Yamada and Kinoshita BMC Bioinformatics (2018) 19:272
https://doi.org/10.1186/512859-018-2284-1

BMC Bioinformatics

RESEARCH ARTICLE Open Access

De novo profile generation based on

@ CrossMark

sequence context specificity with the long
short-term memory network

Kazunori D. Yamada'” and Kengo Kinoshita"**"

Abstract

sequence profiles.

Background: Long short-term memory (LSTM) is one of the most attractive deep learning methods to learn time
series or contexts of input data. Increasing studies, including biological sequence analyses in bioinformatics, utilize
this architecture. Amino acid sequence profiles are widely used for bioinformatics studies, such as sequence similarity
searches, multiple alignments, and evolutionary analyses. Currently, many biological sequences are becoming available,
and the rapidly increasing amount of sequence data emphasizes the importance of scalable generators of amino acid

Results: We employed the LSTM network and developed a novel profile generator to construct profiles without any
assumptions, except for input sequence context. Our method could generate better profiles than existing de novo
profile generators, including CSBuild and RPS-BLAST, on the basis of profile-sequence similarity search performance

with linear calculation costs against input sequence size. In addition, we analyzed the effects of the memory power of
LSTM and found that LSTM had high potential power to detect long-range interactions between amino acids, as in the
case of beta-strand formation, which has been a difficult problem in protein bioinformatics using sequence information.

Conclusion: We demonstrated the importance of sequence context and the feasibility of LSTM on biological sequence
analyses. Our results demonstrated the effectiveness of memories in LSTM and showed that our de novo profile

biological sequences by machine learning methods.

sequence profile

generator, SPBuild, achieved higher performance than that of existing methods for profile prediction of beta-strands,
where long-range interactions of amino acids are important and are known to be difficult for the existing window-
based prediction methods. Our findings will be useful for the development of other prediction methods related to

Keywords: Long short-term memory, Deep learning, Neural networks, Sequence context, Similarity search, Protein

Background

Amino acid sequence profiles or position-specific scor-
ing matrices (PSSMs) are matrices in which each row
contains evolutionary information regarding each site of
a sequence. PSSMs have been widely used for bioinfor-
matics studies, including sequence similarity searches,
multiple sequence alignments, and evolutionary analyses.
In addition, modern sequence-based prediction methods
of protein properties by machine learning algorithms

* Correspondence: kengo@ecei.tohoku.acjp

'Graduate School of Information Sciences, Tohoku University, Sendai, Japan
*Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
Full list of author information is available at the end of the article

K BMC

often use PSSMs derived from input sequences as input
vectors of the prediction. A PSSM is typically con-
structed from multiple sequence alignment obtained by
a similarity search of a query sequence against a huge se-
quence database such as nr or UniProt [1], and subse-
quently, the PSSM is refined by iterative database
searches. The iteration is a type of machine learning
process that improves the quality of profiles gradually.
In recent years, HHBIits has been considered the most
successful profile generation method [2]. HHBIits gener-
ates profiles by iterative searches of huge sequence data-
bases, as in the case of PSI-BLAST [3]; however,
HHBlits uses the hidden Markov model (HMM) profile,
whereas PSI-BLAST adopts PSSM. To the best of our

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2284-1&domain=pdf
mailto:kengo@ecei.tohoku.ac.jp
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Yamada and Kinoshita BMC Bioinformatics (2018) 19:272

knowledge, these methods can produce good profiles on
the basis of the performance of similarity searches, but
they require an iterative search of a query sequence; there-
fore, the profile construction time depends on the size of
the database. The recent increase in available biological
sequences has made it more difficult to construct profiles.

In this context, de novo profile generators such as
CSBuild [4, 5] and RPS-BLAST (DELTA-BLAST) [6]
have been developed to reduce the cost of profile gener-
ation by eliminating the time required for iterative data-
base search, although RPS-BLAST is not exactly a de
novo profile generator because it explicitly uses an exter-
nal profile database. CSBuild internally possesses a
13-mer amino acid profile library, which is a set of se-
quence profiles obtained by iterative searches of diver-
gent 13-mer sequences. CSBuild searches short profiles
against the short profile library for every part of a se-
quence and subsequently constructs a final profile for
the sequence by merging the short profiles. The profile
is used as the input data for the similarity search
method, CS-BLAST; thus, CSBuild achieves the high
performance of a similarity search along with fast com-
putation time. CSBuild can reduce the profile construc-
tion time using precalculated short profiles; however,
there is no theoretical evidence demonstrating that a
PSSM can be constructed by integrating patchworks at
the short (13-mer) sequence window. In other words,
the previous study assumed that the protein sequences
had a short context-specific tendency for the residues.
This is also the case with RPS-BLAST, in which a batch
of profiles obtained by searches of a query sequence
against a precalculated profile library is assembled to
construct a final profile.

Recently, neural networks have attracted increasing atten-
tion from various research areas, including bioinformatics.
Neural networks are computing systems that mimic bio-
logical nervous systems of animal brains. Theoretically, if a
proper activation function is set to each unit in the middle
layer(s) of a network, it can approximate any function [7].
In recent years, neural networks have been vigorously ap-
plied to bioinformatics studies. In particular, deep learning
algorithms are typically applied to neural networks. For ex-
ample, several studies have applied deep learning algo-
rithms to predict protein—protein interactions [8, 9],
protein structures [10, 11], residue contact maps [12], and
backbone angles and solvent accessibilities [13]. The suc-
cesses of deep learning algorithms have been realized by
complex factors, such as recent increases in available data,
improvements in the performance of semiconductors, de-
velopment of optimal activation functions [14], and
optimization of gradient descent methods [15]. These vari-
ous factors have enabled calculations that were thought to
be infeasible, and modern deep learning algorithms now
not only stack the layers of multilayer perceptrons but also

Page 2 of 11

generate various types of inference methods, including
stacked autoencoders, recurrent neural networks (RNNs),
and convolutional neural networks [14].

The RNN is one of the most promising deep learning
methods. More specifically, long short-term memory
(LSTM) [16], an RNN, can be a judicious method for
learning the time series or context of input vectors.
Namely, with LSTM, it may be possible to learn an amino
acid sequence context to predict the internal properties of
amino acid sequences. The memory of LSTM is experi-
mentally confirmed to be able to continue for more than
1000 time steps, although theoretically, it can continue
forever [16]. This memory power may be sufficient to
learn features from protein sequences, for which lengths
are generally less than 500 amino acids. In addition, com-
pared with window-based prediction methods, we do not
need to assume that some protein internal properties,
such as secondary structure, steric structure, or evolution-
ary information, are formed in some lengths of amino acid
sequences, as in the case of CSBuild, which assumes
13-mers. LSTM can even learn such optimal lengths of
context automatically throughout learning. This character-
istic of LSTM is thought to be more suitable for protein
internal property predictions. Indeed, several machine
learning—based prediction methods utilizing the LSTM
network for protein property prediction have been suc-
cessful applied [13, 17, 18].

In this study, we attempted to develop a de novo profile
generator that mimicked the ability of the existing highest
performance profile generation method, HHBlits, using an
LSTM network, expecting our generator to be able to in-
clude the ability to input whole protein sequences. In
addition, we analyzed the importance of sequence context
in the prediction and performance of LSTM to solve
specific biological problems through our computational
experiments.

Methods

Learning dataset

We conducted iterative searches using HHBIits version
2.0.15 with the default iteration library provided by the
HHBIits developer and generated profiles of the se-
quences in Pfam version 29.0 [19], where the sequences
were clustered by kClust version 1.0 [20] and the max-
imum percent identity for all pairs of sequences was less
than 40% (Pfam40). Because we used the SCOP20 test
dataset as a benchmark dataset for the performance of
profile generators (see below), we excluded highly simi-
lar sequences with any sequences in the SCOP20 test
dataset from the Pfam40 dataset using gapped BLAST
(blastpgp) searches prior to the iterative search, where
we considered retrieved sequences with an e-value of
less than 10™'° as the highly similar sequences. The
number of HHBIits iterations was set to three. Although

Yamada and Kinoshita BMC Bioinformatics (2018) 19:272

HHBIits produces HMM profiles, we converted these pro-
files to PSSMs by extracting amino acid emission frequen-
cies of match states. Finally, we set the generated profiles
as target vectors and its corresponding sequences as input
vectors in learning steps. Namely, in our learning scheme,
each instance included an N dimension vector (sequence)
as an input vector and a 20 x N dimension vector (profile)
as a target vector, where N represents sequence length
and 20 is the number of types of amino acid residues.

Learning network

We designed a network with an LSTM layer, as shown
in Fig. la. In the figure, the numbers at the bottom of
the panel represent the number of dimensions of the
vectors at each layer. In the learning steps, each amino
residue (one character = one-dimension integer vector)
in the input sequence was converted to a 400-dimension
floating vector by the word embedding method. Word
embedding is a technique used to increase the expres-
siveness of a learning network and generally improves
the learning performance of the network [21, 22]. One
of the advantages of the encoding method over the nor-
mal one-hot encoding method, where an amino acid
residue is encoded by a 20-dimension sparse integer vec-
tor comprising a single one and 19 zeros, is that the en-
coding method uses a floating non-zero value in the
vector. Since the value of the next layer is calculated by
multiplying a vector on the present layer with a param-
eter matrix of the network, the sparse vector with many
zeros cannot effectively use the parameters, because
multiplication including zero generates only zero value
(less information). In addition, increasing the dimension
of the first layer using the encoding method will have a
good effect on the learning network, because a moder-
ately wider first layer can keep the next layer narrower
while yielding the same magnitude of parameters. The nar-
rower layer is advantageous over a wider layer in that it can
reduce overfitting. Generally, a narrow-deeper network has
higher learning performance than a wide-shallower net-
work [23-25]. After the word embedding process, the input
vectors were processed by an LSTM layer followed by a
fully connected layer. The dimension of the fully connected
layer was set to 20 to correspond to the number of types of
amino acid residues. The output of the network was set to
a solution of the softmax function of the immediately anter-
ior layer. Because the summation of a solution of the soft-
max function is one, we can interpret the values as a
probability, ie., the amino acid probability on each site in
the study. With the probability vectors, we can reproduce
PSSM. We set the unit size of each gate of the LSTM unit
to 3200. As a cost function, we used the root mean square
error between an output of the network and a target vector.
As an optimizer of the gradient descent method, Adam was
used [15]. As an LSTM unit, we utilized an extended LSTM

Page 3 of 11

with a forget gate [26], as shown in Fig. 1b. In Fig. 1b, the
top, middle, and bottom sigmoid gates represented the in-
put, forget, and output gates, respectively. LSTM imitates
the mechanism of an animal brain using these gates. In
addition, by storing the previous computation results in the
memory cell, #, and using it at the next computation,
LSTM can memorize a series of previous incidents, thus
gaining context. For regularization aimed at reducing the
risk of overfitting, we used a dropout method against
weights between an input layer and an LSTM layer with a
drop ratio of 0.5, and based on the ratio, neurons were sto-
chastically inactivated. We observed learning and validation
curves to avoid overfitting and stopped learning steps at
5000 epochs. Because we could not deploy whole sequence
data into the memory space at one time in our computa-
tional environment, we randomly selected 40,000 sequences
(about 1/40th of all sequences) and learned them as a single
epoch. Therefore, an epoch in this study was about 40
times the typical epoch. Here, epoch means the number of
parameters updated during the inference, ie., the progress
of learning.

As a framework to implement the learning network,
we used Chainer version 1.15.0.1 (Preferred Networks)
with CUDA and cuDNN version 6.5 (NVIDIA), and the
calculations were performed by a server with Tesla
K20m (NVIDIA) at the NIG supercomputer at ROIS
National Institute of Genetics in Japan.

Benchmark of the performance of similarity searches
Performances of profile generators were evaluated based
on the results of similarity searches with their generated
profiles. As representatives of existing methods of rapid
profile generators, we compared our method with CSBuild
version 2.2.3 and RPS-BLAST version 2.2.30+. As a test
dataset, the SCOP20 test dataset was used, as in the ori-
ginal paper for CSBuild [5], which consists of 5819
sequences with protein structural information; the max-
imum percent identity of the sequences in the dataset was
less than 20%. In addition to the dataset, we constructed
another test dataset as a SCOP20 strict-test dataset. To
construct the dataset, we excluded homologous sequences
with any sequence in the Pfam40 learning dataset from
the SCOP20 test dataset using blastpgp searches with an
e-value of less than 10™° as the threshold of homologous
hits. As a result, the SCOP20 strict-test dataset contained
1104 sequences. As a profile library for CSBuild, the data
from the discriminative model of CSBuild (K4000.crf)
were used. For RPS-BLAST, we excluded all highly similar
sequences with any sequence in the SCOP20 test dataset
from the conserved domain database for DELTA-BLAST
version 3.12 by the same method as that used to make the
Pfam40 learning dataset.

To eliminate any biases of alignment algorithms, all
profiles in this study were converted to the PSI-BLAST

Yamada and Kinoshita BMC Bioinformatics (2018) 19:272

Page 4 of 11

~% Embed ¥ LSTM

~» Embed ¥ LSTM

~% Embed ¥ LSTM

l

3200

400

i ()
X

Full 1yl softmax .@
connect

Full -3 Softmax @
connect

Full -3 Softmax -
connect

20 20 20

190;0:020,0,0

weight matrix, and a bias vector

Fig. 1 Network of learning. a Overview of the designed network in this study. Here, x, y, and t represent an input vector, an output vector, and a
position of an amino acid sequence. In the squares, “Embed,” “Full connect,” and “Softmax” stand for a word embedding operation, a fully connected
network, and a softmax function layer, respectively. The solid and broken arrows represent a matrix operation and an array operation, respectively. The
numbers at the bottom of panel (a) stand for a dimension of vectors of each layer. b Description of LSTM layer. Here, u, v, h, s, X, +, dot, 7, 0, w,, w),
and b stand for an input vector to an LSTM unit, an output vector from an LSTM unit, a previous input vector, a unit for constant error, multiplication
of matrices, summation of matrices, a Hadamard product calculation, a hyperbolic tangent, a sigmoid function, a weight matrix to be learned, another

readable format and used as input files in a PSI-BLAST
search. As an application of PSI-BLAST, we used
blastpgp version 2.2.26 for CSBuild, since CSBuild out-
puts blastpgp-readable profile files. For the other
methods, psiblast version 2.2.30+ was used. There were
no significant differences in sensitivity or similarity
searchers between these two versions of PSI-BLAST
(data not shown). The results of the similarity searches
were sorted according to their statistical significance in
descending order. Each hit was labeled as a true positive,
false positive, or unknown based on the evaluation rule-
set for SCOP 1.75 benchmarks (http://supfam.cs.bris.ac
.uk/SUPERFAMILY /ruleset_1.75.html) [27]. Further, the

number of true positives and false positives was normal-
ized by weighting them with the number of members in
each SCOP superfamily to negate bias derived from the
size of each SCOP superfamily. With this information,
we described the receiver operating characteristic (ROC)
curves and evaluated the performance [28]. As an evalu-
ation criterion, we used partial area under the ROC
curve (pAUC), which is the AUC until one false positive
is detected for each query on average. In our case, the
pAUC was equivalent to AUC until 1564 false positives
in total were detected, because we weighted detected
false positives by the size of each SCOP superfamily, and
the number of superfamilies in our test dataset is 1564.

http://supfam.cs.bris.ac.uk/SUPERFAMILY/ruleset_1.75.html
http://supfam.cs.bris.ac.uk/SUPERFAMILY/ruleset_1.75.html

Yamada and Kinoshita BMC Bioinformatics (2018) 19:272

The profile generation time was benchmarked on an
Intel(R) Xeon(R) CPU E5-2680 v2 @2.80 GHz with
64 GB RAM using a single thread.

Results and discussion

Training a predictor with LSTM

In this study, we assumed profiles generated by HHBIits
as ideal profiles and used these as target profiles in train-
ing steps. We then attempted to generate profiles as
similar to the HHBIits profiles as possible with a pre-
dictor using LSTM. The performances of similarity
searches with the profiles generated by HHBlits were
better than those of the other methods [2].

Initially, we selected amino acid sequences with
lengths of 50-1000 in Pfam40. The sequences did not
contain any irregular amino acid characters such as B, Z,
J, U, O, or X. As a result, we obtained 1,602,338 se-
quences and calculated their profiles using HHBIits for
each sequence. We also included 1329 sequences derived
from the SCOP20 learning dataset [5] to the final learn-
ing dataset in order to analyze the developed method
further (see “Performance comparisons” in the section.).
With this learning dataset, we trained the predictor
shown in Fig. la. In order to check whether the pre-
dictor overfit the training dataset, we used 20,000 ran-
domly extracted instances as a validation dataset and
monitored the training and validation curves. The number
of mini-batches was set to 200, and each amino acid was
converted to a 400-dimension floating vector by the word
embedding method, as described in the methods section.
For each sequence, the starting site of learning was not
confined to the N-terminal but was selected at random to
avoid overfitting of the predictor to the specific site. The
training and validation curves did not deviate from each
other, confirming the absence of overfitting, and stopped
learning at 5000 epochs (Additional file 1: Figure S1). Even
using the GPU machine, the completion of our calcula-
tions required almost two months.

Using the obtained parameters (weight matrices and
bias vectors through the learning), we constructed a novel
de novo profile predictor, which we called Synthetic Pro-
file Builder (SPBuild). Our profile generator can be down-
loaded from http://yamada-kd.com/product/spbuild.html.

Performance comparisons

First, we compared the performance of the similarity
searches of the profile generators. The profiles for all se-
quences in the SCOP20 test dataset were generated by
each method, and all-against-all comparisons of the test
dataset by PSI-BLAST with the obtained profiles were
conducted. As profile generators, we evaluated the de
novo profile generators CSBuild and RPS-BLAST, in addition
to SPBuild. We also added the performance of PSI-BLAST
without iterations (= blastpgp) as a representative sequence—

Page 5 of 11

sequence-based alignment method for reference. In addition,
HHBIits was further compared as another reference, and the
results are shown in Additional file 1: Figure S2.

As shown in Fig. 2a, CSBuild and RPS-BLAST were
clearly superior to the sequence—sequence-based align-
ment method, blastpgp. Furthermore, SPBuild showed
better performance than those of these methods. When
performance was evaluated by the pAUC values (Fig. 2b),
the values of our method, CSBuild, and RPS-BLAST were
0.217, 0.140, and 0.174, respectively. Notably, the perform-
ance of our method (0.217) did not reach that of HHBlIits
(Additional file 1: Figure S2a, pAUC = 0.451), even though
we trained our predictor with outputs of HHBIits, indicat-
ing that SPBuild was not completely able to mimic the
ability of HHBIits. This tendency was also true for another
benchmark result, where we evaluated the performance of

a 1200
—— SPBuild /
CSBuild
1000 | RpgH AST J
----- (blastpgp)
& 800
©
:
= 400{
200 [
0
10° 10' 102 10° o
Weighted FP
b 0.24
0.20 |-
1S 0.16 |-
z 012
= 0.08 |-
0.04 |-
0
SPBuild CSBuild RPS-BLAST (blastpgp)
10?
® SPBuild .
CSBuild .
S .TPSBLAST
° _”

10°

10"

Profile generation time (sec) ©

10*
20 50 100 200 500

Sequence length

1000 1500

Fig. 2 Performance comparisons of (a, b) similarity searches and (c)
calculation time. a ROC curves of SPBuild and other methods. Here,
the performance of blastpgp was added for a reference. b The
pAUC values of SPBuild, CSBuild, RPS-BLAST, and blastpgp. ¢ The
scatterplot of the profile generation time for each method on the
SCOP20 test dataset

http://yamada-kd.com/product/spbuild.html

Yamada and Kinoshita BMC Bioinformatics (2018) 19:272

SPBuild and HHBIits on the SCOP20 learning dataset in-
stead of the test dataset (Additional file 1: Figure S2b).
Our findings were surprising because the SCOP20 learning
dataset was a part of the learning dataset for the construc-
tion of the predictor with LSTM, and the performance of
our predictor should reach that of HHBIits. One possible
reason for the observation is that LSTM may not have
worked properly on our learning scheme. To examine
this possibility, we performed another learning method
to examine the performance of LSTM itself with our
learning scheme, where we trained a predictor with
only the SCOP20 learning dataset and let the predictor
overfit the dataset. As a result, the performance of the
predictor was almost the same as that of HHBIits, as
expected (Additional file 1: Figure S2c). This result in-
dicated that LSTM could precisely learn input sequence
properties and output correct PSSMs, but that the perform-
ance of the predictor was worse than that of SPBuild with
proper learning due to the overfitting of the predictor to
the learning dataset (Additional file 1: Figure S2d). In short,
these results suggested that LSTM worked correctly, and
that relationship between performance and overfitting was
a simple trade-off. Therefore, we concluded that SPBuild
could be trained moderately and pertinently without con-
flict under our learning dataset and hyperparameters.

Next, we evaluated the profile generation time of each
method. Table 1 shows the mean computation time of
profile generation using the SCOP20 test dataset. SPBuild
was found to be almost 20 times faster than HHBlits, al-
though CSBuild and RPS-BLAST were still faster than
SPBuild. However, we think the most important property
of a sequence handling method in the big data era is
scalability to the data, namely, time complexity of the
method against the input sequence length. Theoretically,
the time complexity of our method would be linear com-
pared with the input sequence length, similar to CSBuild
and RPS-BLAST. To clarify this point, we plotted profile
generation times (seconds) versus input sequence lengths
(N), as shown in Fig. 2c. When the instances were fitted to
a line, the determination coefficient was 0.998, and the
slope of the line was 1.00. This result indicated that the
time complexity of our method was O(N). Notably, the
slopes of CSBuild and RPS-BLAST appeared to be less
than 1.0 in the figure; however, errors in the experiments

Table 1 Comparison of profile generation times

Mean SD
SPBuild 599 3.83
CSBuild 0.390 0.161
RPS-BLAST 0.208 0.102
HHBIits 120 105

Means and standard deviations (SDs) of profile generation times (s) against
5819 sequences in the SCOP20 test dataset

Page 6 of 11

or other factors in the implementation of these programs
may have caused this because the costs of these calculations
must be higher than that of O(N). Actually, if we conducted
a similar experiment using simulation-sequence data with
longer sequences, the slopes of CSBuild and RPS-BLAST
were about 1.01 and 0.93 and the profile generation time
was almost linear against sequence length (Additional file 1:
Figure S3). Although our method required much time to
compute large matrix calculations in the neural network
layers and was therefore slower than CSBuild and
RPS-BLAST with the currently used sequence database,
our method had linear scalability against the number of in-
put sites or sequence length and the number of input se-
quences. Although the time complexity of de novo profile
generators, including SPBuild, is O(N), that of HHBIits and
other iterative methods is also linear to the length of query
sequences. The difference in the methods lies in the re-
quirement for iterative search in a large database. The de
novo profile generators achieved faster profile generation
time because they succeeded in eliminating the cost of
searching the large database.

Memory power of LSTM in our problem

We also examined the memory power of LSTM in our
problem to determine the feasibility of the LSTM approach
for sequence-based predictions. For this, we considered the
reset time lengths of memory cells (4 in Fig. 1b) at se-
quence lengths of 5, 10, 20, 30, 50, 100, 200, and 300 and
for full-length sequences (= SPBuild). We then bench-
marked the performances of similarity searches with the
SCOP20 test dataset. The memory reset time length was
directly linked to the memory power of the predictors, and
a predictor with a memory reset time length of 5, for ex-
ample, generated profiles based on information from the
previous five sites, including the current site. As a result,
the performance of similarity searches clearly changed as
the memory power decreased (Fig. 3a).

We also checked the performance of CSBuild with the
same plot (Fig. 3a). As described above, CSBuild con-
structs profiles by merging 13-mer short profiles; thus,
we imagined that its performance would be similar to
that of the LSTM profile predictors with low memory
power. However, we found that the performance of
CSBuild was located in the middle, between memory
powers of 30 and 50 for the LSTM predictors. We are
not sure why this happened, but it might be because the
sensitivities (corresponding to the vertical axis of Fig. 3a)
of LSTM predictors were worse than expected or be-
cause of the excellence of CSBuild implementations.

To improve our understanding of the generated pro-
files by SPBuild, we evaluated the mean prediction ac-
curacy (cosine similarity between the output vector y
and the target vector) of SPBuild for each position of a
residue on whole input sequences and observed that

Yamada and Kinoshita BMC Bioinformatics (2018) 19:272

a 1200 300
— SPBuild 30 200
1000 [-— 200 o 1%
— E ~
o — 50 CSBuild 50
& 800 /,
3 / s
£ 600 7 20
2 //7/5’ /
2 400 o 10
L 5
200
0 :
10° 10 10° 10° 10*
Weighted FP
b 0.82
0.80 WWWVWVMWA n|lun'v._“ll | Vm !
E 0.78 u
£
@ 0.76
(9]
c
8 074
o
0.72
0.70
0 50 100 150 200 250 300
Residue position
Fig. 3 Effects of memory power of LSTM on predictors. a Comparison
of profile generators with various reset lengths of memory on LSTM.
The benchmark dataset was the SCOP20 test dataset. The reset time of
SPBuild corresponded to the input sequence length. b Mean cosine
similarity between output vectors of SPBuild and target vectors as a
function of the position of residues in input sequences of the SCOP20
test dataset

there was a clear transition in the plot (Fig. 3b). The pre-
diction accuracy of the initial portion (~50) was worse
than those of the other parts. This lower performance
could be caused by the nature of LSTM. LSTM initial-
izes the internal state of memory (/) by a null vector,
which does not reflect any features of the learning data-
set; thus, the prediction would be not stable until LSTM
memorizes and stores a certain level of context informa-
tion into memory. In our case, the level of context infor-
mation was 50—60 residues. In addition, the decrease in
accuracy in the last part (~200) was derived from the
nature of our learning dataset; the mean length of
SCOP20 was about 154, and SPBuild may be able to be
optimized for the average length. This consideration was
consistent with the observation that improvement of the
performance with memory power of 200 and 300 de-
creased compared with smaller memory power lengths
(Fig. 3a). On the basis of the observations that the pre-
diction confidence of the N-terminal region was not
good, we think that it might be possible to improve the per-
formance of SPBuild by combining prediction results from
both N-terminal and C-terminal directions. Although we

Page 7 of 11

did not implement this feature because the learning process
took lots of time, this will be a future direction for further
improvements.

In conclusion, these results suggested that substantially
long length context—ideally speaking, the context of the se-
quence length of at least more than 50—would be required
to predict precise profiles. Protein primary and secondary
structures, including solvent accessibility and contact num-
ber, must be restricted by not only their sequentially local
interactions but also the three-dimensional interactions of
the residues inside their protein steric structures, which are
formed by spatially complex remote interactions of amino
acid residues. For example, hydrophobic residues tend to
be located inside the protein structure and aliphatic resi-
dues tend to be located on the B-sheet [29-31]. Our find-
ings reflect the influence of remote relationships stemming
from the steric structure on sequence context. In other
words, LSTM will be a powerful predictor for divergent fea-
tures of proteins, if appropriate memory power length is
used. Indeed, other sequence-based predictors using LSTM
have achieved successful outcomes and have shown the
high feasibility of LSTM [13, 17, 18].

Long-range interactions and memory lengths

As shown in Fig. 4a, we calculated the pAUC values of
SPBuild relative to those of CSBuild and RPS-BLAST for
each SCOP class. The values were calculated by dividing
the pAUC value of SPBuild by that of each method, which
indicated how the sensitivity of SPBuild was better than
those of the existing methods for each SCOP class. Actual
pAUC values are shown in Additional file 1: Table S1.
Notably, the performance of SPBuild was 2.00- and
1.49-fold higher than those of CSBuild and RPS-BLAST
for SCOP class b, respectively. SCOP class b consists of
proteins. Generally, B-strands are constructed by remote
interactions between residues when compared with
a-helices. Secondary structure predictors with a
window-based method developed by machine learning
methods tend to show poorer performance in B-regions
than in a-regions. The main reason for this weakness is
related to the long-range interactions in p structures,
which may not be properly handled by the limited lengths
of sequence windows [32, 33]. This tendency may also be
observed with the profile predictors. CSBuild constructs
final profiles by assembling short window-based profiles,
and RPS-BLAST also combines many subjected profiles
obtained by local similarity searches against profile librar-
ies. The actual mean length of the profiles evaluated by
RPS-BLAST with three iterations (default) on the SCOP20
test dataset was 77, which was relatively longer than that
of CSBuild but still shorter than the typical length of a
protein. However, our method can theoretically memorize
whole-length amino acid sequences and can take the re-
mote relationship into consideration to generate profiles.

Yamada and Kinoshita BMC Bioinformatics (2018) 19:272

[Compared to CSBuild
2.0 [l Compared to RPS-BLAST

1.8

1.6

1.4

1.2

Relative sensitivity of SPBuild

1.0
All a b c d Others
SCOP class
b 2.2
1.8 T

1o -

Relative sensitivity
(Compared to CSBuild)

—— All a ——b
——C d —=— Others
02 T T T T T T T T
5 10 20 30 50 100 200 300
Memory power of LSTM
¢ 1.8
(_',_3 14
<<
>
£ ”_?l 1.0
20
@
o
SC 06
o 2
=0
T2
o g
=
<}
QS 02 T T T T T T T T

5 10 20 30 50 100 200 300
Memory power of LSTM

Fig. 4 Relative sensitivity of SPBuild against that of existing methods
on the test dataset. a The relative sensitivity of SPBuild against existing
methods was calculated by dividing the pAUC of SPBuild by that of
each method. Here, the label “others” includes SCOP classes e, f, and g.
b The relative sensitivity of the profile generator with various memory
powers of LSTM against CSBuild. ¢ The relative sensitivity of the profile

generator with various memory powers of LSTM against RPS-BLAST

To confirm the relationship between memory power
length and structural categories, we calculated relative
sensitivities for different reset time lengths (Fig. 4b and c).
As a result, the performance improvements in the b cat-
egory were much better than those of other categories,
indicating that memory power was the most important
factor for encoding long-range interactions, such as
structures.

Limitations of SPBuild

As described, our method could generate profiles faster
than HHBIits, and it demonstrated superior performance
to those of CSBuild and RPS-BLAST, particularly for
[-region prediction, possibly due to the memory effects

Page 8 of 11

of LSTM. However, there are still some limitations to
this method.

One of the limitations of SPBuild is the profile gener-
ation time, although the time complexity is linear against
input sequence length. SPBuild used huge numbers of
parameters, particularly for the LSTM layer, to calculate
the final profile prediction. Although we set the size of
the parameters to the current scale to maximize the final
performance of SPBuild, we may be able to reduce the
size and improve the calculation time if we are able to
find more efficient network structures to learn amino
acid context. In other words, to resolve the problem, ex-
haustive optimization of the hyperparameters of LSTM
and/or development of novel network structures will be
required.

For the construction of the Pfam40 learning dataset,
we excluded highly similar sequences with any sequence
in the SCOP20 test dataset from the original Pfam40
dataset by blastpgp search having e-value <107 '°. It
should be noted that the threshold is rather strict to
eliminate homologous sequences. In the context of ma-
chine learning, the independence of the test and learning
dataset is quite important to avoid overtraining, and
thus, the same data among the datasets should be elimi-
nated, but similar data are usually retained for better
learning. Generally, a test dataset must follow the same
probability distribution as that of the learning dataset
[34, 35]. In other words, the existence of similar data
among a learning and test set is an essential point for
supervised learning, and prediction based on supervised
learning will fail if no similar data are available among
the learning and test dataset. The similar information
will be a question of degree, and in our case, better
learning would require a homologous relationship in
both the learning and test dataset.

Meanwhile, however, in the context of biological se-
quence analysis, homologous or similar sequences will
be conceptual problems. From the viewpoint of machine
learning, homologous sequences should not be removed,
but conventional approaches of biological sequence ana-
lyses usually remove the homologous sequences [36—38].
For further considerations, we set a moderate e-value
threshold of 107° aiming to exclude homologous se-
quences in the Pfam40 learning dataset from the
SCOP20 test dataset, and we made another test dataset,
a SCOP20 strict-test dataset. According to benchmark
results with the dataset (Fig. 5), the search sensitivities of
de novo profile generators including SPBuild were much
lower than that of HHBIits, and our method was worse
than blastpgp, which is a sequence—sequence-based
method. These results will be quite interesting to under-
stand profile generation with machine learning approaches
and indicate that machine learning approaches would not
be effective at all if homologous sequences are excluded, as

Yamada and Kinoshita BMC Bioinformatics (2018) 19:272

160
—— SPBuild
140 CSBuild
—— RPS-BLAST
120 t-uoooas “(HHBIiS)
o 100 |- (blastpgp) . S
=T /
= T s o 1
) 80 |-
2 o V//
....... N /
20
0
10° 10 10° 10° 10¢
Weighted FP

Fig. 5 Performance comparisons of similarity searches on SCOP20
strict-test dataset. ROC curves of SPBuild and other methods. The
performances of HHBIits (three iterations) and blastpgp were added

for a reference
A\

conventional sequence analyses methods are doing. On the
other hand, the worse performance of SPBuild might be
improved to at least the same level as that of blastpgp by
introducing a bailout method, which is a popular approach
in machine learning, where profiles are generated from the
background frequency of amino acid substitution matrices
like BLOSUM [39] or MIQS [40] when the confidences of
profile generation are not enough. That kind of bailout is
internally implemented by BLAST series, but we did not
use it in the current implementations, and thus, it can be a
future direction for further improvements. In practical use,
our predictor will not be able to find completely novel se-
quences that do not share any homologous relationships
with the sequences in a training dataset, despite the training
with all the available sequence data in the world. Thus, our
predictor will be a profile generator capable of generating
profiles of existing or similar sequences rapidly, and its con-
cept is similar to that of RPS-BLAST.

The performance of iteration search with profiles made
by de novo profile generators would be another interesting
point for users. To check the performance of iteration
searches, we calculated ROC curves for SPBuild, CSBuild,
and RPS-BLAST and found that the performance differ-
ences diminished as the number of iterations increased
(Additional file 1: Figure S4). The result suggested that the
performance of the initial search or qualities of profiles
would be of meager importance for the final results in it-
erative searches if a sufficient number of iterations was
used. The reason for this result is unclear; however, we
believe that the number of homologous sequences in the
sequence space is not infinite and that almost all homolo-
gous sequences can be detected by using modestly good
profiles if a large number of iterations are used. Con-
sidering the sensitivity of profile sequence—based similar-
ity searches, our method may not be too attractive;
however, there are many other uses for profiles. For ex-
ample, profile—profile similarity searches, where profiles

Page 9 of 11

are generated by iterative searches of whole datasets, will
be candidates for the application of our approach. The
bottleneck of profile-profile searches may be easily re-
solved with the rapid profile generator. In addition, pro-
files are often used to encode amino acids into input
vectors in other machine learning methods. Machine
learning methods generally require large sets of learning
data, and currently, long-time iterative searches should be
avoided because the calculation time increases depending
on the learning data size. In such cases, higher speeds and
accurate profile generators will be quite useful.

Conclusions

In this study, we developed a novel de novo generator of
PSSMs using a deep learning algorithm, the LSTM net-
work. Our method, SPBuild, improved the performance of
homology detection with a more rapid computation time
than that of existing de novo generators. However, our goal
was not to just provide an alternative method for profile
generators but also to elucidate the importance of sequence
context and the feasibility of LSTM for overcoming the
sequence-specific problem. Our analyses demonstrated the
effectiveness of memories in LSTM and showed that
SPBuild achieved higher performance, particularly for
B-region profile generation, which was difficult to predict
by window-based prediction methods. This performance
could be explained by the fact that our method utilized the
LSTM network, which could capture remote relationships
in sequences. Moreover, further analyses suggested that
substantially long context was required for correct profile
generation. We also reconfirmed several limitations of deep
learning on our problems. For example, the deep architec-
ture to realize higher performance required considerable
computation time, and the intensive elimination of hom-
ologous information between the learning and test dataset
might make the inference by deep learning impossible.
These findings may be useful for the development of other
prediction methods.

We have not developed a profile generator with a per-
formance superior to that of HHBlits, and this was not
our objective either. Actually, we adopted the supervised
learning method, where the predictor basically would
not be able to superior to the teacher. However, as in
the case of AlphaGo Zero [41], state-of-the-art learning
methods such as reinforcement learning may enable us
to develop an alternative method for HHBIits.

Profiles are the most fundamental data structures and
are used for various sequence analyses in bioinformatics
studies. Using SPBuild, the performance of sophisticated
comparison algorithms, such as profile—profile compari-
son methods and multiple sequence alignment, can be
further improved. In addition, profiles generated by SPBuild
can be useful as input vectors for other machine-based
meta-predictors of protein properties.

Yamada and Kinoshita BMC Bioinformatics (2018) 19:272

Additional file

Additional file 1: Figure S1. Learning curves of the LSTM, Figure S2.
ROC curves of similarity search for the target (HHBIits) and predictors,
Figure S3. Comparison of profile generation time with simulation data,
Figure S4. ROC curves of the similarity search for each iterative method,
Table S1. Comparison of pAUC values for SCOP classes for SCOP20 test
datasets. (PDF 857 kb)

Abbreviations

HMM: Hidden Markov model; LSTM: Long short-term memory; pAUC: Partial
area under the ROC curve; PSSM: Position-specific scoring matrix;

RNN: Recurrent neural network; ROC: Receiver operating characteristic

Acknowledgements
We are grateful to Kentaro Tomii and Toshiyuki Oda for constructive discussions.
Computations were partially performed on the NIG supercomputer at ROIS

National Institute of Genetics and the supercomputer system Shirokane at Human

Genome Center, Institute of Medical Science, University of Tokyo.

Funding
This work was supported in part by the Top Global University Project from
the Ministry of Education, Culture, Sports, Science, and Technology of Japan

(MEXT), KAKENHI from the Japan Society for the Promotion of Science (JSPS)
under Grant Number 18K18143 and Platform Project for Supporting in Drug

Discovery and Life Science Research (Basis for Supporting Innovative Drug
Discovery and Life Science Research (BINDS)) from AMED under Grant
Number JP18am0101067. The funding bodies did not play any role in the
design of the study nor collection, analysis, nor interpretation of data nor in
writing the manuscript.

Availability of data and materials
The source code of SPBuild is available at http://yamada-kd.com/product/
spbuild.html.

Authors’ contributions

KDY conducted the computational experiments and wrote the manuscript.
KK supervised the study and wrote the manuscript. Both authors have read
and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

Graduate School of Information Sciences, Tohoku University, Sendai, Japan.
2Artificial Intelligence Research Center, National Institute of Advanced
Industrial Science and Technology (AIST), Tokyo, Japan. *Tohoku Medical
Megabank Organization, Tohoku University, Sendai, Japan. “Institute of
Development, Aging, and Cancer, Tohoku University, Sendai, Japan.

Received: 17 May 2018 Accepted: 11 July 2018
Published online: 18 July 2018

References

1.

2.

Ncbi-Resource-Coordinators. Database resources of the National Center for
biotechnology information. Nucleic Acids Res. 2017;45(D1):D12-7.
Remmert M, Biegert A, Hauser A, Soding J. HHblits: lightning-fast iterative
protein sequence searching by HMM-HMM alignment. Nat Methods. 2011;
9(2):173-5.

v

12.

13.

w

22.

23.

24.

25.

26.

27.

28.

29.

30.

Page 10 of 11

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ.
Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs. Nucleic Acids Res. 1997;25(17):3389-402.

Biegert A, Soding J. Sequence context-specific profiles for homology
searching. Proc Natl Acad Sci U S A. 2009;106(10):3770-5.

Angermuller C, Biegert A, Soding J. Discriminative modelling of context-specific
amino acid substitution probabilities. Bioinformatics. 2012,28(24):3240-7.

Boratyn GM, Schaffer AA, Agarwala R, Altschul SF, Lipman DJ, Madden TL.
Domain enhanced lookup time accelerated BLAST. Biol Direct. 2012,7:12.
Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are
universal Approximators. Neural Netw. 1989,2(5):359-66.

Sun T, Zhou B, Lai L, Pei J. Sequence-based prediction of protein protein
interaction using a deep-learning algorithm. BMC Bioinformatics. 2017;
18(1):277.

Du X, Sun S, Hu C Yao Y, Yan Y, Zhang Y. DeepPPI: boosting prediction of
protein-protein interactions with deep neural networks. J Chem Inf Model.
2017;57(6):1499-510.

Wang S, Peng J, Ma J, Xu J. Protein secondary structure prediction using
deep convolutional neural fields. Sci Rep. 2016;6:18962.

Spencer M, Eickholt J, Cheng J. A deep learning network approach to ab
initio protein secondary structure prediction. IEEE/ACM Trans Comput Biol
Bioinform. 2015;12(1):103-12.

Di Lena P, Nagata K, Baldi P. Deep architectures for protein contact map
prediction. Bioinformatics. 2012;28(19):2449-57.

Heffernan R, Yang Y, Paliwal K, Zhou Y. Capturing non-local interactions by
long short term memory bidirectional recurrent neural networks for
improving prediction of protein secondary structure, backbone angles,
contact numbers, and solvent accessibility. Bioinformatics 2017;33(18):2842-9.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44.
Kingma D, Ba J. Adam: a method for stochastic optimization. In: arXiv
preprint arXiv:14126980; 2014.

Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput.
1997,9(8):1735-80.

Hanson J, Yang Y, Paliwal K, Zhou Y. Improving protein disorder prediction
by deep bidirectional long short-term memory recurrent neural networks.
Bioinformatics. 2017;33(5):685-92.

Kim L, Harer J, Rangamani A, Moran J, Parks PD, Widge A, Eskandar E,
Dougherty D, Chin SP. Predicting local field potentials with recurrent neural
networks. Conf Proc IEEE Eng Med Biol Soc. 2016,2016:808-11.

Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta
M, Qureshi M, Sangrador-Vegas A, et al. The Pfam protein families database:
towards a more sustainable future. Nucleic Acids Res. 2016;44(D1):D0279-85.
Hauser M, Mayer CE, Soding J. kClust: fast and sensitive clustering of large
protein sequence databases. BMC Bioinformatics. 2013;14:248.

Habibi M, Weber L, Neves M, Wiegandt DL, Leser U. Deep learning with
word embeddings improves biomedical named entity recognition.
Bioinformatics. 2017;33(14):137-48.

Asgari E, Mofrad MRK. Continuous distributed representation of biological
sequences for deep proteomics and genomics. PLoS One. 2015;10(11):
0141287.

Yu D, Seltzer ML, Li J, Huang J-T, Seide F. Feature learning in deep neural
networks-studies on speech recognition tasks. In: arXiv preprint arXiv:
13013605; 2013.

Ciregan D, Meier U, Schmidhuber J: Multi-column deep neural networks for
image classification. In: Computer vision and pattern recognition (CVPR),
2012 IEEE conference on: 2012. IEEE: 3642-3649.

Ciresan DC, Meier U, Masci J, Maria Gambardella L, Schmidhuber J: Flexible,
high performance convolutional neural networks for image classification. In:
IJCAI proceedings-international joint conference on artificial intelligence:
2011. Barcelona, Spain: 1237.

Gers FA, Schmidhuber J, Cummins F. Learning to forget: continual
prediction with LSTM. Neural Comput. 2000;12(10):2451-71.

Gough J, Karplus K, Hughey R, Chothia C. Assignment of homology to
genome sequences using a library of hidden Markov models that represent
all proteins of known structure. J Mol Biol. 2001;313(4):903-19.

Gribskov M, Robinson NL. Use of receiver operating characteristic (ROC)
analysis to evaluate sequence matching. Comput Chem. 1996;20(1):25-33.
Rose GD, Geselowitz AR, Lesser GJ, Lee RH, Zehfus MH. Hydrophobicity of
amino acid residues in globular proteins. Science. 1985;229(4716):834-8.
Chou PY, Fasman GD. Prediction of protein conformation. Biochemistry.
1974;13(2):222-45.

https://doi.org/10.1186/s12859-018-2284-1
http://yamada-kd.com/product/spbuild.html
http://yamada-kd.com/product/spbuild.html

Yamada and Kinoshita BMC Bioinformatics (2018) 19:272

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

Shirota M, Ishida T, Kinoshita K. Effects of surface-to-volume ratio of proteins
on hydrophilic residues: decrease in occurrence and increase in buried
fraction. Protein Sci. 2008;17(9):1596-602.

Bradley P, Baker D. Improved beta-protein structure prediction by multilevel
optimization of nonlocal strand pairings and local backbone conformation.
Proteins. 2006;65(4):922-9.

Cheng J, Baldi P. Three-stage prediction of protein beta-sheets by neural
networks, alignments and graph algorithms. Bioinformatics. 2005;21(Suppl
1)i75-84.

Bishop CM. Pattern recognition and machine learning. New York: Springer;
2006.

Goodfellow I, Bengio Y, Courville Y: Deep learning: MIT Press; 2016.

Soding J, Remmert M. Protein sequence comparison and fold recognition:
progress and good-practice benchmarking. Curr Opin Struct Biol. 2011;21(3):
404-11.

Yamada KD. Derivative-free neural network for optimizing the scoring
functions associated with dynamic programming of pairwise-profile
alignment. Algorithms Mol Biol. 2018;13:5.

Yamada KD, Tomii K, Katoh K. Application of the MAFFT sequence
alignment program to large data-reexamination of the usefulness of
chained guide trees. Bioinformatics. 2016;32(21):3246-51.

Henikoff S, Henikoff JG. Amino acid substitution matrices from protein
blocks. Proc Natl Acad Sci U S A. 1992;89(22):10915-9.

Yamada K, Tomii K. Revisiting amino acid substitution matrices for
identifying distantly related proteins. Bioinformatics. 2014;30(3):317-25.
Silver D, Schrittwieser J, Simonyan K, Antonoglou |, Huang A, Guez A,
Hubert T, Baker L, Lai M, Bolton A. Mastering the game of go without
human knowledge. Nature. 2017;550(7676):354.

Page 11 of 11

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Learning dataset
	Learning network
	Benchmark of the performance of similarity searches

	Results and discussion
	Training a predictor with LSTM
	Performance comparisons
	Memory power of LSTM in our problem
	Long-range interactions and memory lengths
	Limitations of SPBuild

	Conclusions
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

