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SUMMARY
Mitochondrial changes have long been implicated in the pathogenesis of Parkinson’s disease (PD). The glycine to serine mutation

(G2019S) in leucine-rich repeat kinase 2 (LRRK2) is the most common genetic cause for PD and has been shown to impair mitochondrial

function andmorphology in multiple model systems. We analyzed mitochondrial function in LRRK2G2019S induced pluripotent stem

cell (iPSC)-derived neurons to determine whether the G2019S mutation elicits similar mitochondrial deficits among central and periph-

eral nervous system neuron subtypes. LRRK2 G2019S iPSC-derived dopaminergic neuron cultures displayed unique abnormalities in

mitochondrial distribution and trafficking, which corresponded to reduced sirtuin deacetylase activity and nicotinamide adenine dinu-

cleotide levels despite increased sirtuin levels. These data indicate that mitochondrial deficits in the context of LRRK2 G2019S are not a

global phenomenon and point to distinct sirtuin and bioenergetic deficiencies intrinsic to dopaminergic neurons, which may underlie

dopaminergic neuron loss in PD.
INTRODUCTION

Mutations in leucine-rich repeat kinase 2 (LRRK2) are asso-

ciated with both familial and sporadic Parkinson’s disease

(PD), and exhibit clinical symptoms and pathology typical

of sporadic PD (Gatto et al., 2013). The G2019Smutation is

the most common and confers hyper-kinase activity, but it

is unclear how the gain of function in kinase activity results

in PD pathogenesis. The precise biological function of

LRRK2 remains largely unknown, but increasing evidence

suggests that mutations in LRRK2 contribute to mitochon-

drial dysfunction and oxidative stress (Wang et al., 2008;

Ng et al., 2009; Saha et al., 2009; Mortiboys et al., 2010).

In vivo and in vitro studies examining the consequence of

LRRK2 G2019S on mitochondrial health show altered

mitochondrial morphology, increased fragmentation,

elevated reactive oxygen species (ROS) production, and

decreased respiration (Ryan et al., 2015; Yue et al., 2015).

Induced pluripotent stem cell (iPSC) derived neurons

generated from homozygous and heterozygous LRRK2

G2019S patients showed mitochondrial damage (Sanders

et al., 2014), deficits in basal and maximal respiration, an

increase in mitochondrial trafficking (Cooper et al.,

2012), and increased susceptibility to H2O2, 6-OHDA, and

rotenone (Nguyen et al., 2011; Reinhardt et al., 2013).

Factors implicated in dopaminergic vulnerability include

higher metabolic activity, increased oxidative stress due

to dopamine oxidation, and calcium buffering defects, all

of which may converge on mitochondrial malfunction.
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We used LRRK2G2019S iPSC-derived dopaminergic, glu-

tamatergic, and sensory neurons to explore functionally

relevant mitochondrial parameters by which neurons

may be susceptible to disease. We focused on addressing

two key questions. First, we asked if the LRRK2G2019Smu-

tation causes consistent mitochondrial changes across

multiple neuronal subtypes. We found that mitochondrial

respiration deficits were observed in LRRK2 G2019S iPSC-

derived dopaminergic and glutamatergic neuron cultures,

whereas no mitochondrial defects were observed in

LRRK2 G2019S iPSC-derived peripheral sensory neuron

cultures, suggesting a shared CNS weakness. However,

LRRK2 G2019S iPSC-derived dopaminergic neurons

displayed additional mitochondrial distribution and traf-

ficking abnormalities, indicating a unique midbrain dopa-

minergic phenotype. Second, we asked what cellular

mechanisms may contribute to the unique mitochondrial

phenotypes observed in dopaminergic neuron cultures.

Accumulating evidence suggests that protein acetylation

is a key regulatory mechanism in mitochondrial function.

Sirtuins are protein lysine deacetylases that are localized

to the nucleus, cytosol, and mitochondria, where they

serve a variety of anti-aging and metabolic roles (Chal-

kiadaki and Guarente, 2012; Guarente, 2013; Herskovits

and Guarente, 2013; Buler et al., 2016). Humans encode

seven distinct sirtuins that harbor various roles in

mitochondrial biogenesis, movement, and energetics,

and collectively may play a role in the defects observed in

PD dopaminergic neurons. Surprisingly, we found that
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LRRK2 G2019S iPSC-derived dopaminergic neurons

exhibit increased sirtuin levels, but decreased deacetylase

activity compared with control cells. Because sirtuins

require nicotinamide adenine dinucleotide (NAD+) as a

co-substrate to catalyze deacetylation, we assessed NAD+

levels and observed a decreased NAD+ pool in LRRK2

G2019S dopaminergic neurons compared with healthy

dopaminergic neurons. The decrease in NAD+ correlated

with elevated acetylation of sirtuin substrates p53,

a-tubulin, and SOD2. Together, these data suggest that

LRRK2 G2019S confers cell-type specific bioenergetic de-

fects, and that dopaminergic neurons may be more signif-

icantly impacted in PD due to low endogenous NAD+ levels

and reduced sirtuin deacetylase activity.
RESULTS

LRRK2 G2019S iPSC-Derived Dopaminergic Neurons

Display Altered Mitochondrial Content and

Distribution

To examine mitochondrial health across neuronal sub-

types expressing the LRRK2 G2019S mutation, we utilized

human iPSCs derived from three independent LRRK2

G2019S patients and three unaffected control individuals

(Schwab and Ebert, 2015) and differentiated the cells

toward midbrain dopaminergic neurons, forebrain gluta-

matergic neurons, and peripheral sensory neurons. Impor-

tantly, we have previously shown that neurons from these

LRRK2 G2019S iPSC lines have consistently elevated

expression of phosphorylated LRRK2 at serine 935, but

similar levels of total LRRK2 protein compared with the

control iPSC neurons (Schwab and Ebert, 2015).

Wefirst examined overallmitochondrial content and dis-

tribution across the three neuronal subtypes. Cells were

immunostained for the mitochondrial membrane protein

TOM20 and co-labeled with tyrosine hydroxylase (TH),

bIII-tubulin (TUJ1), or peripherin to mark dopaminergic,

glutamatergic, and sensory neurons, respectively (Figures

1A, 1D, 1G, and S1A). Immunofluorescence (Figure S1B)

andwestern blot analysis (Figure S1C) for the NMDA recep-

tor 2B subunit (NR2B) were used to further confirm gluta-

matergic neuron identity. Consistent with our previous

report (Schwab and Ebert, 2015), there was no difference

in differentiation efficiency across the individual cell lines

(Figures 1B, 1E, and 1H), and differentiation efficiencies

were consistent with other reports in the literature (Cham-

bers et al., 2009, 2012; Kriks et al., 2011). Using immuno-

fluorescence intensity (Figures 1C, 1F, and 1I) and western

blot analysis (Figure 1J), mitochondrial content was

reduced in LRRK2G2019S iPSC-derived dopaminergic neu-

rons comparedwith controls, but not in the other neuronal

subtypes. We next measured mitochondrial distribution
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along the neurite and divided the data points into four

equal quartiles to assess differences inproximal versus distal

distribution. Becausewe andothershave shown thatLRRK2

G2019S iPSC-derived dopaminergic neurons exhibit short-

ened neurites (Cooper et al., 2012; Sanchez-Danes et al.,

2012; Reinhardt et al., 2013; Schwab andEbert, 2015), quar-

tileswere determined relative to eachneuronal subtype and

not compared across neuron types. LRRK2 G2019S iPSC-

derived dopaminergic neurons displayed significantly

reducedmitochondrial distribution along the distal neurite

length (Figure 1K). In contrast to previous reports using

mouse cortical neurons expressing LRRK2 G2019S (Cherra

et al., 2013), neither mitochondrial content nor distribu-

tion was diminished in LRRK2 G2019S glutamatergic and

sensory neurons compared with control neurons (Figures

1F, 1I, 1L, and 1M), suggesting neuron specific mitochon-

drial properties in human LRRK2 G2019S conditions.

LRRK2 G2019S iPSC-Derived Dopaminergic Neurons

Display Increased Mitochondrial Velocity and

Motility

Neurons depend on regulated mitochondrial trafficking to

match energy demand and to control the clearance of

damaged mitochondria (Ashrafi and Schwarz, 2013). We

utilized live-cell imaging to investigate if LRRK2 G2019S

induced changes inmitochondrial trafficking andmobility

within iPSC-derived dopaminergic, glutamatergic, and sen-

sory neurons. We observed an increase in mitochondrial

velocity in LRRK2 G2019S iPSC-derived dopaminergic

neurons compared with control dopaminergic neurons

(Figure 2A). Interestingly, neither LRRK2 G2019S glutama-

tergic nor sensory neurons were altered compared with

their respective control neurons (Figure 2A). Similar to a

previous study (Cooper et al., 2012), we also saw an in-

crease in the percentage of mobile mitochondria in dopa-

minergic neurons, but this effect was not observed in

LRRK2 G2019S glutamatergic or sensory neurons (Fig-

ure 2B). Finally, we found that LRRK2G2019S iPSC-derived

dopaminergic neurons display increased retrograde mito-

chondrial velocity (Figure 2C), which correlates with

diminished mitochondrial content in the distal neurite

(Figure 1K). Together, these data highlight intrinsic dopa-

minergic neuron mitochondrial trafficking deficits.

Mitochondrial Respiration Is Decreased in LRRK2

G2019S iPSC-Derived Dopaminergic and

Glutamatergic Neurons

We next asked if mitochondrial bioenergetics was affected

in LRRK2 G2019S iPSC-derived neurons. Control and

LRRK2G2019S iPSCswere differentiated intodopaminergic,

glutamatergic, and sensory neurons to measure oxygen

consumption rate (OCR) (Dranka et al., 2011; Zhang et al.,

2012; Patitucci and Ebert, 2016). Basal glycolytic rates



Figure 1. LRRK2 G2019S iPSC-Derived Dopaminergic Neurons Display Altered Mitochondrial Content and Distribution
Representative images of each individual control line (1, 2, and 3) and each individual LRRK2 G2019S iPSC line (het, 1, and 2) immu-
nostained for (A) tyrosine hydroxylase (TH, red), (D) bIII-tubulin (TUJ1, green), and (G) peripherin (red) to mark dopaminergic, glu-
tamatergic, and sensory neurons, respectively. Nuclei labeled with Hoechst (blue). Scale bars, 50 mm. Quantification of differentiation
efficiency (B, E, and H), mitochondrial content (C, F, and I), TOM20 protein (J), and mitochondrial distribution (K, L, and M) compared by
one-way repeated measures ANOVA with Tukey’s post-hoc test. n.s., not significant. **p < 0.01 in (C) indicates that all three LRRK2 samples
are significantly reduced compared with all three control samples. *p < 0.05 in (I) indicates that control 1 is significantly reduced
compared with LRRK2 1 and 2. *p < 0.05 in (J) indicates that all three LRRK2 samples are significantly reduced compared with all three
control samples. *p < 0.05 in (K) indicates that LRRK2 het is different from all three controls (0%–25%) and all three LRRK2 lines are
different from all three control lines for 25%–50%, 50%–75%, and 75%–100%. *p < 0.05 in (L) indicates that LRRK2 1 is significantly
different from all samples at 0%–25%. *p < 0.05 in (M) indicates that control 2 and 3 are different from LRRK2 het and LRRK2 1 at 0%–25%
and 25%–50%, and that LRRK2 1 is different from all three controls at 50%–75% and 75%–100%. n = 4 independent experiments. All error
bars are SEM. See also Figure S1.
were not changed in any of the LRRK2 G2019S neurons

compared with controls (data not shown). However, consis-

tent with previous studies (Mortiboys et al., 2010, 2015;

Cooper et al., 2012; Papkovskaia et al., 2012), we observed

a marked decrease in OCR for ATP-linked (Figure 3A),

maximal (Figure 3B), and spare respiration (Figure 3C) in

LRRK2 G2019S dopaminergic neuron cultures compared

with control dopaminergic neuron cultures. Interestingly,

we also observed a decrease in these same parameters for

LRRK2 G2019S forebrain glutamatergic neuron cultures
compared with control, but not in LRRK2 G2019S sensory

neuron cultures (Figures 3A–3C). Together, these data sug-

gest that LRRK2 G2019S may preferentially alter mitochon-

drial respiration rates of central neurons and spare periph-

eral neurons.

Consistent with the observed decrease in bioenergetics,

LRRK2 G2019S dopaminergic cultures displayed dimin-

ished ATP and ADP levels compared with control neurons,

whereas LRRK2 G2019S glutamatergic cultures displayed

changesonly inATP levels (Figures S2AandS2B).Nochange
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Figure 2. LRRK2 G2019S iPSC-Derived Dopaminergic Neurons Display Increased Mitochondrial Velocity and Motility
Measurements of (A) mitochondrial velocity (mm/s), (B) percent mobile mitochondria, and (C) direction of mitochondrial movement are
shown for each individual iPSC line. There was a significant difference for each of the three LRRK2 lines compared with each of the control
lines in the dopaminergic neuron cultures, but not in either the glutamatergic or sensory neuron cultures. n.s., not significant. *p < 0.05
and **p < 0.01 by one-way repeated measures ANOVA with Tukey’s post-hoc test. n = 4 independent experiments. All error bars are SEM. See
also Figure S4.
was observed in sensory neuron cultures (Figures S2A and

S2B). To further assess the reduction in ATP levels, we exam-

ined components of the electron transport chainbywestern

blot using the OXPHOS antibody cocktail. Complex I

(NDUFB8) and IV (COX II) were undetectable in all neuron

cultures, and complex V (ATP5A) and II (SDHB) levels were

unchanged (Figures S3A–S3C). However, the levels of com-

plex III (UQCRC2) were significantly decreased in both

dopaminergic and glutamatergic neuron cultures from

LRRK2 G2019S iPSCs compared with control (Figures S3D

and S3E). Therefore, it is possible that decreased expression

or increased degradation of complex III in LRRK2 G2019S

iPSC-derived dopaminergic and glutamatergic neuron cul-

tures alters proton transport, thereby diminishing the pro-

ton gradient necessary for ATP production.

LRRK2 Kinase Inhibition Using GSK2578215A Does

Not Restore Mitochondrial Dysfunction

Since the G2019S mutation confers hyper-kinase activity

(West et al., 2005; Greggio et al., 2006; Jaleel et al., 2007; Lu-

zon-Toro et al., 2007),we testedwhether LRRK2kinase inhi-

bition using GSK2578215A (Reith et al., 2012) could rescue
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the observedmitochondrial defects in LRRK2G2019S iPSC-

derived neurons.Wehave previously shown that treatment

with 1 mMGSK2578215A reduced expression of phosphor-

ylated LRRK2 in LRRK2 G2019S iPSC-derived neurons

(Schwab and Ebert, 2015). Therefore, we treated dopami-

nergic, glutamatergic, and sensory neuron cultures with

GSK2578215A (1 mM) for 1week prior to endpoint analysis.

However, LRRK2 kinase inhibition only showed an effect in

the LRRK2G2019S Het line for mitochondrial velocity, but

there was no effect in any LRRK2 G2019S line for ATP-

linked, maximal, and spare respiration in dopaminergic

neurons. GSK2578215A did not have a positive or negative

effect on glutamatergic and sensory neurons (Figures S4A

and S4B). These results suggest that increased kinase activ-

ity is not directly contributing to mitochondrial malfunc-

tion in this model system.

LRRK2 G2019S Dopaminergic Neuron Cultures Show

Increased Sirtuin Expression but Decreased

Deacetylase Activity

Sirtuins are a family of NAD+-dependent protein deacety-

lases that regulate many cellular processes, and changes



Figure 3. Mitochondrial Respiration Is Decreased in LRRK2 G2019S iPSC-Derived Dopaminergic and Glutamatergic Cultures
All three LRRK2 G2019S iPSC-derived dopaminergic and glutamatergic cultures display diminished (A) ATP-linked, (B) maximal, and (C)
spare respiration compared with all three of the respective control cultures. LRRK2 G2019S iPSC-derived sensory neurons are unchanged
compared with controls. *p < 0.05 by one-way repeated measures ANOVA with Tukey’s post-hoc test. n = 4 independent experiments.
All error bars are SEM. See also Figures S2, S3, and S4.
in sirtuin expression levels may contribute to altered mito-

chondrial production, metabolism, and movement (Chal-

kiadaki and Guarente, 2012; Guarente, 2013; Herskovits

and Guarente, 2013). Sirtuin-1 (SIRT1) has been shown to

localize to the cytoplasm and nucleus where it plays a

role in mitochondrial biogenesis (Tang, 2017). Western

blot analysis of SIRT1 revealed a significant increase in

LRRK2 G2019S iPSC-derived dopaminergic neurons

compared with control cells in which SIRT1 levels were

below the detection limit (Figures 4A and 4B). SIRT1 deace-

tylates and activates PGC1a (Rodgers et al., 2005; Liu et al.,

2008; Canto et al., 2009; Wilson et al., 2010), which is an

essential metabolic regulatory transcription factor. As ex-

pected based on the decreases in mitochondrial respiration

andATP pool, the levels of PGC1aweremarkedly decreased

in iPSC-derived LRRK2 G2019S dopaminergic cultures

(Figures 4C and 4D). In contrast, there was no difference

in SIRT1 or PGC1a expression in LRRK2 G2019S glutama-

tergic cultures compared with control cultures (Figures

S5A–S5C). Acetylated p53 is a known direct target of

SIRT1 and showed a trend toward increased expression
in LRRK2 G2019S iPSC-derived dopaminergic neurons

compared with controls (Figures 4E and 4F), indicating

reduced SIRT1 activity.

Sirtuin-2 (SIRT2) is known tomediate microtubule-based

cellular trafficking through its effect on tubulin acetylation

(North et al., 2003). Considering the significant alterations

in mitochondrial movement in LRRK2 G2019S iPSC-der-

ived dopaminergic neurons (Figure 2), we tested whether

SIRT2 expression and/or activity were likewise disrupted.

Similar to SIRT1, SIRT2 protein levels were significantly

increased in LRRK2 G2019S iPSC-derived dopaminergic

neurons compared with control (Figures 5A and 5B), but

deacetylase activity was impaired as noted by the signifi-

cant increase in the levels of acetylated a-tubulin (Figures

5A and 5C).

Next, we tested sirtuin-3 (SIRT3) levels and activity as

SIRT3 is the primary mitochondrial deacetylase shown to

regulate mitochondrial bioenergetics and ATP generation

(Weir et al., 2013). Immunoblot analysis of SIRT3 expres-

sion levels revealed significantly increased expression in

LRRK2 G2019S dopaminergic cultures compared with
Stem Cell Reports j Vol. 9 j 1839–1852 j December 12, 2017 1843



Figure 4. LRRK2 G2019S Dopaminergic Neuron Cultures Show Altered Levels of Sirtuin-1, PGC1a, and Acetylated p53
(A and B) Western blot analysis revealed a significant increase in (A and B) SIRT1 in all three LRRK2 G2019S iPSC-derived dopaminergic
cultures compared with the three controls. REVERT was used as a loading control.
(C and D) In contrast, PGC1a expression levels were significantly reduced in all three LRRK2 G2019S iPSC-derived dopaminergic cultures
compared with controls. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a loading control.
(E and F) Levels of acetylated-p53 were increased in LRRK2 G2019S iPSC-derived dopaminergic cultures, although this did not reach
significance. REVERT was used as a loading control.
n.s., not significant. *p < 0.05 by one-way ANOVA with Tukey’s post-hoc test. n = 3 independent experiments. All error bars are SEM.
See also Figure S5.
control (Figures 6A and 6B). There was a trend toward a

decrease in SIRT3 activity based on higher levels of acety-

lated SOD2 (Figures 6C and 6D). Although the changes

associated with SOD2 did not reach significance, the trend

is consistent with an overall diminished deacetylase activ-

ity in PDdopaminergic neurons. Therewas no difference in

SIRT3 levels between control and LRRK2 G2019S glutama-

tergic neurons (Figure S6). To determine whether increased

SIRT levels were associated with excessive kinase activity,

we tested whether GSK2578215A was sufficient to lower

SIRT levels. However, similar to a lack of effect on mito-

chondrial dysfunction, we did not observe changes in

SIRT1, SIRT2, or SIRT3 expression levels (data not shown).
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Since sirtuins require NAD+ as a co-substrate to catalyze

deacetylation, we hypothesized that low sirtuin activity

in LRRK2 G2019S iPSC-derived dopaminergic neurons

was due to low NAD+ levels. Indeed, NAD+ levels were

significantly decreased in LRRK2 G2019S dopaminergic

neurons compared with controls, a deficiency that was

not observed in the other neuronal subtypes (Figure 7).

Taken together, these data suggest that diminished NAD+

levels limit sirtuin deacetylase activity in LRRK2 G2019S

iPSC-derived dopaminergic neurons, and may underlie

the mitochondrial malfunction observed in this system

and contribute to selective dopaminergic neuron loss

in PD.



Figure 5. LRRK2 G2019S Dopaminergic Neuron Cultures Show Increased Sirtuin-2 and Acetylated Tubulin
Western blot analysis revealed a significant increase in (A and B) SIRT2 and (A and C) acetylated tubulin expression in all three LRRK2
G2019S iPSC-derived dopaminergic cultures compared with controls. REVERT was used as a loading control for both targets. *p < 0.05 by
one-way ANOVA with Tukey’s post-hoc test. n = 3 independent experiments. All error bars are SEM.
DISCUSSION

Evidence from in vitro and in vivo studies suggest that

mitochondrial malfunction is a common characteristic in

PD. Consistent with these reports, we show that LRRK2

G2019S iPSC-derived neurons display mitochondrial

abnormalities, including altered content, distribution, traf-

ficking, and respiration, which appear to be independent of

increased kinase activity; interestingly, these mitochon-

drial defects manifest differently depending upon neuron

subtype, with dopaminergic neuron cultures exhibiting

the most profound changes compared with glutamatergic

or sensory neuron cultures.

Regulation of mitochondrial distribution is essential

to meet metabolic requirements and to remove aged and

damaged mitochondria. The decreased content and

reduced distal distribution of mitochondria within dopa-

minergic neurons may be due to damaged mitochondria

being removed by autophagy or an inability to sufficiently

replenish the neurites with healthy mitochondria, which

has been reported for LRRK2 G2019S expressing mouse

cortical neurons and SH-SY5Y cells (Cherra et al., 2013).
This result is in contrast to our data for LRRK2 G2019S

iPSC-derived glutamatergic neuron cultures. The discrep-

ancy may be due to inherent differences between the

model systems. In addition, the default forebrain telence-

phalic neuron patterning utilized here (Ebert et al., 2013;

Kim et al., 2014) may not fully recapitulate the maturity

and cell-type specificity found within the mouse cortex.

Additional studies using specific iPSC cortical patterning

techniques may be necessary to address the discrepancy

(Mariani et al., 2012; Shi et al., 2012).

The distribution of mitochondria within neurons is

dependent on efficient and regulated mitochondrial

trafficking. The transport and function of mitochondria

are linked as mitochondria supply ATP energy to motor

proteins to transport them along the cytoskeleton to areas

of high energy demand (Schwarz, 2013). Thus, abnormal-

ities in mitochondrial trafficking may lead to abnormal

mitochondrial distribution and protein transport and

ultimately result in cellular dysfunction. We show

that LRRK2 G2019S can affect mitochondrial trafficking

based on increased retrograde mitochondrial velocity

and mobile mitochondria in LRRK2 G2019S iPSC-derived
Stem Cell Reports j Vol. 9 j 1839–1852 j December 12, 2017 1845



Figure 6. LRRK2 G2019S Dopaminergic Neuron Cultures Show Increased Sirtuin-3 and Acetylated SOD2
Western blot analysis revealed a significant increase in (A and B) SIRT3 expression and (C and D) a trend toward increased acetylated SOD2
expression in LRRK2 G2019S iPSC-derived dopaminergic cultures compared with control. SIRT3 was normalized to GAPDH, and SOD2 was
normalized to REVERT. n.s., not significant. *p < 0.05 by one-way ANOVA with Tukey’s post-hoc test. n = 3 independent experiments. All
error bars are SEM. See also Figure S6.
dopaminergic neurons. These data correlate well with

diminished mitochondrial content in the distal neurite.

The trafficking results presented here are in contrast to a

study using PD sporadic mitochondrial NT2 cybrids that

showed a decline in overall mitochondrial velocity and a

decrease in the percent mobile mitochondria (Esteves

et al., 2014), but do support the findings in SH-SY5Y cul-

tures (Cronin-Furman et al., 2013), and in LRRK2 G2019S

and PINK1 Q456X expressing neurons (Cooper et al.,

2012). The increase in percentmobilemitochondria within

LRRK2 G2019S dopaminergic neurons suggests that the

balance between motile and stationary mitochondria is

perturbed. Anchored mitochondria provide local energy

sources within neurons and are crucial to ensure that meta-
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bolically active areas are supplied with ATP, especially at

presynaptic terminals. Moreover, stationary mitochondria

are also required for axonal branching and maintenance

(Kang et al., 2008). Therefore, disruption in stationary

mitochondriamay explain the deficient neurite elongation

and branching that we and others have observed in LRRK2

G2019S-expressing neurons (MacLeod et al., 2006; Plowey

et al., 2008; Cherra et al., 2010; Ramonet et al., 2011;

Cooper et al., 2012; Sanchez-Danes et al., 2012; Reinhardt

et al., 2013; Schwab and Ebert, 2015). However, additional

studies are needed to establish a specific link between

LRRK2 G2019S and mitochondrial motility.

The LRRK2 kinase inhibition results suggest that in-

creased kinase activity due to the G2019S LRRK2mutation



Figure 7. LRRK2 G2019S Dopaminergic Neurons Exhibit
Significantly Reduced NAD+ Levels
HPLC analysis revealed that all three LRRK2 G2019S expressing
dopaminergic neurons have significantly reduced NAD+ levels
compared with controls. There was no difference between control
and LRRK2 G2019S-expressing neurons for either glutamatergic or
sensory neuron cultures. n.s., not significant. *p < 0.05 compared
with control dopaminergic neurons by one-way repeated measures
ANOVA with Tukey’s post-hoc test. n = 3 independent experiments.
All error bars are SEM.
is not directly contributing to the mitochondrial and

SIRT abnormalities in this iPSC-based system. Although

GSK2578245A has been shown to be selective for LRRK2

kinase inhibition (Reith et al., 2012), and we previously

observed beneficial effects on morphology and calcium

response in LRRK2 G2019S iPSC-derived sensory neurons

(Schwab and Ebert, 2015), it is possible that a different

kinase inhibitor or treatment paradigm would be more

effective.

A number of studies have tested the effect of modifying

SIRT1, SIRT2, or SIRT3 in PD models, but the results have

been mixed. For example, increasing levels of SIRT1 or

SIRT3 protect dopaminergic neurons from toxin-induced

cell death (Tang, 2017). In contrast, most data indicate

that inhibiting SIRT2 expression is neuroprotective in PD

models (Outeiro et al., 2007; Godena et al., 2014; Liu

et al., 2014; Chen et al., 2015; Di Fruscia et al., 2015),

although another study suggested otherwise (Patel and

Chu, 2014). More research is needed to determine the spe-

cific contributions of the various sirtuins to PD, but the

divergent effects of sirtuin upregulation and inhibition

may be due to the different targets of the individual sir-

tuins. Importantly, previous studies have not examined

the levels of NAD+ necessary for sirtuin activity in human

dopaminergic neurons.

Recent studies have shown that PGC1a and SIRT1 play

key roles in cell metabolism and mitochondrial biogenesis

(Rodgers et al., 2005; Revollo and Li, 2013). PGC1a is active

in the deacetylated form, which is achieved by the deacety-

lase function of SIRT1, and plays a protective role in ROS
defense. Here we show lower expression levels of active

PGC1a in LRRK2 G2019S iPSC-derived dopaminergic

neuron cultures compared with glutamatergic neuron cul-

tures. We also found a strong trend toward increased acet-

ylated p53 (�2- to 3-fold) in LRRK2 G0291S iPSC-derived

dopaminergic neurons compared with controls, a direct

target of SIRT1, which may contribute to the vulnerability

of dopaminergic neurons to oxidative stress in PD. To

support this idea, acetylation of p53 at Lys382, the residue

recognized by the antibody used here, is directly associated

with activation of apoptosis and ROS production (Yama-

guchi et al., 2009). Similarly, a small-molecule activator

of PGC1a resulted in enhanced resistance against oxidative

stress in human dopaminergic neurons (Makela et al.,

2016).

SIRT2 is localized to the cytoplasm and, together with

HDAC6, is largely responsible for deacetylation of

a-tubulin (North et al., 2003). Studies have shown that

increasing acetylated a-tubulin, through inhibition of

HDAC6, increases mitochondrial movement in hippocam-

pal neurons (Chen et al., 2010). Our studies are consistent

with this notion as we find significantly increased

mitochondrial velocity and retrograde trafficking in the

LRRK2 G2019S iPSC-derived dopaminergic neurons.

Mutant LRRK2 has been shown to associate with deacety-

lated tubulin and disrupt vesicle trafficking (Godena

et al., 2014). However, our data suggest that the altered

mitochondrial trafficking may be independent of mutant

LRRK2 as neither LRRK2 G2019S-expressing glutamatergic

neurons nor sensory neurons exhibit altered mito-

chondrial trafficking, and the LRRK2 kinase inhibitor

GSK2578215A did not improve trafficking defects in dopa-

minergic neurons. It is important to note that our data are

in contrast to a recent report showing that NAD+ levels and

SIRT2 deacetylase activity were increased in PD patient-

derived cybrid cell lines (Esteves et al., 2017). This discrep-

ancy could be due to differences between the cybrid and

iPSC model systems, but another plausible explanation

could be due to variations in NAD+ levels among different

cell types, as demonstrated by the variable levels in dopa-

minergic, glutamatergic, and sensory neurons.

As the main mitochondrial deacetylase, SIRT3 has also

been shown to regulate many aspects of mitochondrial

function, including metabolism, ATP generation, and

limiting oxidative stress (Shi et al., 2005; Hallows et al.,

2006; Lombard et al., 2007). Mechanistically, SIRT3 has

been directly linked to reducing ROS production through

activation of SOD2 (Qiu et al., 2010; Someya et al., 2010;

Tao et al., 2010). In PD, SIRT3 has been implicated as a caus-

ative factor in dopaminergic neuron loss in MPTP- and

rotenone-treated neurons (Zhang et al., 2016a, 2016b).

Although we observe increased SIRT3 protein levels in

LRRK2 G2019S iPSC-derived dopaminergic neurons, as
Stem Cell Reports j Vol. 9 j 1839–1852 j December 12, 2017 1847



was the case for SIRT1 and SIRT2, increased expression did

not correlate with increased activity, which is likely due to

lower NAD+ levels in LRRK2 G2019S iPSC-derived dopami-

nergic cultures.

Our data demonstrate unique, and potentially LRRK2

kinase-independent, changes in sirtuin activity and NAD+

levels in human dopaminergic neurons expressing the

LRRK2 G2019S PD-associated mutation and may underlie

pathological mechanisms of dopaminergic neuron loss in

PD. The results of these studies also provide further insight

into the role of sirtuins in dopaminergic neurons and stress

the importance of considering NAD+ levels in conjunction

with sirtuin activity when designing therapeutic interven-

tion for the treatment of PD.
EXPERIMENTAL PROCEDURES

Cell Culture
Human iPSCs were obtained from publically available samples

derived from two homozygous LRRK2 G2019S patients

(ND35367*C, ND40018*C Coriell Institute) and one heterozygous

LRRK2G2019S patient (ND40019*CCoriell Institute). Three previ-

ously characterized unaffected control lines were used (GM003814

Coriell Institute, GM02183 Coriell Institute, iPSK3; Ebert et al.,

2009; Si-Tayeb et al., 2010; HD iPSC Consortium, 2012). A table

describing the demographic, reprogramming, and source informa-

tion for the control and PD iPSC lines is provided in our previously

published work (Schwab and Ebert, 2015). Karyotypically normal

iPSCs, used between passages 5 and 10, were grown in feeder-free

conditions on Matrigel substrate in StemMACS iPS-Brew (Milte-

nyi). Karyotype G-banding was performed by Cell Line Genetics

(Madison,WI). Neural progenitor cells (EZ spheres) were generated

andmaintained as described previously (Ebert et al., 2013). The use

of iPSCs was approved by the Medical College of Wisconsin’s

Institutional Review Board (PRO25822) and the Human Stem

Cell Research Oversight Committee.
Neural Differentiation
EZ spheres were differentiated into dopaminergic neurons using

fibroblast growth factor-8, purmorphamine, and growth factors

as described previously (Ebert et al., 2013). Telencephalic

excitatory projection neurons were derived from EZ spheres as

described previously (Ebert et al., 2013). Sensory neurons were

derived from monolayer iPSCs as described previously (Chambers

et al., 2012). For LRRK2 kinase inhibition experiments, 1 mM

GSK2578215A (Tocris) was added at every feeding starting at

1 week prior to endpoint analysis. DMSO (1 mM) was used as the

vehicle control. All analyses were performed at 5 weeks of total

differentiation for dopaminergic neurons and 4 weeks of total

differentiation for glutamatergic and sensory neurons.
Immunocytochemistry
Plated cells were fixed in 4% paraformaldehyde in PBS (pH 7.4) for

20min at room temperature. Nonspecific labelingwas blocked and

the cells permeabilized prior to primary antibody incubation. Cells
1848 Stem Cell Reports j Vol. 9 j 1839–1852 j December 12, 2017
were subsequently labeled with the appropriate fluorescently

tagged secondary antibodies. Hoechst nuclear dyewas used to label

nuclei. Antibodies are listed in Table S1.

Western Blot
Whole-cell lysates were isolated from dopaminergic and glutama-

tergic neuron cultures using 13 3-[(3-cholamidopropyl)dimethy-

lammonio]-1-propanesulfonate (CHAPS) Cell Extract buffer with

protease inhibitors (Cell Signaling Technology). Twenty micro-

grams of protein was run on 10% Tris-HCl polyacrylamide

gels (Bio-Rad), transferred to polyvinylidene fluoride membrane

(Millipore), and probed following standard chemiluminescent

methods. Alternatively, membranes were probed following the

LI-COR fluorescent western blot protocol and scanned using the

Odyssey Infrared Imaging System. Protein quantifications were

normalized using glyceraldehyde-3-phosphate dehydrogenase or

REVERT Total Protein Stain. Antibodies are listed in Table S1.

Mitochondrial Content and Distribution
Images were acquired from five random fields per coverslip and

then analyzed using region of interest and line scan tools included

in NIS Elements software. For region of interest measurements, the

entire neuron was automatically traced and then TOM20 intensity

was measured over this area. For line scan measurements, neurites

projecting from a cell body were randomly selected and then

measured for TOM20 intensity along the neurite length. Each neu-

rite measurement was then divided into quartiles with respect to

each neurite’s overall length. A minimum of 250 neurons were

analyzed from each line. Only TH+ (dopaminergic), TUJ1+ (gluta-

matergic), and peripherin+ (sensory neurons) were analyzed.

Mitochondrial Trafficking
Plated cells were loaded with 25 nM MitoTracker Green FM

(Thermo Scientific; M7514) for 15 min, washed, and imaged on a

Nikon fluorescent microscope. Videos were acquired from at least

5 random fields per coverslip, and a minimum of 250 neurons

were analyzed and calculated using NIS Element kymograph soft-

ware. Only the mitochondria found in neurites projecting from

clearly identifiable cell bodies were used to determine anterograde

and retrograde mitochondrial movement.

Mitochondrial Bioenergetics
iPSC lines were seeded onto Seahorse Bioscience 96-well micro-

plates and patterned toward dopaminergic, glutamatergic, and

sensory neurons. The plates were analyzed using a standard

method for measuring OCR using the XFe96 Extracellular Flux

Analyzer (Dranka et al., 2011; Patitucci and Ebert, 2016).

Nucleotide Measurements
ATP, ADP, and NAD+ were analyzed by high-performance liquid

chromatography (HPLC) following perchloric acid precipitation,

as described previously (Perez et al., 2010). Solvent A (125 mL;

0.1 M potassium phosphate and 4 mM tetrabutylammonium

bisulfate [pH 6.0], diluted 64:36 inwater [v/v]) was added to the su-

pernatants (100 mL). Protein concentrations were determined by

Bradford assay using 13 CHAPS buffer with PMSF and 13 DTT



(Cell Signaling Technology). HPLC analysis of nucleotides was per-

formed on a Supelco C-18 column using solvent A and solvent B

(0.1 M potassium phosphate and 4 mM tetrabutylammonium

bisulfate [pH 6.0], diluted 64:36 in methanol ]v/v]) with a flow

rate of 1 mL/min. The column was equilibrated with solvent A,

and the compounds were eluted during a linear increase in the

level of solvent B to 50% between 1.5 and 5.5 min, followed by

an increase to 65% over the next 7.5 min. ATP, ADP, and NAD+

peaks were measured for each sample, compared with the stan-

dards, and expressed in nmol per mg of protein.

Statistical Analysis
Data are from a minimum of three independent experiments, each

with a minimum of three biological replicates. Samples were

blinded prior to analysis. With consultation from the Department

of Biostatistics at theMedical College ofWisconsin, statistical anal-

ysis was performed with GraphPad Prism software using one-way

ANOVA, one-way repeated measures ANOVA, or two-way repeated

measuresANOVAwithTukey post-hocanalysis.Results arepresented

as mean ± SEM and considered statistically significant at p < 0.05.
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