Desimone, R. (2001). Modulation of
oscillatory neuronal synchronization by selective visual attention. Science 291,
1560–1563. doi: 10.1126/science.1055465

Galarreta, M., and Hestrin, S. (1998). Frequency-dependent synaptic depression
and the balance of excitation and inhibition in the neocortex. Nat. Neurosci. 1,
587–594. doi: 10.1038/2882

Garaschuk, O., Hanse, E., and Konnerth, A. (1998). Developmental profile
and synaptic origin of early network oscillations in the CA1 region of rat
neonatal hippocampus. J. Physiol. (Lond.) 507, 219–236. doi: 10.1111/j.1469-
7793.1998.219bu.x

Gil, Z., Connors, B. W., and Amitai, Y. (1999). Efficacy of thalamocortical and
intracortical synaptic connections: quanta, innervation, and reliability. Neuron
23, 385–397. doi: 10.1016/S0896-6273(00)80788-6

Gilbert, P., Kettenmann, H., and Schachner, M. (1984). gamma-Aminobutyric acid
directly depolarizes cultured oligodendrocytes. J. Neurosci. 4, 561–569.

Goldberg, E. M., Clark, B. D., Zagha, E., Nahmani, M., Erisir, A., and Rudy,
B. (2008). K+ channels at the axon initial segment dampen near-threshold
excitability of neocortical fast-spiking GABAergic interneurons. Neuron 58,
387–400. doi: 10.1016/j.neuron.2008.03.003

Gutnick, M. J., and Prince, D. A. (1974). Effects of projected cortical epilepti-
form discharges on neuronal activities in cat VPL. I. Interictal discharge. J.
Neurophysiol. 37, 1310–1327.

Haider, B., and McCormick, D. A. (2009). Rapid neocortical dynamics: cellular and
network mechanisms. Neuron 62, 171–189. doi: 10.1016/j.neuron.2009.04.008

Frontiers in Cellular Neuroscience | www.frontiersin.org 14 March 2015 | Volume 9 | Article 89

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Williams and Hablitz Ih and GABAergic network synchronization

Harvey, M., Lau, D., Civillico, E., Rudy, B., and Contreras, D. (2012). Impaired
long-range synchronization of gamma oscillations in the neocortex of a
mouse lacking Kv3.2 potassium channels. J. Neurophysiol. 108, 827–833. doi:
10.1152/jn.00102.2012

Hasenstaub, A., Shu, Y., Haider, B., Kraushaar, U., Duque, A., and McCormick,
D. A. (2005). Inhibitory postsynaptic potentials carry synchronized fre-
quency information in active cortical networks. Neuron 47, 423–435. doi:
10.1016/j.neuron.2005.06.016

Hermann, A., and Gorman, A. L. (1981). Effects of 4-aminopyridine on potas-
sium currents in a molluscan neuron. J. Gen. Physiol. 78, 63–86. doi:
10.1085/jgp.78.1.63

Hoffman, D. A., Magee, J. C., Colbert, C. M., and Johnston, D. (1997). K+ chan-
nel regulation of signal propagation in dendrites of hippocampal pyramidal
neurons. Nature 387, 869–875. doi: 10.1038/42571

Jack, J. J., Redman, S. J., and Wong, K. (1981). Modifications to synaptic trans-
mission at group Ia synapses on cat spinal motoneurones by 4-aminopyridine.
J. Physiol. (Lond.) 321, 111–126. doi: 10.1113/jphysiol.1981.sp013974

Jankowska, E., Lundberg, A., Rudomin, P., and Sykova, E. (1977). Effects of 4-
aminopyridine on transmission in excitatory and inhibitory synapses in the
spinal cord. Brain Res. 136, 387–392. doi: 10.1016/0006-8993(77)90816-2

Jerng, H.H., Pfaffinger, P. J., and Covarrubias,M. (2004).Molecular physiology and
modulation of somatodendritic A-type potassium channels.Mol. Cell. Neurosci.
27, 343–369. doi: 10.1016/j.mcn.2004.06.011

Johnston, D., Christie, B. R., Frick, A., Gray, R., Hoffman, D. A., Schexnayder,
L. K., et al. (2003). Active dendrites, potassium channels and synaptic plasticity.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 667–674. doi: 10.1098/rstb.2002.1248

Jung, S., Jones, T. D., Lugo, J. N. Jr., Sheerin, A. H., Miller, J. W., D’Ambrosio, R.,
et al. (2007). Progressive dendritic HCN channelopathy during epileptogene-
sis in the rat pilocarpine model of epilepsy. J. Neurosci. 27, 13012–13021. doi:
10.1523/JNEUROSCI.3605-07.2007

Kang, J., Huguenard, J. R., and Prince, D. A. (2000). Voltage-gated potassium
channels activated during action potentials in layer V neocortical pyramidal
neurons. J. Neurophysiol. 83, 70–80.

Kawaguchi, Y. (2001). Distinct firing patterns of neuronal subtypes in cortical
synchronized activities. J. Neurosci. 21, 7261–7272.

Kawaguchi, Y., and Kubota, Y. (1997). GABAergic cell subtypes and their synaptic
connections in rat frontal cortex. Cereb. Cortex 7, 476–486. doi: 10.1093/cer-
cor/7.6.476

Keros, S., and Hablitz, J. J. (2005). Ectopic action potential generation in cor-
tical interneurons during synchronized GABA responses. Neuroscience 131,
833–842. doi: 10.1016/j.neuroscience.2004.12.010

Khazipov, R., Leinekugel, X., Khalilov, I., Gaiarsa, J.-L., and Ben-Ari, Y. (1997).
Synchronization of GABAergic interneuronal network in CA3 subfield of
neonatal rat hippocampal slices. J. Physiol. (Lond.) 498, 763–772. doi:
10.1113/jphysiol.1997.sp021900

Kilb, W., and Luhmann, H. J. (2000). Characterization of a hyperpolarization-
activated inward current in Cajal-Retzius cells in rat neonatal neocortex.
J. Neurophysiol. 84, 1681–1691.

Klausberger, T., and Somogyi, P. (2008). Neuronal diversity and temporal dynam-
ics: the unity of hippocampal circuit operations. Science 321, 53–57. doi:
10.1126/science.1149381

Kole, M. H. P., Brauer, A. U., and Stuart, G. J. (2007). Inherited cortical HCN1
channel loss amplifies dendritic calcium electrogenesis and burst firing in a rat
absence epilepsy model. J. Physiol. (Lond.) 578, 507–525. doi: 10.1113/jphys-
iol.2006.122028

Korngreen, A., and Sakmann, B. (2000). Voltage-gated K+ channels in layer 5 neo-
cortical pyramidal neurones from young rats: Subtypes and gradients. J. Physiol.
(Lond.) 525, 621–639. doi: 10.1111/j.1469-7793.2000.00621.x

Lai, H. C., and Jan, L. Y. (2006). The distribution and targeting of neuronal voltage-
gated ion channels. Nat. Rev. Neurosci. 7, 548–562. doi: 10.1038/nrn1938

Lau, D., de Miera, E. V.-S., Contreras, D., Ozaita, A., Harvey, M., Chow, A., et al.
(2000). Impaired fast-spiking, suppressed cortical inhibition, and increased sus-
ceptibility to seizures in mice lacking Kv3.2 K+ channel proteins. J. Neurosci. 20,
9071–9085.

Lee, D. H., Chang, L., Sorkin, L. S., and Chaplan, S. R. (2005). Hyperpolarization-
activated, cation-nonselective, cyclic nucleotide-modulated channel blockade
alleviatesmechanical allodynia and suppresses ectopic discharge in spinal nerve
ligated rats. J. Pain 6, 417–424. doi: 10.1016/j.jpain.2005.02.002

Lien, C. C., and Jonas, P. (2003). Kv3 potassium conductance is necessary and
kinetically optimized for high-frequency action potential generation in hip-
pocampal interneurons. J. Neurosci. 23, 2058–2068.

Lien, C. C., Martina, M., Schultz, J. H., Ehmke, H., and Jonas, P. (2002). Gating,
modulation and subunit composition of voltage-gated K+ channels in dendritic
inhibitory interneurones of rat hippocampus. J. Physiol. (Lond.) 538, 405–419.
doi: 10.1113/jphysiol.2001.013066

Ling, D. S. F., and Benardo, L. S. (1995). Activity-dependent depression of monosy-
naptic fast IPSCs in hippocampus: contributions from reductions in chloride
driving force and conductance. Brain Res. 670, 142–146. doi: 10.1016/0006-
8993(94)01298-V

Llinas, R., Walton, K., and Bohr, V. (1976). Synaptic transmission in squid
giant synapse after potassium conductance blockage with external 3- and
4-aminopyridine. Biophys. J. 16, 83–86. doi: 10.1016/S0006-3495(76)85664-0

Lorincz, A., Notomi, T., Tamas, G., Shigemoto, R., and Nusser, Z. (2002). Polarized
and compartment-dependent distribution of HCN1 in pyramidal cell dendrites.
Nat. Neurosci. 5, 1185–1193. doi: 10.1038/nn962

Luján, R., Albasanz, J. L., Shigemoto, R., and Juiz, J.M. (2005). Preferential localiza-
tion of the hyperpolarization-activated cyclic nucleotide-gated cation channel
subunit HCN1 in basket cell terminals of the rat cerebellum. Eur. J. Neurosci.
21, 2073–2082. doi: 10.1111/j.1460-9568.2005.04043.x

Lupica, C. R., Bell, J. A., Hoffman, A. F., and Watson, P. L. (2001). Contribution of
the hyperpolarization-activated current (Ih) to membrane potential and GABA
release in hippocampal interneurons. J. Neurophysiol. 86, 261–268.

Ma, Y., Hu, H., Berrebi, A. S., Mathers, P. H., and Agmon, A. (2006). Distinct
subtypes of somatostatin-containing neocortical interneurons revealed in trans-
genic mice. J. Neurosci. 26, 5069–5082. doi: 10.1523/JNEUROSCI.0661-06.2006

MacVicar, B. A., Tse, F. W., Crichton, S. A., and Kettenmann, H. (1989). GABA-
activated Cl- channels in astrocytes of hippocampal slices. J. Neurosci. 9,
3577–3583.

Magee, J. C. (1998). Dendritic hyperpolarization-activated currents modify the
integrative properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18,
7613–7624.

Magee, J. C. (1999). Dendritic Ih normalizes temporal summation in hippocampal
CA1 neurons. Nat. Neurosci. 2, 508–514. doi: 10.1038/9158

Martin, D. L., and Olsen, R. W. (2000). GABA in the Nervous System: The View at
Fifty Years Philadelphia: Lippincott Williams and Wilkins.

Martina, M., Schultz, J. H., Ehmke, H.,Monyer, H., and Jonas, P. (1998). Functional
and molecular differences between voltage-gated K+ channels of fast-spiking
interneurons and pyramidal neurons of rat hippocampus. J. Neurosci. 18,
8111–8125.

Massengill, J. L., Smith, M. A., Son, D. I., and O’Dowd, D. K. (1997). Differential
expression of K4-AP currents and Kv3.1 potassium channel transcripts in corti-
cal neurons that develop distinct firing phenotypes. J. Neurosci. 17, 3136–3147.

McBain, C. J., and Fisahn, A. (2001). Interneurons unbound. Nat. Neurosci. 2,
11–23. doi: 10.1038/35049047

McGarry, L. M., Packer, A. M., Fino, E., Nikolenko, V., Sippy, T., and Yuste,
R. (2010). Quantitative classification of somatostatin-positive neocortical
interneurons identifies three interneuron subtypes. Front. Neural Circuits 4:12.
doi: 10.3389/fncir.2010.00012

Mei, Y. A., Louiset, E., Vaudry, H., and Cazin, L. (1995). A-type potassium current
modulated by A1 adenosine receptor in frog melanotrophs. J. Physiol. (Lond.)
489, 431–442. doi: 10.1113/jphysiol.1995.sp021063

Michelson, H. B., and Wong, R. K. S. (1991). Excitatory synaptic responses medi-
ated by GABAA receptors in the hippocampus. Science 253, 1420–1423. doi:
10.1126/science.1654594

Mihaly, A., Bencsik, K., and Solymosi, T. (1990). Naltrexone potentiates 4-
aminopyridine seizures in the rat. J. Neural Transm. Gen. Sect. 79, 59–67. doi:
10.1007/BF01251001

Monaghan, M. M., Menegola, M., Vacher, H., Rhodes, K. J., and Trimmer,
J. S. (2008). Altered expression and localization of hippocampal A-type
potassium channel subunits in the pilocarpine-induced model of temporal
lobe epilepsy. Neuroscience 156, 550–562. doi: 10.1016/j.neuroscience.2008.
07.057

Nolan, M. F., Malleret, G., Dudman, J. T., Buhl, D. L., Santoro, B., Gibbs, E., et al.
(2004). A behavioral role for dendritic integration: HCN1 channels constrain
spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal
neurons. Cell 119, 719–732.

Frontiers in Cellular Neuroscience | www.frontiersin.org 15 March 2015 | Volume 9 | Article 89

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Williams and Hablitz Ih and GABAergic network synchronization

Notomi, T., and Shigemoto, R. (2004). Immunohistochemical localization of Ih
channel subunits, HCN1-4, in the rat brain. J. Comp. Neurol. 471, 241–276. doi:
10.1002/cne.11039

Okaty, B. W., Miller, M. N., Sugino, K., Hempel, C. M., and Nelson, S. B.
(2009). Transcriptional and electrophysiological maturation of neocorti-
cal fast-spiking GABAergic interneurons. J. Neurosci. 29, 7040–7052. doi:
10.1523/JNEUROSCI.0105-09.2009

Olah, S., Fule, M., Komlosi, G., Varga, C., Baldi, R., Barzo, P., et al. (2009).
Regulation of cortical microcircuits by unitary GABA-mediated volume trans-
mission. Nature 461, 1278–1281. doi: 10.1038/nature08503

Otis, T. S., and Mody, I. (1992). Differential activation of GABAA and GABAB
receptors by spontaneously released transmitter. J. Neurophysiol. 67, 227–235.

Packer, A. M., and Yuste, R. (2011). Dense, unspecific connectivity of neocorti-
cal parvalbumin-positive interneurons: a canonical microcircuit for inhibition?
J. Neurosci. 31, 13260–13271. doi: 10.1523/JNEUROSCI.3131-11.2011

Perreault, P., and Avoli, M. (1989). Effects of low concentrations of 4-
aminopyridine on CA1 pyramidal cells of the hippocampus. J. Neurophysiol.
61, 953–970.

Perreault, P., and Avoli, M. (1991). Physiology and pharmacology of epileptiform
activity induced by 4-aminopyridine in rat hippocampal slices. J. Neurophysiol.
65, 771–785.

Peters, A., and Jones, E. G. (1984). Cellular Components of the Cerebral Cortex.
New York, NY: Plenum Press.

Pouille, F., Marin-Burgin, A., Adesnik, H., Atallah, B. V., and Scanziani, M. (2009).
Input normalization by global feedforward inhibition expands cortical dynamic
range. Nat. Neurosci. 12, 1577–1587. doi: 10.1038/nn.2441

Pouille, F., and Scanziani, M. (2001). Enforcement of temporal fidelity in pyra-
midal cells by somatic feed-forward inhibition. Science 293, 1159–1163. doi:
10.1126/science.1060342

Powell, K. L., Ng, C., O’Brien, T. J., Xu, S. H., Williams, D. A., Foote, S. J.,
et al. (2008). Decreases in HCN mRNA expression in the hippocampus after
kindling and status epilepticus in adult rats. Epilepsia 49, 1686–1695. doi:
10.1111/j.1528-1167.2008.01593.x

Price, C. J., Cauli, B., Kovacs, E. R., Kulik, A., Lambolez, B., Shigemoto,
R., et al. (2005). Neurogliaform neurons form a novel inhibitory net-
work in the hippocampal CA1 area. J. Neurosci. 25, 6775–6786. doi:
10.1523/JNEUROSCI.1135-05.2005

Reyes, A., Lujan, R., Rozov, A., Burnashev, N., Somogyi, P., and Sakmann, B.
(1998). Target-cell-specific facilitation and depression in neocortical circuits.
Nat. Neurosci. 1, 279–285. doi: 10.1038/1092

Rivera, C., Voipo, J., Payne, J. A., Ruusuvuori, E., Lahtinen, H., Lamsa, K.,
et al. (1999). The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing
during neuronal maturation. Nature 397, 251–255. doi: 10.1038/16697

Robinson, R. B., and Siegelbaum, S. A. (2003). Hyperpolarization-activated cation
currents: from molecules to physiological function. Annu. Rev. Physiol. 65,
453–480. doi: 10.1146/annurev.physiol.65.092101.142734

Rudy, B., Fishell, G., Lee, S., and Hjerling-Leffler, J. (2011). Three groups of
interneurons account for nearly 100% of neocortical GABAergic neurons. Dev.
Neurobiol. 71, 45–61. doi: 10.1002/dneu.20853

Rudy, B., and McBain, C. J. (2001). Kv3 channels: voltage-gated K+ channels
designed for high-frequency repetitive firing. Trends Neurosci. 24, 517–526. doi:
10.1016/S0166-2236(00)01892-0

Rutecki, P. A., Lebeda, F. J., and Johnston, D. (1987). 4-Aminopyridine produces
epileptiform activity in hippocampus and enhances synaptic excitation and
inhibition. J. Neurophysiol. 57, 1911–1924.

Santoro, B., Chen, S., Luthi, A., Pavlidis, P., Shumyatsky, G. P., Tibbs, G. R., et al.
(2000). Molecular and functional heterogeneity of hyperpolarization-activated
pacemaker channels in the mouse CNS. J. Neurosci. 20, 5264–5275.

Sekirnjak, C., Martone, M. E., Weiser, M., Deerinck, T., Bueno, E., Rudy, B., et al.
(1997). Subcellular localization of the K+ channel subunit Kv3.1b in selected
rat CNS neurons. Brain Res. 766, 173–187. doi: 10.1016/S0006-8993(97)0
0527-1

Serodio, P., and Rudy, B. (1998). Differential expression of Kv4 K+ channel sub-
units mediating subthreshold transient K+ (A-type) currents in rat brain.
J. Neurophysiol. 79, 1081–1091.

Shin, M., Brager, D., Jaramillo, T. C., Johnston, D., and Chetkovich, D. M. (2008).
Mislocalization of h channel subunits underlies h channelopathy in temporal
lobe epilepsy.Neurobiol. Dis. 32, 26–36. doi: 10.1016/j.nbd.2008.06.013

Silberberg, G., and Markram, H. (2007). Disynaptic inhibition between neocor-
tical pyramidal cells mediated by Martinotti Cells. Neuron 53, 735–746. doi:
10.1016/j.neuron.2007.02.012

Smart, S. L., Lopantsev, V., Zhang, C. L., Robbins, C. A., Wang, H., Chiu, S. Y.,
et al. (1998). Deletion of the Kv 1.1 potassium channel causes epilepsy in mice.
Neuron 20, 809–819. doi: 10.1016/S0896-6273(00)81018-1

Southan, A. P., Morris, N. P., Stephens, G. J., and Robertson, B. (2000).
Hyperpolarization-activated currents in presynaptic terminals of mouse cere-
bellar basket cells. J. Physiol. (Lond.) 526, 91–97. doi: 10.1111/j.1469-
7793.2000.t01-1-00091.x

Spyker, D. A., Lynch, C., Shabanowitz, J., and Sinn, J. A. (1980). Poisoning
with 4-Aminopyridine: report of three cases. Clin. Toxicol. 16, 487–497. doi:
10.3109/15563658008989978

Staley, K. J., Soldo, B. L., and Proctor, W. R. (1995). Ionic mechanisms of neu-
ronal excitation by inhibitory GABAA receptors. Science 269, 977–981. doi:
10.1126/science.7638623

Stasheff, S. F., Hines, M., and Wilson, W. A. (1993). Axon terminal hyperex-
citability associated with epileptogenesis in vitro. I. Origin of ectopic spikes.
J. Neurophysiol. 70, 961–975.

Storm, J. F. (1988). Temporal integration by a slowly inactivating K+ current in rat
hippocampal neurons. Nature 336, 379–381. doi: 10.1038/336379a0

Strauss, U., Kole, M. H. P., Brauer, A. U., Pahnke, J., Bajorat, R., Rolfs, A., et al.
(2004). An impaired neocortical Ih is associated with enhanced excitability
and absence epilepsy. Eur. J. Neurosci. 19, 3048–3058. doi: 10.1111/j.0953-
816X.2004.03392.x

Stuart, G., Spruston, N., Sakmann, B., and Häusser, M. (1997). Action potential
initiation and back propagation in neurons of the mammalian CNS. Trends
Neurosci. 20, 125–131. doi: 10.1016/S0166-2236(96)10075-8

Sun, Q., Xing, G. G., Tu, H. Y., Han, J. S., and Wan, Y. (2005). Inhibition of
hyperpolarization-activated current by ZD7288 suppresses ectopic discharges
of injured dorsal root ganglion neurons in a rat model of neuropathic pain.
Brain Res. 1032, 63–69. doi: 10.1016/j.brainres.2004.10.033

Sun, W., Maffie, J. K., Lin, L., Petralia, R. S., Rudy, B., and Hoffman, D. A. (2011).
DPP6 establishes the A-type K+ current gradient critical for the regulation of
dendritic excitability in CA1 hippocampal neurons.Neuron 71, 1102–1115. doi:
10.1016/j.neuron.2011.08.008

Szente, M., and Baranyi, A. (1987). Mechanism of aminopyridine-induced ictal
seizure activity in the cat neocortex. Brain Res. 413, 368–373. doi: 10.1016/0006-
8993(87)91031-6

Tanaka, Y., Tanaka, Y., Furuta, T., Yanagawa, Y., and Kaneko, T. (2008). The
effects of cutting solutions on the viability of GABAergic interneurons in
cerebral cortical slices of adult mice. J. Neurosci. Meth. 171, 118–125. doi:
10.1016/j.jneumeth.2008.02.021

Thesleff, S. (1980). Aminopyridines and synaptic transmission. Neuroscience 5,
1413–1419. doi: 10.1016/0306-4522(80)90002-0

Thomson, A. M., and Lamy, C. (2007). Functional maps of neocortical local
circuitry. Front. Neurosci. 1:19–42. doi: 10.3389/neuro.01.1.1.002.2007

Tibbs, G. R., Barrie, A. P., Van Miegham, F. J. E., McMahon, H. T., and Nicholls,
D. G. (1989). Repetitive action potentials in isolated nerve terminals in the pres-
ence of 4-aminopyridine: effects on cytosolic free Ca2+ and glutamate release.
J. Neurochem. 53, 1693–1699. doi: 10.1111/j.1471-4159.1989.tb09232.x

Traub, R. D., Pais, I., Bibbig, A., LeBeau, F. E. N., Buhl, E. H., Garner, H., et al.
(2005). Transient depressionof excitatory synapses on interneurons contributes
to epileptiform bursts during gamma oscillations in the mouse hippocampal
slice. J. Neurophysiol. 94, 1225–1235. doi: 10.1152/jn.00069.2005

Uematsu, M., Hirai, Y., Karube, F., Ebihara, S., Kato, M., Abe, K., et al. (2008).
Quantitative chemical composition of cortical GABAergic neurons revealed in
transgenic venus-expressing rats. Cereb. Cortex 18, 315–330. doi: 10.1093/cer-
cor/bhm056

Uva, L., Avoli, M., and de Curtis, M. (2009). Synchronous GABAA-receptor-
dependent potentials in limbic areas of the in-vitro isolated adult guinea
pig brain. Eur. J. Neurosci. 29, 911–920. doi: 10.1111/j.1460-9568.2009.
06672.x

Voskuyl, R. A., and Albus, H. (1985). Spontaneous epileptiform discharges in
hippocampal slices induced by 4-aminopyridine. Brain Res. 342, 54–66. doi:
10.1016/0006-8993(85)91352-6

Wang, L.-Y., Gan, L., Forsythe, I. D., and Kaczmarek, L. K. (1998). Contribution
of the Kv3.1 potassium channel to high-frequency firing in the mouse

Frontiers in Cellular Neuroscience | www.frontiersin.org 16 March 2015 | Volume 9 | Article 89

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Williams and Hablitz Ih and GABAergic network synchronization

auditory neurones. J. Physiol. (Lond.) 509, 183–194. doi: 10.1111/j.1469-
7793.1998.183bo.x

Wang, Y., Toledo-Rodriguez, M., Gupta, A., Wu, C., Silberberg, G., Luo, J., et al.
(2004). Anatomical, physiological and molecular properties of Martinotti cells
in the somatosensory cortex of the juvenile rat. J. Physiol. (Lond.) 561, 65–90.
doi: 10.1113/jphysiol.2004.073353

Wehr, M., and Zador, A. M. (2003). Balanced inhibition underlies tuning
and sharpens spike timing in auditory cortex. Nature 426, 442–446. doi:
10.1038/nature02116

Weiser, M., Bueno, E., Sekirnjak, C., Martone, M. E., Baker, H., Hillman, D., et al.
(1995). The potassium channel subunit KV3.1b is localized to somatic and
axonal membranes of specific populations of CNS neurons. J. Neurosci. 15,
4298–4314.

Weiser, M., Vega-Saenz de Miera, E., Kentros, C., Moreno, H., Franzen, L.,
Hillman, D., et al. (1994). Differential expression of Shaw-related K+ channels
in the rat central nervous system. J. Neurosci. 14, 949–972.

Weiss, D. S., and Hablitz, J. J. (1984). Interaction of penicillin and pentobarbi-
tal with inhibitory synaptic mechanisms in neocortex. Cell Mol. Neurobiol. 4,
301–317. doi: 10.1007/BF00733594

Williams, S. R., and Stuart, G. J. (2000). Site independence of EPSP time course is
mediated by dendritic Ih in neocortical pyramidal neurons. J. Neurophysiol. 83,
3177–3182.

Wu, J., and Hablitz, J. J. (2005). Cooperative activation of D1 and D2 dopamine
receptors enhances a hyperpolarization-activated inward current in layer I
interneurons. J. Neurosci. 25, 6322–6328. doi: 10.1523/JNEUROSCI.1405-
05.2005

Wu, R. L., and Barish, M. E. (1992). Two pharmacologically and kinetically dis-
tinct transient potassium currents in cultured embryonic mouse hippocampal
neurons. J. Neurosci. 12, 2235–2246.

Xu, X., Roby, K. D., and Callaway, E. M. (2006). Mouse cortical inhibitory neu-
ron type that coexpresses somatostatin and calretinin. J. Comp. Neurol. 499,
144–160. doi: 10.1002/cne.21101

Yuan, W., Burkhalter, A., and Nerbonne, J. M. (2005). Functional role of the fast
transient outward K+ current IA in pyramidal neurons in (Rat) primary visual
cortex. J. Neurosci. 25, 9185–9194. doi: 10.1523/JNEUROSCI.2858-05.2005

Zhou, F.-M., and Hablitz, J. J. (1996). Layer I neurons of the rat neocortex. II.
Voltage-dependent outward currents. J. Neurophysiol. 76, 668–682.

Zsiros, V., and Maccaferri, G. (2005). Electrical coupling between interneu-
rons with different excitable properties in the stratum lacunosum-moleculare
of the juvenile CA1 rat hippocampus. J. Neurosci. 25, 8686–8695. doi:
10.1523/JNEUROSCI.2810-05.2005

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2015 Williams and Hablitz. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this jour-
nal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Cellular Neuroscience | www.frontiersin.org 17 March 2015 | Volume 9 | Article 89

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive

	Differential modulation of repetitive firing and synchronous network activity in neocortical interneurons by inhibition of A-type K+ channels and Ih
	Introduction
	Materials and Methods
	Ethics Statement
	Slice Preparation
	Whole Cell Recording
	Data Acquisition and Analysis
	Drugs and Drug Application
	Statistics

	Results
	Identification of FS-BC and MCs in Rat Neocortex
	Alterations in the Intrinsic Excitability of GABAergic Interneurons Induced by 4-AP
	Fast-Spiking Basket Cells
	Martinotti Cells

	Inhibition of Ih Increases Synchronous GABAergic Network Activity
	Martinotti Cells
	Fast-Spiking Basket Cells

	Temporal IPSP Summation in GABAergic Interneurons

	Discussion
	4-AP Alters the Intrinsic Firing Properties of FS-BCs and b-MCs
	4-AP Induced GABAergic Network Synchronization
	Ih Modulation of Network GABAergic Synchronization

	Acknowledgments
	References


