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Abstract
Background and Aims  Screening colonoscopy has significantly contributed to the reduction of the incidence of colorectal 
cancer (CRC) and its associated mortality, with adenoma detection rate (ADR) as the quality marker. To increase the ADR, 
various solutions have been proposed including the utilization of Artificial Intelligence (AI) and employing second observers 
during colonoscopies. In the interest of AI improving ADR independently, without a second observer, and the operational 
similarity between AI and second observer, this network meta-analysis aims at evaluating the effectiveness of AI, second 
observer, and a single observer in improving ADR.
Methods  We searched the Medline, Embase, Cochrane, Web of Science Core Collection, Korean Citation Index, SciELO, 
Global Index Medicus, and Cochrane. A direct head-to-head comparator analysis and network meta-analysis were performed 
using the random-effects model. The odds ratio (OR) was calculated with a 95% confidence interval (CI) and p-value < 0.05 
was considered statistically significant.
Results  We analyzed 26 studies, involving 22,560 subjects. In the direct comparative analysis, AI demonstrated higher 
ADR (OR: 0.668, 95% CI 0.595–0.749, p < 0.001) than single observer. Dual observer demonstrated a higher ADR (OR: 
0.771, 95% CI 0.688–0.865, p < 0.001) than single operator. In network meta-analysis, results were consistent on the network 
meta-analysis, maintaining consistency. No statistical difference was noted when comparing AI to second observer. (RR 1.1 
(0.9–1.2, p = 0.3). Results were consistent when evaluating only RCTs. Net ranking provided higher score to AI followed by 
second observer followed by single observer.
Conclusion  Artificial Intelligence and second-observer colonoscopy showed superior success in Adenoma Detection Rate 
when compared to single-observer colonoscopy. Although not statistically significant, net ranking model favors the supe-
riority of AI to the second observer.

Keywords  Artificial intelligence · Adenoma detection rate · Colorectal cancer · Single observer · Second observer

Introduction

Colonoscopy is regarded as a tier-1 screening modality, 
which has significantly contributed to the reduction in the 
incidence of colorectal cancer (CRC) and its associated mor-
tality [1]. Adenoma detection rate (ADR), defined as the per-
centage of screening colonoscopies that reveal at least one 
adenoma, is a quality marker for endoscopists. It is worth 
noting that every 1% improvement in ADR corresponds to 
a 3% reduction in CRC cases [2]. To further emphasize the 
importance of adenoma detection, the US Multi-Society 

Task Force (MSTF) recommends striving for a minimum 
ADR of 30% for male and 20% for female patients [3].

In order to improve this important quality marker, numer-
ous solutions have been proposed including the utilization 
of Artificial Intelligence (AI), employing second observers, 
employing distal attachment devices, among other strate-
gies [4, 5].

The idea of a second observer, whether in the form of a 
trainee, nurse, or technician is a time-proven method that has 
consistently shown effectiveness in improving both ADR 
and Polyp Detection Rate (PDR) during colonoscopies 
[6]. However, as we enter the era of AI, there is growing 
interest in the potential of this technology to improve ADR 
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independently, eliminating the need for a second observer. In 
a comprehensive network meta-analysis of 94 Randomized 
Controlled Trials (RCTs), our study has previously demon-
strated the superiority of AI in improving both ADR and 
PDR when compared to various modalities, including differ-
ent methods of virtual chromoendoscopy and add-on devices 
[5]. Notably, our study excluded the second observer from 
its analysis in the recently published findings [5].

Due to the similarity in the operational mechanics of 
AI and a second observer, there has been a recent interest 
in comparing these two modalities [7]. Consequently, we 
decided to perform a network meta-analysis aimed at evalu-
ating the effectiveness of AI, second observer, and a single 
observer in improving ADR.

Methods and Materials

Search Strategy

A comprehensive search of the following databases was con-
ducted from inception until April 24, 2023, using multiple 
databases including MEDLINE (PubMed platform, NCBI), 
Embase (Embase.com, Elsevier), Web of Science Core 
Collection, Korean Citation Index, and SciELO (Clarivate), 
Global Index Medicus (World Health Organization), and 
Cochrane Central Register of Controlled Trials (Cochrane 
Library, Wiley). Screening of key reference / bibliographic 
lists for more studies was additionally performed. The key-
words/ subject terms used to search were ‘colonoscopy,’ 
‘adenoma,’ ‘artificial intelligence,’ ‘adenoma detection rate,’ 
‘single blind’ ‘double blind,’ and ‘dual observer’ along with 
their corresponding medical subject heading terms, in vari-
ous combinations. There were no language restrictions or 
filters applied. The search strategy was created by an expe-
rienced librarian (WLS) and reviewed by another investiga-
tor (MKG). The detailed search strategy can be reviewed in 
Supplementary Table 1.

Selection and Data Collection Process

Upon completion of the search process, all results were 
exported to EndNote 20 citation management software 
(Clarivate, Philadelphia, Penn, USA) where duplicates were 
removed via EndNote’s duplicate detection algorithms. Sub-
sequently, manual screening was undertaken to identify and 
eliminate any duplicates. The title and abstract screening 
were conducted independently by two investigators (J.D and 
D.S.D), which was resolved by a third senior author (M. A) 
in cases of disputes. The full-text screening was conducted 
in the same manner by the same investigators. In cases where 
full-text articles were not readily available or further data 
were required, the corresponding authors of the included 

studies were contacted and missing or additional data were 
requested. Throughout the process, strict adherence to the 
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines was practiced [8].

Inclusion and Exclusion Criteria

We included all studies that involved adult patients aged 18 
and above undergoing colonoscopy with a single observer, 
double observer, or AI. Our inclusion criteria comprised 
relevant randomized studies and prospective and retrospec-
tive studies. Conversely, we excluded case reports, case 
series with fewer than 10 patients, editorials, guidelines, 
and review articles.

Data Extraction and Study Outcomes

The results were tabulated using Microsoft Excel (Microsoft, 
Redmond, Wash, USA). The extracted data items included 
author names, date of publication, type of study design, age, 
sex, the total number of patients and adenoma detection rate 
in single , double (operator plus observer), and AI operators.

Data Synthesis and Statistical Analysis

Categorical data were summarized as counts and percent-
ages. We conducted a direct head-to-head comparator 
analysis and network meta-analysis of all available groups. 
The direct meta-analysis was performed using the DerSi-
monian-Laird method and random-effects model on Open 
Meta Analyst (CEBM, University of Oxford, Oxford, United 
Kingdom) [9].

Comparison of interventions and visual displaying of the 
findings was conducted using network meta-analysis using 
the random-effects model on the ‘R’ package ‘Netmeta’ 
(Bell Labs, Murray Hill, USA) [10]. The odds ratio (OR) 
for each outcome was calculated with a 95% confidence 
interval (CI). Microsoft Excel (Microsoft, Redmond, Wash, 
USA) was used to tabulate and create tables for this study. A 
p-value < 0.05 was considered statistically significant. The 
“frequentist method” was used to rank the intervention and 
a P-score was generated. Study heterogeneity was assessed 
using the I2 statistic defined by the Cochrane Handbook for 
systematic reviews and a value > 50% was considered as 
substantial heterogeneity [11]. Disagreement between direct 
and indirect evidence was assessed using the node-splitting 
technique [10].

Bias Assessment

The risk of bias assessment for the included studies was 
conducted using the Newcastle–Ottawa Scale (NOS) for 
observational studies [12], grading of recommendations 



1382	 Digestive Diseases and Sciences (2024) 69:1380–1388

assessment, development, and evaluation (GRADE) for 
RCTs [13]. GRADE approach to evaluate the strength of 
evidence for results from the NMA. Five domains that affect 
the level of confidence in the NMA results are considered: 
(i) risk of bias, (ii) inconsistency (iii) indirectness, (iv) 
imprecision, and (v) heterogeneity. Due to the nature of the 
trials evaluating the effects of a second observer and AI, 
participants and personnel could not be blinded. Therefore, 
this domain was not used to calculate the overall risk of 
bias for included studies. GRADEPro GDT was utilized to 
construct the summary of findings (SoF) table illustrated 
in Supplementary Table 5. Publication bias was assessed 
visually using a funnel plot and Egger’s regression analy-
sis. A p-value < 0.05 was considered statistically significant 
publication bias.

Results

The search strategy identified 2952 articles, of which 260 
unique studies were subjected to full-text review. After 
applying strict inclusion and exclusion criteria (Supplemen-
tary Fig. 1), a final selection of 26 studies was made. Our 
study included 20 randomized control trials and 3 retrospec-
tive and 3 prospective studies involving 22,560 subjects [7, 
14–38]. These studies encompassed the years 2008 to 2023 
and comprised of 12,596 ‘single’ observer, 4187 ‘double’ 
observer and 5777 ‘AI’ observer cases. The mean age across 
the studies ranged from 46.0 to 66.4 years (Table 1). Table 2 
provides details on adenoma detection rate categorized by 
single, double, and AI operators.

Direct Meta‑Analysis

In the direct comparative analysis, single-observer ADR was 
compared with AI ADR. The results indicated a statistical 
difference in adenoma detection rate between single opera-
tor and AI, favoring AI (OR: 0.668, 95% CI 0.595–0.749, 
p < 0.001), as depicted in Fig. 1. Similarly, a significant 
difference was observed in ADR between single observer 
vs second observer, with second observer demonstrating a 
higher ADR. (OR: 0.771, 95% CI 0.688–0.865, p < 0.001), 
as depicted in Fig. 2.

Network Meta‑Analysis

Adenoma detection rate in all modalities is summarized 
in Table 3. AI (RR: 1.26, 95% CI 1.17–1.35) and second 
observer (RR: 1.19, 95% CI 1.09–1.30) exhibited statisti-
cally significant higher rates of adenoma detection when 
compared to single operator. Network forest plot is demon-
strated in Fig. 3A. (net forest plot). No statistical difference 

was noted when comparing AI to second observer. (RR 1.1 
(0.9–1.2, p = 0.3).

Random-effect models of second observer to single 
observer had low heterogeneity at 18% exhibiting high con-
fidence in the level of evidence and low risk of bias, while 
single operator versus AI had high heterogeneity at 63% sug-
gesting high variability among included studies. Net split 
models were also consistent in direct and indirect evidence 
when evaluating adenoma detection rates. (Supplementary 
Table 2) This consistency reinforces the confidence in the 
overall findings of the network meta-analysis and strength-
ens the conclusions drawn regarding the comparative effec-
tiveness of the interventions. Corresponding net split plots 
(Supplementary Fig. 2A) and net graphs (Supplementary 
Fig. 2B) are provided in supplementary materials.

Randomized Controlled Trials

In RCTs, adenoma detection rate in all modalities is summa-
rized in Table 4. Similarly, AI (RR: 1.27, 95% CI 1.18–1.37) 
and second observer (RR: 1.21, 95% CI 1.07–1.37) exhibited 
statistically significant higher rates of adenoma detection 
when compared to single operator. No statistical difference 
was noted when comparing AI to second observer. (RR: 1.0 
(0.9–1.2), p = 0.49). Network forest plot is demonstrated in 
Fig. 3B. (net forest plot).

Random-effect models of second observer versus single 
observer had low heterogeneity at 0% exhibiting high confi-
dence in the level of evidence and low risk of bias, while AI 
versus single operator had high heterogeneity at 65% sug-
gesting high variability among included studies. Net split 
models were also consistent in direct and indirect evidence 
when evaluating adenoma detection rates. (Supplementary 
Table 3). Corresponding net split plots (Supplementary 
Fig. 3A) and net graphs (Supplementary Fig. 3B) are pro-
vided in supplementary materials.

Ranking of Interventions

P-scores were used to assess the effectiveness of AI, second 
and single observers in detecting adenomas. AI achieved 
the highest score of 0.92, followed by second observer with 
a score of 0.58. Single operator scored 0.1. These findings 
were similar to that of RCTs. A higher P-score indicates a 
higher probability of detecting adenomas. Net ranking in 
Supplementary Fig. 5 illustrates these findings.

Publication Bias

The Newcastle–Ottawa scale was utilized to rank cohort 
studies, with scores ranging from 5 to 6, indicating moder-
ate quality as shown in Supplementary Table 4. GRADE 
assessment was used for RCTs, which showed high to low 
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quality of evidence, as shown in Supplementary Table 5. 
The results of the Egger’s publication score (p = 0.0404) and 
Thompson-Sharp (p = 0.0475) revealed significant evidence 
of publication bias, as shown in Supplementary Fig. 4A. 
Similarly, for RCTs, Egger’s publication score (p = 0.0035) 
and Thompson-Sharp (p = 0.0046) showed evidence of pub-
lication bias (Supplementary Fig. 4B).

Discussion

This systematic review and network analysis have demon-
strated that both AI and second observer are superior to the 
single observer in improving ADR. However, when com-
paring AI to a second observer, we did not find any statisti-
cal difference; however, meta-ranking suggested potential 
preference toward AI although statistical significance could 
not be achieved.

Our meta-analysis confirmed the commonsense expres-
sion that “two pairs of eyes are better than one,” whether 
those pairs belong to humans or machines. As Wallace 
aptly suggested, three mechanisms contribute to missing an 
adenoma: it may not be within the visual field, it might go 
unrecognized, or it may be unrecognizable [39]. The second 
observer aids in recognizing “not recognized” polyps and 
potentially even those in the first scenario if they encourage 
better technique. In contrast, AI has the potential of assist-
ing in identifying “not recognizable” polyps, in addition to 
the aforementioned scenarios. Hence, the effectiveness of 
a second human observer depends on their experience and 
training. Prior studies have demonstrated that when a trainee 
serves as the second observer, ADR increases with each 
year of the trainee’s fellowship training [29]. Furthermore, 

Table 2   Intervention outcomes

ADR adenoma detection rate

Author ADR (%)

Single Double AI

Ahmad et al. [23] 199/306 220/308
Aslanian et al. [24] 101/249 119/253
Buchner et al. [38] 549/2112 96/318
Eckardt et al. [18] 36/187 27/181
Gong et al. [16] 27/349 58/355
Hüneburg et al. [33] 12/46 18/50
Kamba et al. [34] 93/174 111/172
Kim et al. [22] 57/191 74/192
Lee et al. [31] 166/384 196/407
Liu et al. [35] 124/518 199/508
Liu et al. [37] 83/397 114/393
Peters et al. [29] 802/2895 240/699
Quan et al. [14] 113/300 131/300
Repici et al. [21] 139/344 187/341
Ren et al. [27] 119/579 128/613
Rogart et al. [24] 29/126 68/183
Rondonotti et al. [20] 179/395 217/405
Shaukat et al. [15] 297/677 326/682
Su et al. [25] 52/315 89/308
Vilkoite et al. [36] 43/206 59/194
Wang et al. [17] 67/291 89/296
Wang et al. [32] 112/536 138/522
Wang et al. [19] 132/478 165/484
Wang et al. [7] 150/625 164/636
Yamaguchi et al. [26] 72/118 66/113
Yang et al. [28] 143/420 185/420

Fig. 1   Forest plot showing direct comparison between single operator vs. AI
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studies have shown that experienced nurses, when acting 
as second observers, increase ADR compared to their less 
experienced counterparts [40]. The studies included in our 
meta-analysis involved different settings and observers with 
varying levels of experience. Therefore, standardizing train-
ing for second observers, reducing heterogeneity, and evalu-
ating these effects become imperative.

As for AI, with the ever-increasing quality of endoscopic 
imaging, visual field, and the computational power of pro-
cessors, AI should theoretically achieve superior potential 
over the human-eye in diagnosing adenomas. AI can provide 
real-time pixel-level analysis of every frame, overcoming 
the human-eye’s limitations, such as its propensity to miss 
briefly visible or partially blocked adenomas. In addition, the 
human-eye is susceptible to inherent defects such as “inat-
tentional blindness” when distractions lead to missed polyps 
and “change blindness” when alterations are missed during 
eye movement [41–43]. These intrinsic limitations cannot be 
fully addressed by another human observer. In spite of these 
limitations, the presence of another human observer may 
have unaccounted benefits as Rex et al. showed an increase 

Fig. 2   Forest plot showing direct comparison between single operator vs. double operator

Table 3   Network meta-analysis 
outcomes evaluating adenoma 
detection rate in cohort studies

Relative risk for interventions, I2 = 51.1%

Single Second AI

Single – 0.8 (0.8–0.9), p < 0.01 0.9 (0.8–1.1), p = 0.30
Dual 1.2 (1.1–1.3), p < 0.01 – 0.8 (0.7–0.9), p < 0.01
AI 1.3 (1.2–1.4), p < 0.01 1.1 (0.9–1.2), p = 0.30 –

Fig. 3   A Network Forest plot of adenoma detection rate in cohort 
studies. B Network Forest plot of adenoma detection rate in RCTs

Table 4   Network meta-analysis 
outcomes evaluating adenoma 
detection rate in RCTs

Relative risk for interventions, I2 = 55.4%

Single Second AI

Single – 0.8 (0.8 – 0.9), p < 0.01 0.8 (0.7–0.9), p < 0.01
Second 1.2 (1.1–1.4), p < 0.01 – 1.0 (0.8–1.1), p = 0.49
AI 1.3 (1.2–1.4), p < 0.01 1.0 (0.9–1.2), p = 0.49 –
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in withdrawal time when the endoscopist was being observed 
[44]. This may possibly be due to competition and increased 
attentiveness, leading to improved inspection techniques, 
such as inspecting behind folds and spending more time in 
withdrawal. Meanwhile, endoscopists may become over reli-
ant on AI, inadvertently reducing the quality of inspection, 
highlighting the need for a second observer.

AI offers solutions to mitigate reduced exam quality 
due to endoscopists’ overconfidence in it. By reminding 
endoscopists to inspect behind folds and improve withdrawal 
time, Computer-Aided Quality (CAQ) AI has shown efficacy 
in improving exam quality [45]. While our studies primarily 
included the Computer-Aided polyp Detection (CADe) AI, 
combinations of CADe and CAQ AI have shown superior 
results compared to CADe [45]. Future research is required 
to study these effects, especially in head-to-head compari-
sons with second observers.

A notable issue with AI in diagnostics is its high rate 
of false positives, mistakenly identifying benign cases as 
adenomas, which are disproven upon further examination 
[46]. Nevertheless, evidence suggests that AI outperforms 
the human counterpart in this aspect; Wang et al.’s recent 
study found that second observers were significantly more 
prone to false alarms than AI [7]. We speculate that with 
advancements in polyp characterization (CADx) AI, the rate 
of false positives in the AI group will further decrease. This 
may potentially make AI more efficient than second observ-
ers- an area requiring further investigation.

Another aspect to explore is how these modalities ben-
efit endoscopists based on their expertise. Some studies 
suggest that second observers exclusively benefit inexpe-
rienced endoscopists and offer no additional advantage 
to expert endoscopists [30, 31]. This may be due to the 
marginal benefit of second observers for experts. Another 
potential cause might be the reluctance of trainees or nurses 
to point out missed lesions to expert endoscopists. This is 
important as the included studies are from different coun-
tries with cultural heterogeneity. Another potential source 
of heterogeneity is the level of experience of the second 
observer; some studies included trainees, while others 
included nurses. Despite this variation, all studies showed 
effectiveness regardless of the type of second observer. With 
regard to AI, while some studies show greater benefits for 
inexperienced endoscopists, others do not find significant 
differences in AI’s benefit between high and low detectors 
[45, 47]. Although subgroup analysis was not possible due 
to insufficient data, future studies may help identify the sub-
groups that benefit most from these modalities.

Our study had some limitations. First, the study com-
bines both RCTs and observational studies, with the lat-
ter carrying inherent bias. However, most of the data were 
derived from RCTs that demonstrate lower relative bias 
rates. Second, the non-blinded methodology in the studies 

could affect endoscopist behavior due to the presence of 
another observer or overconfidence in the assisting modal-
ity [48]. The involvement of multiple endoscopists should 
help reduce this bias. Third, heterogeneity exists in terms of 
patient populations and timing. In our systematic review, the 
second-observer studies were published predominantly prior 
to 2018, while all AI studies emerged after 2019; however, 
all colonoscopies utilized HD endoscopes. Fourth, due to 
the limited follow-up duration, long-term outcome data on 
interval CRC and mortality are scarce and could not be ana-
lyzed. Lastly, we were unable to conduct subgroup analysis 
based on polyp morphology and location, which is essential 
given that serrated lesions in the right colon are an important 
cause of interval CRCs.

In conclusion, both AI and second observer led to 
improvement in ADR compared to single-observer colonos-
copy. More standardized RCTs are required to compare AI 
with second observers, as current data suggest AI’s superi-
ority, even though statistical significance was not achieved. 
As the technology evolves, we recommend utility of AI, if 
feasible, to improve ADR.
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