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Abstract

The scientific study of consciousness is currently undergoing a critical transition in the form of a rapidly evolving scientific de-
bate regarding whether or not currently proposed theories can be assessed for their scientific validity. At the forefront of this
debate is Integrated Information Theory (IIT), widely regarded as the preeminent theory of consciousness because it quanti-
fied subjective experience in a scalar mathematical measure called U that is in principle measurable. Epistemological issues in
the form of the “unfolding argument” have provided a concrete refutation of IIT by demonstrating how it permits functionally
identical systems to have differences in their predicted consciousness. The implication is that IIT and any other proposed the-
ory based on a physical system’s causal structure may already be falsified even in the absence of experimental refutation.
However, so far many of these arguments surrounding the epistemological foundations of falsification arguments, such as
the unfolding argument, are too abstract to determine the full scope of their implications. Here, we make these abstract argu-
ments concrete, by providing a simple example of functionally equivalent machines realizable with table-top electronics that
take the form of isomorphic digital circuits with and without feedback. This allows us to explicitly demonstrate the different
levels of abstraction at which a theory of consciousness can be assessed. Within this computational hierarchy, we show how
IIT is simultaneously falsified at the finite-state automaton level and unfalsifiable at the combinatorial-state automaton level.
We use this example to illustrate a more general set of falsification criteria for theories of consciousness: to avoid being al-
ready falsified, or conversely unfalsifiable, scientific theories of consciousness must be invariant with respect to changes that
leave the inference procedure fixed at a particular level in a computational hierarchy.
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Introduction

Whether or not theories for consciousness can be brought
within the purview of science is a subject of intense debate and
equally intense importance. The resolution of this debate is
necessary for validating theory against experiments in human

subjects. It is also critical to recognizing and/or engineering con-
sciousness in nonhuman systems such as machines. Currently,
there is a global, multi-million dollar effort devoted to scientifi-
cally validating or refuting the most promising candidate theo-
ries, specifically Integrated Information Theory (IIT) and the
Global Neuronal Workspace Theory (Reardon 2019). At the same
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time, it is becoming increasingly unclear whether these theories
meet the required scientific criteria for validating them.

Since the early 1990s, scientific studies of consciousness
have primarily focused on identifying spatiotemporal patterns
in the brain that correlate with what we intuitively consider to
be a conscious experience. This is due in large part to advances
in medical imaging such as electroencephalograms and func-
tional magnetic resonance imaging (fMRI) that assess brain ac-
tivity during different functional behaviors (e.g. sleeping, verbal
reports, and so on). The empirical data that results from such
tests provide evidence for links between spatiotemporal pat-
terns and inferred conscious states. These links, known as
Neural Correlates of Consciousness (NCCs), are well-established
and form the basis for an entire subfield of contemporary neu-
roscience (Metzinger 2000; Rees et al. 2002). Despite the success
of NCCs, however, there is an underlying epistemic issue with
the scientific study of consciousness because conscious states
are never directly observed within the NCC framework. Instead,
they must be inferred based on our own phenomenological expe-
rience. For example, when a person is asleep we infer they are
less conscious than when they are awake because we have the
first-hand subjective experience of what it is like to be both
asleep and awake.

While the epistemic issues associated with NCCs are widely
known and discussed, the debate around the possibility of falsi-
fying some of the leading theories of consciousness has recently
intensified. This resurgence of interest in what constitutes a
valid theory for consciousness is primarily due to the new for-
malization of the scientific issues in the form of “unfolding”
arguments (Doerig et al. 2019; Hanson and Walker 2019; Kleiner
and Hoel 2021). In particular, the original unfolding argument as
clarified by Doerig et al. points to deep logical problems with
any causal structure theory (CST) that assumes consciousness
supervenes on a particular causal structure independent of out-
ward functional consequences (Doerig et al. 2019), which implies
NCCs would be inadequate to validate such theories. Because
the currently leading candidate theory for consciousness, IIT, is
itself a CST, this has major implications for how we approach
the problem of consciousness. To understand how the unfold-
ing argument aims to falsify IIT, it is important to first under-
stand how IIT is constructed as a theory that is derived from
simple axioms that make assumptions regarding what con-
scious experience is, and from these derives a mathematical
measure of integrated information U that is proposed as a quan-
tification of consciousness. Among the axioms of the theory is
the integration axiom, which states that we experience con-
sciousness as an “undivided whole,” meaning, e.g. that our left
and right visual fields are integrated into a single conscious ex-
perience. Crucially, integration (and the other phenomenologi-
cal axioms of IIT) must have a direct translation in terms of
mathematical machinery to construct the formal theory. For in-
tegration, this is achieved by enforcing integration of the physi-
cal substrate(s) that gives rise to consciousness, where the
precise mathematical definition is in terms of the presence of
feedback between the physical components in a system (e.g.
neurons). Consequently, any system that is strictly feed-for-
ward is unconscious, by definition in IIT, due to an assumed in-
ability for such physical structures to generate a unified
subjective experience. What the unfolding argument showed
was that the input–output behavior of any conscious system
with feedback and U > 0 can be perfectly emulated by a strictly
feed-forward system with U¼ 0. To do so, one simply needs to
“unfold” the feedback present in the causal structure of the con-
scious system in a way that preserves the underlying

functionality of the system (i.e. the input–output behavior)—a
feat that can be accomplished in the forward or backward direc-
tion using feed-forward and recurrent neural networks, respec-
tively (Doerig et al. 2019) or Krohn-Rhodes decomposition
(Hanson and Walker 2019). The unfolding argument highlights a
key issue with IIT and other potential CSTs: the physical process
that is assumed to be causally responsible for generating con-
sciousness does not necessarily correlate with any particular in-
put–output behavior, meaning it is not possible to directly test
predictions from the theory.

The scope of this argument is not strictly limited to CSTs.
Kleiner and Hoel recently proved that any candidate theory that
treats inference and prediction procedures independently must
ultimately be subject to the same consequences as theories that
succumb to the unfolding argument (Kleiner and Hoel 2020).
The validity of their proof rests on their definition of indepen-
dence, which states that inference and prediction are indepen-
dent if and only if one can fix the results from the inference
procedure while simultaneously allowing predictions from the
theory to vary. This results in a priori or “pre-falsification” of the
theory, as the theoretical existence of different predictions un-
der fixed inference content necessarily implies that at least one
of the predictions is misaligned with the results from the infer-
ence procedure. Thus, the dilemma is how one can create a the-
ory of consciousness that simultaneously does not vary under
fixed inference content and also does not explicitly depend on
the inference content. To satisfy this dual requirement, a viable
theory of consciousness must make predictions based on a part
of the data set that is kept separate from that which is used to
draw inferences (e.g. inferences based on verbal report while
predictions are based on fMRI data). Yet, predictions must also
match the results from the inference procedure if the theory is
to avoid empirical falsification. If inferences are based on input–
output behavior, as is commonly assumed, this implies predic-
tions from the theory must be invariant with respect to any
change that leaves the input–output behavior of the system
fixed. This requirement is quite general and applies beyond
CSTs.

The arguments by Doerig et al. and Kleiner and Hoel have
addressed the epistemic issues surrounding falsification of the-
ories of consciousness in the abstract. Here, we seek to ground
these abstract arguments in a concrete, easily visualizable sys-
tem that allows clear demonstration of their consequences. The
key contribution of the current work is to demonstrate how the
issue of falsification is related to the level in the computational
hierarchy at which one assesses the validity of a theory for con-
sciousness. To do so, we introduce a hierarchy of formal
descriptions that can be used to describe a given finite-state
machine. We show that the discrepancy between whether IIT is
falsified or unfalsifiable ultimately depends on the computa-
tional scale at which inference of subjective experience is made.
In particular, we construct isomorphic causal structures (digital
circuits) designed to operate a simple electronic tollbooth with
and without feedback. In light of this isomorphism, we evaluate
the falsification of IIT at two levels of computation for this cir-
cuit: at the finite-state automaton (FSA) level and the combina-
torial-state automaton (CSA) level and show how the theory is
either unfalsifiable at the CSA level or pre-falsified at the FSA
level. Our case study demonstrates how candidate measures of
consciousness must be invariant with respect to changes in for-
mal descriptions that exist below the level of the specified infer-
ence procedure if they are to avoid a priori falsification. An
added consequence is that our approach provides a window
into a deep connection between the current debate surrounding
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formalization of falsification arguments and the foundations of
computer science. We conclude with a brief discussion regard-
ing what a candidate measure of consciousness that satisfies
this constraint might look like, as well as the scope of its
applicability.

Results
Defining falsification for theories of consciousness

Falsification is formally defined as a mismatch between a theo-
retical prediction and an observation. It is an essential compo-
nent for a theory to be considered scientific in a Popperian
framework (Popper 2014). Falsification for theories of conscious-
ness, however, is immediately problematic due to an inability to
observe conscious states directly. Instead, they must be inferred

based on other empirical observations. Thus, falsification for
theories of consciousness is defined as a mismatch between
prediction and inference rather than prediction and observation
(Kleiner and Hoel 2020). Consequently, it is possible to disagree
as to whether or not a theory of consciousness is falsified due to
discrepancies between inference procedures being applied to
empirical observations (i.e. the empirical data are the same but
inferences are different), or worse, to select inference proce-
dures in accordance with predictions from the theory. This is-
sue highlights the main flaw with the Popperian notion of
falsification; namely, there is no such thing as a theory-agnostic
inference procedure. Inference based on input–output behavior,
e.g. is itself premised on a theory of consciousness grounded in
assumptions about human consciousness under normal cir-
cumstances, or the belief that “consciousness is as conscious-
ness does” (Turing 1950; Harnad 1991). Indeed, even Popper
conceded that logic can never force a scientist to give up a par-
ticular theory in the face of surprising observations, meaning
falsification can never be proven (Godfrey-Smith 2009). One can
always reject the assumptions underlying the inference proce-
dure rather than those underlying the prediction.

Consensus agreement on falsification can only be achieved
with respect to a given inference procedure. For example, if a physi-
cal system can be transformed into another physical system in
a way that preserves the results from an agreed-upon inference
procedure while changing the underlying prediction from the
theory then a theory of consciousness is falsified with respect
to that inference procedure, as this guarantees a mismatch be-
tween prediction and inference for at least one of the physical
systems under consideration (Kleiner and Hoel 2020). Crucially,
it is not necessary to conduct a laboratory experiment in order
to falsify a theory, as it is possible to demonstrate the existence
of transformations that change the prediction from the theory
under fixed inference content without the need to realize these
transformations in practice. In such cases, the theory is falsified
a priori or “pre-falsified” in the language of Kleiner and Hoel
2020. It is pre-falsification that is exploited by Doerig et al. (2019)
in the unfolding argument: the input–output behavior of a sys-
tem is fixed and the underlying causal structure is transformed
in a way that changes the predicted U value from IIT. If one
assumes that the inference procedure takes place at the level of
input–output behavior, then the preservation of the input–out-
put behavior fixes the inferred conscious experience and falsi-
fies any and all theories of consciousness that are not invariant
under this transformation.

The computational hierarchy

It is typically assumed that inference of conscious states takes
place at the level of input–output behavior, as this is the level of
description where observations can be intuitively compared to
one’s own phenomenal experience. Indeed, the entire field of
NCCs rests on the assumed connection between specific output
behavior (sleep, self-report, and so on) and inferred conscious
states. However, this is not the only formal level of description
at which inferences can be made, nor is it immediately appar-
ent that it is optimal. It is at least plausible that lower level
descriptions, ranging from neuronal firing to thermodynamic
efficiency, could play a role in a valid scientific theory of con-
sciousness. For this reason, our formalism is agnostic to the
specific level at which inferences are made; instead, we focus
on explicitly characterizing the spectrum of possibilities and ex-
amining each in turn. To do this, we introduce the following for-
mal hierarchy that can be used to describe a given
computational system, allowing us to precisely formalize the
computational level at which a theory is making inferences and
predictions.

At the top of the hierarchy is the functional relationship be-
tween the inputs, outputs, and internal states that define a
computation. These states are typically described in terms of
input–output behaviors (“stop,” “walk,” “go,” and so on) but
what really gives them meaning mathematically is only their
topological relationship with one another. This implies that at
this level, the formal description of the computation is not
grounded in any particular representation and could, in fact, be
realized by radically different logical architectures (Fig. 1). This
abstract definition of a computational system corresponds to
what Chalmers refers to as the “FSA” level of description, due to
the fact it is defined in terms of a global FSA (Chalmers 1993). To
add a layer of realizability to this description, one must use
what Chalmers refers to as a CSA. In a CSA description, the ab-
stract FSA description of a system is prescribed a specific label-
ing scheme or encoding of the subcomponents that comprise
the global system. In digital electronics, as well as models of the
human brain, this encoding is usually given in terms of binary
labels that are used to represent abstract functional states in
the system. Consequently, transitions between states in the
CSA description fix local dependencies between elements, as
the correct Boolean function must be applied to each “bit” or
“neuron” based on the global state of the system. In addition,
the CSA description provides a minimum bound on the mem-
ory resources required to run the computation, as the binary
labels specify the number of bits required to instantiate the
computation. The final level of the computational hierarchy
specifies the logic by which the CSA description is imple-
mented. In a Boolean system, this amounts to a specific choice
of logic gates used to realize each Boolean function. It is this fi-
nal level in the hierarchy that we deem the “causal structure”
of the system as it fully constrains the logical mechanisms
that realize the desired computation (e.g. it describes a digital
circuit). Just as there are many CSA representations for a given
FSA, there are many “causal structures” (choice of logic func-
tions) for a given CSA. For example, the same CSA description
can always be realized using AND, OR, and, NOT gates or uni-
versal NAND gates as these examples both form a complete
logical basis for Boolean computation. This choice of logic has
meaningful consequences in terms of the minimum work re-
quired to implement the computation, regardless of the exact
physical substrate (Wolpert and Kolchinsky 2020), which may
be relevant for theories of consciousness founded on
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evolutionary arguments of efficiency. However, it is important
to note that biological systems typically operate many orders
of magnitude above this theoretical limit on thermodynamic
efficiency due to the macroscopic size of the components
implementing the computation (Bennett 1982). Thus, it is pos-
sible to extend our computational hierarchy to include such
properties (i.e. the material properties of a given causal struc-
ture), but our focus here is primarily on mathematical theories
of consciousness for which an abstract description of the sys-
tem must suffice.

Also of note is the relationship between the computational
hierarchy and the ideas of coarse-graining and black-boxing
(Hoel 2017; Marshall 2018). Put simply, both coarse-graining and
black-boxing refer to the process of throwing away microscopic
information in favor of a simplified macroscopic description.
The primary difference between coarse-graining and black-box-
ing is that the former results in a mathematical partition of the
microscopic state space (i.e. each microstate is assigned to a
macrostate), whereas the latter allows for exogenous factors
and the dropping of microstates from the macroscopic descrip-
tion (Hoel 2017). Technically, a partition does not require
dimensionality reduction, meaning a one-to-one map (isomor-
phism) between micro and macro is a valid coarse-graining (We
are only talking about isomorphisms between mathematical
structures here and are not considering constraints that may

arise as a consequence of physical structure). Thus, the two CSA
representations shown in Fig. 1 are technically coarse-grainings
of one another, and of the FSA description, as all are in one-to-
one correspondence. However, this notion of “coarse-graining”
violates our colloquial understanding, especially prevalent in
physics, of the term as a process that throws away information
in favor of a higher level description. A more appropriate use of
the idea is the consideration of a function that partitions the
state space of all possible CSAs into equivalence classes based
on the FSA that they realize. This results in a many-to-one map
from the microscopic state space of all possible CSAs to the
macroscopic state space of FSAs, where microstates within a
given macrostate share a meaningful similarity in that they are
lower level implementations of the same FSA. Indeed, this no-
tion of coarse-graining can be applied equally well to subse-
quent levels in the computational hierarchy; e.g. the state space
of all possible digital circuits (causal structures) can be parti-
tioned into equivalence classes based on the CSA that they im-
plement. Thus, the computational hierarchy can be viewed as a
formal coarse-graining of a computation, from its most general
representation to its most specific logical implementation.
Notably, the number of nodes in the state transition diagram
does not change as you move across levels. This is what sepa-
rates the notion of coarse-graining a computation in what we
implement here, from that of coarse-graining in physics.

Figure 1. The computational hierarchy used to classify formal levels of description. At the top of the hierarchy is the abstract FSA description of
a computation which, in this case, is a mod-eight counter. Beneath this level is the CSA description in which abstract states of the FSA have
been assigned specific binary labels which, in turn, constrain local dependencies between subcomponents. Note, it is this level of the hierarchy
that IIT uses to calculate U. At the bottom of the hierarchy is the full causal structure, as specified in terms of the specific logic gates that imple-
ment the Boolean functions from the CSA level. In this case, we have shown two different choices for a complete logical basis: AND/OR/NOT
gates or universal NAND gates.
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Prediction and inference within IIT
The primary goal of a mathematical theory of consciousness is
to predict whether or not a system is conscious based on a
mathematical description of the system. In IIT, the relevant
mathematical input for the prediction function is a transition
probability matrix (TPM) specifying the conditional probabilities
of internal state transitions, and the relevant mathematical out-
put is a scalar value U corresponding to the system’s overall
level of conscious experience. To calculate U, the states of the
system must be specified as binary strings (Balduzzi and Tononi
2008; Oizumi et al. 2014), which implies the internal representa-
tions of functional states must be fixed. In other words, U is sen-
sitive to the specific binary labels being used to represent the
functional states of an FSA description, which suggests it is the
CSA level of the computational hierarchy that is relevant to pre-
diction. Indeed, a CSA is nothing more than a graphical repre-
sentation of a TPM as it specifies the conditional probabilities of
transitions between labeled binary states. In practice, one can
also use the causal structure of a system (e.g. a digital circuit) to
calculate U, but only because the causal structure completely
specifies a labeled TPM. Different causal structures with the
same CSA description necessarily have the same U value, as the
TPM is fixed by the CSA representation rather than the causal
structure.

Once a CSA is specified, its U value and all other relevant
predictions from the theory are fixed. However, prior to this,
one has a choice of the spatiotemporal scale at which to con-
sider the dynamics. e.g. high-resolution time-series data may
be sampled, or spatially coarse-grained data might be instead
sampled in order to create a lower dimensional representation
of the same system. Interestingly, the U value for a given sys-
tem is not robust to this coarse-graining procedure, meaning
the spatiotemporal scale at which one views the dynamics is
relevant in predicting whether or not a system is conscious
(Hoel et al. 2016). To address this issue, an additional optimiza-
tion step must be performed wherein all possible spatiotempo-
ral coarse-grainings of a given system (note spatiotemporal
coarse-grainings can be different than computational coarse-
grainings per discussion above) are considered and the one with
the highest U value is predicted as the scale in which conscious-
ness resides, in accordance with the postulates of IIT (Hoel et al.
2016).

Unlike prediction, there is no clear prescription in IIT as to
where in the computational hierarchy one should infer con-
scious experience, because the theory must be used to predict
rather than infer conscious states such that the definition of in-
dependence is satisfied. Indeed, confusion over the level at
which inference procedures take place plays a prominent role
in the on-going debate and confusion surrounding whether or
not IIT is an experimentally falsifiable theory. On the one hand,
proponents of IIT design experiments to test theoretical predic-
tions against the traditionally held notion that certain outward
behaviors such as sleep and self-report are accurate reflections
of particular subjective experiences based on our own phenom-
enal experience. In this case, the inference procedure being
used is based on abstract input–output behavior (i.e. the FSA
level) where functional states such as sleep are expected in re-
sponse to inputs such as anesthetics (Casali et al. 2013; Reardon
2019). Crucially, these functional states used for inference do
not have natural binary representations and, therefore, can be
internally encoded in a variety of different ways with a variety
of different causal structures. Thus, inferences are made inde-
pendently of both the CSA and causal structure descriptions in
these experiments. On the other hand, proponents of IIT claim

that it is possible to fix the input–output behavior of a system
while still inferring a difference in subjective experiences (e.g.
justifying the existence of “philosophical zombies”) (Oizumi
et al. 2014; Albantakis and Tononi 2019). In this case, it is the
CSA rather than the FSA level of description that must be used
to infer the conscious state of a system, as fixed input–output
behavior implies a fixed FSA description. Thus, the inference
procedure that is used to support the experimental validity of
IIT in a traditional laboratory setting must ultimately be
rejected in defense of philosophical zombies, which is the para-
dox on which the unfolding argument is founded (Doerig et al.
2019).

A concrete example

We now turn to a concrete example that demonstrates the
unfolding argument as it applies to IIT, and the more general
problem of separating prediction from inference, using readily
available tabletop electronics. In particular, we will construct
isomorphic digital circuits with and without feedback designed
to operate a simple electronic counter, such as the tollbooth
shown in Fig. 2. See Supplementary Materials for a descriptions
of the methods. Focusing on feedback, as opposed to some
other difference in causal structure, allows us to ground our
thinking in the specifics of IIT, though the implications of our
results readily generalize to any mathematical theory of con-
sciousness (Rescorla 2020).

The FSA description of the tollbooth’s behavior is defined by
the requirement that it must lift the boom barrier in response to
the receipt of exactly eight quarters, as shown schematically in
Fig. 2a. To do this, the circuits governing the behavior of the toll-
booth must transition through eight internal memory states,
corresponding to the eight functional states in the FSA descrip-
tion of the machine, as shown in Fig. 2b. At the CSA level, we in-
sist that both the circuit with feedback and the circuit without
feedback be constructed on a three-bit logical architecture,
which serves to enforce a strict isomorphism (one-to-one map)
between internal states in the two different descriptions. Thus,
the FSA description of the two circuits is identical, while the
CSA descriptions preserve the topological relationship between
inputs, outputs, and internal states. Insisting on isomorphic
rather than homomorphic representations provides the tightest
possible control on confounding factors that could be used to
justify a difference in subjective experience, such as memory al-
location (i.e. the number of bits required to instantiate the com-
putation) (Oizumi et al. 2014).

In what follows, we first construct a “conscious” circuit with
feedback (and U > 0), followed by a functionally identical but
“unconscious” circuit with strictly feed-forward connections
(and U¼ 0). The general construction of both circuits is the
same: first, we assign binary labels to the functional states of
the system; then, we map these binary state transitions onto JK
flip-flops, which are the bits of our digital circuits; and last, we
use Karnaugh Maps to simplify the logic tables of the JK flip-
flops in a way that results in simple elementary logic gate
operations (e.g. AND, OR, and XOR). As we show, the presence
or absence of feedback in the system ultimately stems from the
initial choice of the binary labels used to represent or encode
the eight functional states of the system, in accordance with
the claim that U acts at the CSA level of description. For the sys-
tem with feedback, we randomly assign these labels in a way
that happens to result in U > 0 for all states. For the feed-for-
ward system, however, we carefully decompose the underlying
functional topology in a way that exploits hierarchical

Formalizing falsification for theories of consciousness | 5

https://academic.oup.com/nc/article-lookup/doi/10.1093/nc/niab014#supplementary-data


relationships such that information flows strictly unidirection-
ally between components in the system and U is guaranteed to
be zero (Hanson and Walker 2019). Note, for the tollbooth to
function correctly, the boom barrier must be programmed to
recognize the internal state A as functionally important, as this
is the output that causes the boom barrier to lift and reset. To
avoid confusion over this issue, we simply fix the binary repre-
sentation of state A as 000 across CSA representations, corre-
sponding to the notion that the motor hardware of the boom
barrier is programmed to recognize this specific signal as mean-
ingful. In reality, it is typically assumed that the motor hard-
ware can be reprogrammed to recognize any signal as
“meaningful”: all that is relevant from a functional perspective
is consistency between a circuit and its motor hardware.

Constructing a “conscious” tollbooth
To construct the conscious tollbooth, we randomly assign the
following binary labels to represent the eight functional states
in the FSA description of the tollbooth:

A ¼ 000;B ¼ 110;C ¼ 010;D ¼ 101;E ¼ 111; F ¼ 011;G ¼ 001;H
¼ 100

This assignment of labels fully specifies the CSA description
of the system, as each binary component (bit) now must transi-
tion in accordance with the global state of the system. For ex-
ample, the transition from state A to state B now requires that
the first component of the system transitions from binary state
0 to binary state 1 when the system is in global state 000, which
is a constraint on the causal structure. Similarly, the transition
from state B to state C specifies that the first component of the
system must transition from 1 to 0 when the system is in global
state 110. Taken together, the constraints on each individual
component in the system at each moment in time generate a
truth table that specifies the interdependence between ele-
ments and, consequently, the U value.

To construct the causal architecture, we must specify the el-
ementary building blocks of our system. In a human brain,
these building blocks would be neurons but in a digital circuit,
these building blocks are “JK flip-flops,” which are binary mem-
ory storage devices (bits) widely used in the construction of ba-
sic digital counters (Moore 1958; Cavanagh 2018). The behavior
of a JK flip-flop is quite simple: there are two stable internal
memory states (0 and 1), two input channels (the J input and the
K input), and a “clock” that serves to synchronize multiple flip-
flops within a circuit. Upon receipt of voltage on a line from the
clock, the flip-flop does one of four things depending on the

state of the J and K input channel: if the JK input is 00 the inter-
nal state remains unchanged (“latch”), if the JK input is 01 the
internal state resets to 0 (“reset”), if the JK input is 10 the inter-
nal state is set to 1 (“set”), and if the JK input is 11 the internal
state is flipped (“toggle”). Thus, for any given internal state tran-
sition—Qiðt0Þ ! Qiðt1Þ—there are two different pairs of JK input
that will correctly realize the transition, as shown in Fig. 3. This
degeneracy provides flexibility when it comes to the design of
the elementary logic gate operations required to realize the un-
derlying Boolean logic.

With the specification of the binary labels and the choice of
electronic components, we can now finish the construction of
the causal structure in terms of elementary logic gates. To do
so, we first convert the state transitions of each individual com-
ponent into their associated JK values. As mentioned, there is
degeneracy in the choice of JK input which means we only have
to specify one of the input channels (either J or K) to get the de-
sired transition. For each component in the circuit, there is a
column in Fig. 4a corresponding to the JK value that is required;
note, inputs that do not need to be specified are denoted with
an asterisk. Next, we must determine the elementary logic gates
required to get the correct JK transitions given the current state
of the system. For instance, when the system is in global state
110, the value of K1 (the K-input to the first component) must be
1, but when the system is in global state 111 the value of K1

must be 0. Taken together, the eight states of the system com-
prise a truth table of JK input as a function of the global state of
the system, as shown in Fig. 4b. Ordering these truth tables in
gray code yields “Karnaugh maps,” which allow straightforward
identification of the elementary logic gates required to operate
the circuit (Karnaugh 1953). The elementary logic expression for
each of the six input channels, in terms of AND, OR, XOR, and

Figure 2. Schematic illustration of a simplified electronic tollbooth (a) and its FSA description (b). The general behavior of the tollbooth is to lift a
boom barrier upon receipt of eight quarters ($2:00). To do this requires the ability to cycle through eight internal memory states fA;B; . . . ;Hg,
sending each internal state as output to the boom barrier.

Figure 3. A JK flip-flop is a widely used binary memory device (bit) in
digital electronics (a). The internal state of the flip-flop takes one of
two values (Q 2 f0; 1g) and is continuously sent as output. Upon re-
ceipt of a voltage from a clocked input, the voltages on the two input
channels J and K dictate the state transitions of Q (see main). For any
desired internal state transition Qðt0Þ ! Qðt1Þ, there are two JK

inputs that will correctly realize the transition (b) which provides
flexibility when it comes to circuit design.
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NOT gates, is shown above the corresponding Karnaugh map in
Fig. 4b.

The elementary logic expressions for the behavior of each JK
input complete the construction of our circuit, which is shown
in Fig. 5a. Clearly, this circuit contains meaningful feedback be-
tween components, as the state of the first component depends
on the state of the second and third and vice versa. The last
thing to check is whether or not this feedback is associated with
the presence of consciousness according to IIT, as feedback is a
necessary but not sufficient condition for U > 0. Using the py-
thon package PyPhi (Mayner et al. 2018), we find U > 0 for all
states (Fig. 5b), meaning this tollbooth is indeed considered con-
scious according to IIT.

Constructing an “unconscious” tollbooth
In the previous section, we demonstrated the construction of a
causal structure designed to operate the electronic tollbooth
shown in Fig. 2a. We did so by randomly assigning 3-bit binary
labels to represent the function states (fA;B; . . . ;Hg) of the sys-
tem and constructing the logic of the digital circuit in a way that
correctly realizes these labeled state transitions. The result was
a circuit that relied on feedback connections (i.e. bi-directional
information exchange between components) and had U > 0 for
all states (Fig. 5). In this section, we demonstrate that it is possi-
ble to assign binary labels to functional states in a different
way, such that the causal structure that results instantiates the

same FSA (Fig. 2b) but does not make use of feedback connec-
tions. To do so, we will “unfold” the underlying dynamics of the
system in a way that guarantees a causal architecture with
U¼ 0 for all states in the system.

The process of unfolding a finite-state description of a sys-
tem is based on techniques closely related to the Krohn-Rhodes
theorem from automata theory, which states: any abstract de-
terministic finite-state automata (FSA) can be realized using a
strictly feed-forward causal architecture comprised solely of
simple elementary components (Krohn and Rhodes 1965; Zeiger
1967). To do so isomorphically, one must find a “nested se-
quence of preserved partitions,” which creates a hierarchical
labeling scheme wherein earlier components (flip-flops) transi-
tion independently of later components (Zeiger 1968; Hanson
and Walker 2019). Due to this hierarchical independence, infor-
mation is guaranteed to flow unidirectionally from earlier com-
ponents to later components, thereby ensuring a strictly feed-
forward logical architecture and, correspondingly, U¼ 0 for all
states. While a full discussion of Krohn-Rhodes decomposition
is beyond the scope of this study (Egri-Nagy and Nehaniv 2015),
we briefly describe the relevant methodology for constructing a
nested sequence of preserved partitions in the Methods section.
The result, applied to the finite-state description of the toll-
booth shown in Fig. 2b, is the following set of binary labels used
to encode the functional states of our system:

Figure 4. To construct the digital circuit for the conscious tollbooth, we convert the global state transitions into their associated JK values (a).
Then, we use Karnaugh maps to determine the elementary logic required to update each component (b). The presence of feedback in the resul-
tant digital circuit is evident by the dependence of earlier components on later components (e.g. J1 ¼ Q1Q2 þ Q3 ) and vice versa (e.g. K3 ¼ Q1Q2 ).

Figure 5. An integrated digital circuit (a) designed to operate the electronic tollbooth was shown in Fig. 2. As can be seen, the causal structure con-
tains meaningful feedback in the form of bidirectional dependencies between pairs of elements and, consequently, has U > 0 for all states (b).
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A ¼ 000;B ¼ 100;C ¼ 010;D ¼ 110;E ¼ 001; F ¼ 101;G ¼ 011;H
¼ 111

Notice, in this labeling scheme, the value of the first compo-
nent (or “coordinate”) partitions the underlying state space of
the system into two macrostates: fA;C;E;Gg and fB;D; F;Hg and
can be thought of as high-level representation of “even” and
“odd” states. These macrostates are useful due to the fact they
transition deterministically back and forth between one an-
other. Thus, knowing the future state of the first component
depends solely on knowing the current state of the first compo-
nent. Similarly, the future state of the second component is
completely deterministic given the current state of the first and
second components and is agnostic to the third. In this way,
each additional component offers a refined estimate as to
where in the global state space the current microstate is located
(DeDeo 2011), hence the claim that the labeling scheme is
“hierarchical.”

With hierarchical coordinates assigned, the circuit construc-
tion now proceeds in a fashion identical to the previous section.
Namely, we convert the binary state transitions into their asso-
ciated JK values, shown in Fig. 6a. Then, we construct truth
tables for the state of each J and K input given the global state of
the system; and last, we order these truth tables in gray code
(Karnaugh Maps) and assign elementary logic gates to each in-
put channel (Fig. 6b). The resulting logical architecture is shown
in Fig. 7a. As required, the circuit is strictly feed-forward, as evi-
dent by the fact that each component depends solely on itself or
earlier components. This, in turn, guarantees U¼ 0 for all states
of the system (Fig. 7b) as the presence of feedback connections
is assumed to be a necessary condition for consciousness
according to IIT.

Discussion
Falsification, unfalsifiability, and the scientific
verification of explanations for consciousness

In light of our results, it is clear that IIT predicts a difference in
subjective experience between the “conscious” tollbooth in
Fig. 5 and the “unconscious” tollbooth in Fig. 7, based on their

difference in U value. Thus, falsification is a matter of whether
or not one can infer a corresponding difference that justifies this
difference in prediction. Because the two systems have the
same FSA description, any inference procedure that takes place
at the FSA level or above automatically falsifies the theory, as
the inference content is fixed at this level [implying a mismatch
between prediction and inference for at least one of the two pre-
dictions (Kleiner and Hoel 2020)]. Consequently, IIT is falsified
with respect to inference procedures that are based on the in-
put–output behavior of the system, as this is the FSA level of
description.

This implies that if IIT is to be considered falsifiable (and
not already falsified), inference must take place at the CSA
level or below. At the CSA level, however, the full utility of the
isomorphism is evident as the only mathematical difference
between the CSA description with and without U > 0 is a per-
mutation of the binary labels used to internally label func-
tional states. This means that ultimately this singular
difference must be used for both inference and prediction,
which implies prediction and inference must be coupled to-
gether in a way that violates independence—rendering the
theory unfalsifiable. For example, in Oizumi et al. (2014), the
authors argue that the reason functionally indistinguishable
systems with different U values have justifiably different sub-
jective experiences is because there are different amounts of
feedback present in the internal dynamics. Thus, the integra-
tion postulate is used to justify the difference in U values,
neglecting the fact that U is derived to be in correspondence
with the integration postulate; in other words, the presence
or absence of feedback must be used as both a means (predic-
tion) and an end (inference) to avoid falsification.

The inability to falsify a theory does not necessarily imply it
is unscientific. Indeed, when considered as a “phenomenology-
first” approach, IIT can be argued to be well-grounded rather
than circular. In this case, the scientific merit of the theory is in
the translation of its phenomenological axioms into empirical
predictions (i.e. U values) (Negro 2020). Even if these predictions
cannot be independently verified, the theory may be considered
scientific if it connects with other ideas and is embedded in a
larger conceptual structure in a way that exposes the axioms to

Figure 6. The state transitions and JK values (a) corresponding to the hierarchical labeling scheme described in the main text. Panel (b) shows
the Karnaugh maps used to determine the elementary logic gates used in the construction of the feed-forward logical architecture. Note, the
logical dependence between components is strictly unidirectional (e.g. J2 and K2 depend only on the state of Q1).
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observation. This approach to the demarcation problem (i.e.
what constitutes as science) does not require falsification, as
there are many ways in which observations can be used to mod-
ify and assess the core principles of a theory without directly
falsifying them. However, if the theory is constructed in such a
way that it is protected from all risk, then this is unscientific
handling of the core principles of the theory (Godfrey-Smith
2009). To scientifically handle the basic principles of IIT is to
work out what difference it makes to things we can observe if
the principles of IIT are true. What our results show is that the
presence or absence of U makes no difference to things we can
observe, beyond the syntactical differences between internal
representations.

Going forward

Our results prove an a priori or “pre-falsification” of IIT with re-
spect to inference at the FSA level using a simple, readily realiz-
able model. We have shown that what U measures are a
consequence of a particular CSA representation (or encoding) of a
computation, without clear grounding in terms of phenomenol-
ogy beyond what is assumed by the postulates of the theory. For
a theory to avoid the epistemic problems revealed by IIT under
the isomorphic transformation we introduce requires that no
transformation or “substitution” exists that changes the predic-
tion without affecting the inference, in complete agreement with
previous work related to the unfolding argument (Doerig et al.
2019; Kleiner and Hoel 2020). This, in turn, implies that beneath a
specified level of inference, a mathematical theory of conscious-
ness must be invariant with respect to any and all changes that
leave the results from the inference procedure fixed, correspond-
ing to the definition of independence from Kleiner and Hoel
(2020). Put simply, if you can make a change to a system that
does not affect what will be used to infer conscious states, then
such a change must not affect the prediction from the theory.

An example of a candidate measure that satisfies these
requirements is Group Complexity (Rhodes and Nehaniv 2009).
Like U, Group Complexity is a measure of computational com-
plexity based on a topological description of a computation.
Specifically, it counts the number of resets necessary to complete
a Krohn-Rhodes decomposition of the computation (Zeiger 1967;
Egri-Nagy and Nehaniv 2008), meaning all integration is decom-
posed into feed-forward representations prior to the complexity
being measured. This, in turn, puts all CSA representations on an
equal playing field, as complexity comes in two forms: “resets”
and feedback connections. By first unfolding the dynamics of an
integrated circuit, one can measure the complexity of the under-
lying computation at the level of the FSA rather than any particu-
lar CSA representation. Consequently, it is invariant with respect
to changes below the FSA level, as desired. In light of this, it is

important to ask whether there is anything to be gained from a
candidate measure of consciousness such as Group Complexity.
In answer, one must first ask whether or not the measure is falsi-
fiable by examining whether inference and prediction can be
kept independent. This is easy enough to check for Group
Complexity, as inferences are canonically made based on input–
output behavior while Group Complexity is a topological mea-
sure. Given that there is no a priori dependence between a topo-
logical description of a computation and the input–output
behavior it realizes, GC is indeed capable of producing nontrivial
predictions. In regard to whether or not these predictions are fal-
sifiable, it is certainly possible that we infer a conscious state
based on input–output behavior that is in disagreement with a
prediction from a measure of complexity such as Group
Complexity. For example, if the Group Complexity of a model sys-
tem increases when the system goes asleep, then this serves as
falsification with respect to the canonical inference that sleep
corresponds to lower subjective experience. While this may
sound virtually identical to experiments designed to test IIT
(Casali et al. 2013; Reardon 2019), the crucial difference is that
Group Complexity is invariant with respect to changes below the
FSA level.

Group Complexity is a measure of complexity that is both
nontrivial and falsifiable, and therefore, it is an epistemologically
sound measure of consciousness that acts on the same mathe-
matical structures and retains some of the original insight that
motivated IIT(Tononi and Edelman 1998). Yet, at face value,
Group Complexity seems much too simple to truly quantify the
conscious experience. For one, it coarse-grains all of the richness
associated with sensorimotor experience into a scalar value that
retains none of the corresponding physical information associ-
ated with specific senses, that is it has no implicit explanation for
“what it is like” to be something (Nagel 1974). While IIT deals
with this problem by equating multi-dimensional vectors with
“concepts in qualia space,” such sophistications are even harder
to ground experimentally than a scalar measure, as the ability to
empirically validate the nuances of a rich phenomenal structure
are limited by our ability to empirically infer such structures.
Given this, it seems the biggest problem faced by consciousness
research going forward is not necessarily the mathematical struc-
tures that a theory can predict but the mathematical structures
that one can infer, as ultimately predictions from a theory are
only as believable as the inferences that ground them. We know
based on first-hand phenomenal experience of consciousness
that certain behaviors such as sleep and verbal report are likely
accurate reflections of consciousness in human beings and it is
these behaviors that must be leveraged by the inference proce-
dure. Beyond these few specific examples, however, it is difficult
to imagine what else can be used to infer conscious states that

Figure 7. A feed-forward digital circuit (a) designed to operate the electronic tollbooth was shown in Fig. 2. This causal structure operates under
the same memory constraints as the integrated circuit (i.e. a three-bit logical architecture) but has U¼ 0 for all states (b).
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are not also used to make predictions within the theory. In cases
where we lose phenomenological grounding, such as artificial in-
telligence, this issue is especially problematic (Doerig et al. 2020).

While the inability to test what we assume to be conscious-
ness has always plagued the study of consciousness, we hope
that formalizing the problem in terms of the level of computa-
tional abstraction at which inferences and predictions take place
makes it clear that there are mathematical constraints that all
theories of consciousness must satisfy if they are to be falsifiable.
Namely, the theory must be invariant with respect to changes
that leave the results from the inference procedure unaffected
[satisfying the definition of independence from Kleiner and Hoel
(2020)]. In IIT, the inference procedure being used to justify the
experimental validity of the theory is at the level of the input–
output behavior of the system, and therefore U must be invariant
with respect to equivalence classes that share the same FSA de-
scription. The fact that it is not either falsifies the theory or ren-
ders it unfalsifiable, depending on which level in the
computational hierarchy one uses for inference. Our analyses in-
dicate that not only are new theories of consciousness needed,
but new frameworks for assessing the validity of these theories
are needed as well. The latter, e.g. could be addressed by con-
structing theories that do not aim to quantify what subjective ex-
perience is, but rather the functional consequences of subjective
experience in the physical world (Walker and Davies 2017).
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