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R E V I E W

Abstract: The group of spinocerebellar ataxias (SCAs) includes more than 20 subgroups

based only on genetic research. The “ataxia genes” are autosomal; the “disease-alleles” are

dominant, and many of them, but not all, encode a protein with an abnormally long

polyglutamine domain. In DNA, this domain can be detected as an elongated CAG repeat

region, which is the basis of genetic diagnostics. The polyglutamine tails often tend to aggregate

and form inclusions. In some cases, protein–protein interactions are the key to understanding

the disease. Protein partners of ataxia proteins include phosphatases and components of

chromatin and the transcriptional machinery. To date, investigation of spinocerebellar ataxias

involves population genetics, molecular methods, and studying model organisms. However,

there is still no efficient therapy for patients. Here, we review the genetic and molecular data

gained on spinocerebellar ataxias.
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Introduction
Spinocerebellar ataxias are late-onset, progressive neurodegenerative, and movement

disorders showing autosomal inheritance. The clinical features of spinocerebellar

ataxias include ataxia, dysarthria, dysmetria, and intention tremor. These types of

diseases (autosomal dominant cerebellar ataxias, ADCAs) are very heterogeneous.

The original classification is based on associated clinical symptoms, such as brain

stem signs and retinopathy. The presence of pyramidal and extrapyramidal symptoms

and ophthalmoplegia points to the diagnosis of ADCA I; the presence of retinopathy,

to ADCA II; and the absence of associated signs, to ADCA III. The new categorization

is based on the latest genetic results, which prove that mutations in more than 20

genes are responsible for these complex phenotypes, and even the clinical subgroups

are genetically heterogeneous.

Spinocerebellar ataxias are not frequent diseases. Prevalence of the autosomal

dominant cerebellar ataxias is estimated to be 3/100 000 in the Netherlands (van de

Warrenburg et al 2002). Frequencies of the different types of ataxias may vary among

regions and ethnic groups. For example, SCA2 is common in Korea, and SCA3 is

much more common in Japan and Germany than in the United Kingdom (Leggo et al

1997; Schols et al 1997; Watanabe et al 1998; Kim et al 2001; Silveira et al 2002).

In the case of ataxias, mutations in completely unrelated genes cause very similar

phenotypes. The source of the mutation in many genetic subtypes of ataxias (SCA1,

SCA2, SCA3, SCA6, SCA7, SCA12, and SCA17) is the same (CAG repeat

expansion), and the resulting protein product contains a long polyglutamine domain.

Some types of ataxias show a partly different molecular background (eg, SCA8,

SCA10, SCA12, and some forms of SCA6), since they involve repeats (not necessarily

CAG) that are not translated, or they do not involve repeats at all. The mutant allele
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responsible for SCA8 codes for a non-coding RNA product,

which can associate with RNA-binding proteins like staufen

in Drosophila melanogaster causing neurodegeneration

(Mutsuddi et al 2004). Disease alleles in the case of SCA10

show massive expansion (800–4500 repeats) of a

pentanucleotide (ATTCT) and not a trinucleotide repeat in

an intron of a gene with unknown function (Matsuura et al

2000). SCA12 is caused by a CAG repeat expansion that is

not transcribed to polyglutamine and is speculated to affect

the expression of the gene PPP2R2B, which encodes a brain-

specific regulatory subunit of protein phosphatase PP2A

(Holmes et al 1999). Although SCA6 is associated with small

expansions of a CAG repeat at the 3́  end of the CACNA1A

gene, which codes for the pore-forming subunit of calcium

channel type P/Q, point mutations in the same gene are

responsible for its two allelic disorders (episodic ataxia

type 2 and familial hemiplegic migraine) (Mantuano et al

2003). There have been many investigations on the role of

molecularly different alleles in causing ataxia. To date, many

SCA alleles are well characterized, and although many do

not involve repeats, one popular field of study in the genetics

of ataxias is the description of repeat-expansion alleles and

the mechanism of their function.

Trinucleotide repeat as a cause of
disease
The CAG/CTG repeat in genes is often translated to a

polyglutamine domain in proteins. Elongated repeat regions

result in elongated polyglutamine tracts. The first protein

proven to be involved in neurodegenerative disorders and

contain an elongated polyglutamine domain was huntingtin,

the factor responsible for Huntington’s disease (HD)

(Huntington’s Disease Collaborative Research Group 1993).

To date, besides HD, nine polyglutamine disorders have been

characterized, including spinobulbar muscular atrophy

(SBMA), dentatorubral-pallidoluysian atrophy (DRPLA),

and spinocerebellar ataxias (SCA) 1, 2, 3, 6, 7, and 17.

Expansion of the CAG/CTG repeats results in alleles which

are genetically dominant because of their toxic gain-of-

function characteristics.

Expansion alleles are polymorphic in populations, and

under a certain repeat number the CAG repeat length should

be considered normal. Alleles carrying intermediate numbers

of repeats are risk alleles for late-onset spinocerebellar ataxia

(see Table 1 for normal and abnormal repeat numbers in

certain types of ataxias). In general, the more repeats, the

earlier the onset of the disease.

Furthermore, there is a genetic phenomenon in relation

to these repeat expansion alleles, called anticipation. The

CAG/CTG repeat sequence is particularly unstable, and de

novo mutations can occur during paternal transmissions of

intermediate-size alleles. The disease increases in severity

in successive generations, and children can have a more

severe form, an earlier onset, or a more rapid progression

of the disease than their parents. In some ataxias, anticipation

may be so extreme that children with an early onset, severe

disease may die of disease complications long before the

affected parent or grandparent is symptomatic.

In the SCA8 ataxia syndrome, the characteristics of

anticipation are unique, since SCA8 is characterized by

dramatic repeat instability and a high degree of reduced

penetrance. In SCA8, the genetic cause of the disease is a

repeat of the CTG trinucleotide instead of CAG. In SCA8,

the majority of expansions of CTG repeat occur during

maternal (and not the usual paternal) transmission, and

extremely large repeats (800 bp) may be associated with an

absence of clinical symptoms (Ranum et al 1999).

Anticipation seems to be dependent on the genomic

context. Transgenic mice carrying cDNA constructs of SCA7

show little intergenerational repeat instability, while in mice

carrying the SCA7 genomic fragment, expansion of the CAG

Table 1 Type and number of repeats belonging to normal, risk,
and disease alleles in different types of spinocerebellar ataxias

Repeat Intermediate Abnormal
Disease type/normal repeat repeat
name number number number

SCA1 CAG/6–44 36–38 39–91
SCA2 CAG/max 31 – 32–500+
SCA3 CAG/max 47 48–51 53–86
SCA4 – – –
SCA5 – – –
SCA6 CAG/max 18 19 19–33
SCA7 CAG/ 7–35 28–35 36–300+
SCA8 CAG/15–50 50–70 71–800+
SCA9 – – –
SCA10 ATTCT/10–22 – 280–4500+
SCA11 – – –
SCA12 CAG/7–31 (45) – 55–78
SCA13 – – –
SCA14 – – –
SCA15 – – –
SCA16 – – –
SCA17 CAG/25–42 42–44 46–63
SCA18 – – –
SCA19 – – –
SCA20 – – –
SCA21 – – –
SCA22 – – –
SCA25 – – –
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repeat can be observed. Deletion of the 3́  genomic region

significantly stabilizes the repeat length in intergenerational

transmission of the genomic construct (Libby et al 2003).

There are other factors which seem to play a role in repeat

stabilization. There are indications that, at least in the case

of some ataxia genes, interruptions in the repeat region can

stabilize the CAG repeat, while lack of interruptive

sequences predisposes alleles towards instability and

expansion. In the case of SCA2, interruptions by CAA

trinucleotides at the 5´ end have such an effect (Choudhry

et al 2001). In some cases, contraction of the repeat region

can also be observed, indicating that repeat length alterations

are dynamic in these types of disorders (Andres et al 2003).

The investigation of CAG repeat length instability in

transgenic mice led to the observation that advanced

maternal age is an important factor for instability of

nucleotide repeats during transmission. If the transgene is

maternally transmitted, the instability occurs after meiotic

DNA replication and prior to oocyte fertilization (Kaytor et

al 1997). However, most of the SCA genes show paternal

anticipation.

A recent publication implies that anticipation of repeats

can be a result of the dysfunction of the DNA repair system

(Lahiri et al 2004). The authors observed that expanded CAG

repeats activate the DNA damage checkpoint pathway in

yeast, and mutation of genes in the pathway can increase

repeat fragility.

How the expanded polyglutamine chain exerts its effect

is not completely clear. Proteins with long polyglutamine

tracts have an increased tendency to aggregate, often as

truncated fragments forming ubiquitinated intranuclear

inclusion bodies. In some cases, like in the case of ataxin-3

(SCA3), cleavage of the polyglutamine chain promotes

aggregation (Paulson et al 1997). The factor responsible for

cleaving the polyglutamine proteins might be different in

different types of ataxias. This would give a reason for the

specific neurotoxic effect of the different ataxia-related

genes. It would be practical to find the proteases that do the

cleavage in the case of the certain elongated ataxia proteins.

The inhibition of the adequate protease might have a

therapeutic effect by reducing the tendency of polyglutamine

domains to aggregate.

An interesting observation proves that CAG repeat

elongation alone is not sufficient to induce the disease. In

the case of SCA1, the S776 amino acid is critical in disease

development: when changed to A776 the induction of the

disease is significantly reduced in transgenic mice, very

likely due to lack of phosphorylation at the 776 position in

ataxin-1 (Emamian et al 2003). These results suggest that

polyglutamine disorders cannot only be explained by

aspecific interactions of the elongated domain.

Genes responsible for
spinocerebellar ataxias
Molecular information, except for chromosomal position,

is not available on most of the SCA genes, but the research

efforts in this field are increasing exponentially. In the

following sections we summarize the information already

gained about the most intensively studied ataxia genes (see

Table 2 for summarized molecular details). We focus only

on the genes for which molecular function was investigated.

SCA1
Using recombination fraction analysis, linkage of SCA1 to

HLA on chromosome 6 (Jackson et al 1977) was shown.

Further studies helped to determine the exact position of

the gene (Kwiatkowski et al 1993; Lunkes et al 1994). The

basic genetic defect in spinocerebellar ataxia-1 consists of

expansion of a trinucleotide CAG repeat (Orr et al 1993) in

a gene termed ataxin-1 that encodes a 10-kb mRNA

transcript (Banfi et al 1994). This was the fifth example of a

pathologic state resulting from expansion of an unstable

trinucleotide repeat. The expanded SCA1 alleles are also

translated into proteins of apparently normal stability and

distribution (Servadio et al 1995).

Human SCA1 with expanded CAG repeats expressed in

Purkinje cells of transgenic mice are sufficient to produce

degeneration and ataxia (Burright et al 1995). Although

nuclear localization of ataxin-1 is necessary for the

development of the disease, nuclear aggregation of ataxin-

1 is not required to initiate pathogenesis in transgenic mice

(Klement et al 1998).

One key to understanding the mechanism of the disease

caused by the mutant ataxin-1 is its interaction with LANP

(leucine-rich acidic nuclear protein). LANP is expressed

predominantly in Purkinje cells, and its interaction with

ataxin-1 is significantly stronger when the number of

glutamines is increased (Matilla et al 1997).

Proteases and chaperons in interaction with ataxia-

related proteins seem to play important roles in ataxias.

Cummings et al (1998) found colocalization of the 20S

proteosome and chaperone HSJ2, a member of the Hsp40

family, with large nuclear inclusions of ataxin-1 in brain

neurons of patients with SCA1 and in mice transgenic for a

mutant SCA1 allele containing 82 glutamines. In these
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nuclear inclusions, there is also faint staining for Hsc70, a

member of the Hsp70 chaperone family. Similar

colocalization can be seen in HeLa cells transfected with

ataxin-1. In the transfected HeLa cells, unlike in the brain,

there is apparent induction of Hsc70 chaperone.

Overexpression of HSJ2 in these cells reduces aggregation

of ataxin-1, suggesting a possible therapeutic strategy.

In SCA1 mice crossbred with mice overexpressing the

molecular chaperone inducible HSP70, the amount of

nuclear inclusions in Purkinje cells persist, but physiologic

and histopathologic analysis reveals that high levels of

HSP70 protect against neurodegeneration and preserve

dendritic arborization in the cerebellum (Cummings et al

2001).

Latest results demonstrate that ataxin-1 interacts with

the transcriptional corepressor SMRT (silencing mediator

of retinoid and thyroid hormone receptors) and with histone

deacetylase 3. Ataxin-1 binds chromosomes and mediates

transcriptional repression when tethered to DNA. In

Drosophila, genetic interaction between ataxin-1 and

SMRTER (the Drosophila cognate of SMRT) can be observed

(Tsai et al 2004).

SCA2
After determining the exact position of the gene responsible

for SCA2, CAG repeats have been proven to have a major

role in development of the disorder (Pulst et al 1993).

Mice expressing ataxin-2 showed functional progressive

deficits accompanied with the final loss of Purkinje cells

resulting from aggregation in cytoplasm. Despite many

similarities to ataxin-3, ataxin-2 does not form inclusions

in the nucleus and does not gain detectable ubiquitination

(Huynh et al 2000). The expanded form of SCA2 disrupts

the structure of the Golgi apparatus, which is the

predominant location of the normal protein (Huynh et al

2003).

Datx2, the Drosophila homolog of human SCA2, is a

dosage-sensitive regulator of actin filament formation

(Satterfield et al 2002).

SCA3
SCA3 was described in descendants of William Machado,

a native of an island in the Portuguese Azores. This ataxia

is the most frequent one among Portuguese immigrants

living in New England (Nakano et al 1972). The disorder

Table 2 Chromosomal localization and protein products of genes involved in spinocerebellar ataxias

Disease
name Gene Locus Product Inclusions

SCA1 SCA1 6p23 Ataxin-1 Nuclear inclusions in Purkinje cells containing Hsc 70
SCA2 SCA2 12q24 Ataxin-2 Cytoplasmic microaggregates
SCA3 MJD 14q24.3-q31 Machado-Joseph disease Intranuclear inclusions, colocalization with the proteasome

protein 1
SCA4 SCA4 16q22.1 – No data
SCA5 SCA5 11p11-q11 – No data
SCA6 CACNA1A 19p13 Voltage-dependent Numerous cytoplasmic inclusions, in Purkinje cells, no ubiquitination

P/Q-type calcium channel
alpha-1A subunit

SCA7 SCA7 3p21.1-p12 Ataxin-7 Ubiquitinated intranuclear inclusions in several brain regions,
containing proteasome subunits

SCA8 SCA8 13q21 – No data
SCA9 – not assigned – No data
SCA10 SCA10 22q13 Ataxin-10 No data
SCA11 SCA11 15q14-q21.3 – No data
SCA12 SCA12 5q31-q33 – No inclusions
SCA13 SCA13 19q13.3-q13.4 – No data
SCA14 PRKCG 19q13.4-qter Protein kinase C gamma No inclusions
SCA15 SCA15 – – No data
SCA16 SCA16 8q22.1-q24.1 – No data
SCA17 TBP 6q27 TFIID Neuronal intranuclear inclusion bodies
SCA18 – reserved –
SCA19 – 1p21-q21 – No data
SCA20 – – – No data
SCA21 – reserved 7p21-15 – No data
SCA22 – 1p21-q23 – No data
SCA25 – – – No data
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begins as ataxic gait after age 40. The cause of the disorder

is a CAG repeat expansion in the respective gene in the

14q24.3-q31 position (Takiyama et al 1993; Sequeiros

1994). Igarashi et al (1996) found association of

intergenerational instability of the expanded CAG repeat in

Machado-Joseph Disease (MJD) with a CAG/CAA

polymorphism in the CAG repeat and a CGG/GGG

polymorphism at the 3́  end of the CAG array. Their results

strongly suggest that an interallelic interaction is involved

in the intergenerational instability of the expanded CAG

repeat. The expanded CAG repeats are less stable in paternal

transmission than in maternal transmission.

Ataxin-3 adopts a unique conformation when expressed

within the nucleus of transfected cells. This novel

conformation of intranuclear ataxin-3 is not due to

proteolysis, suggesting instead that association with nuclear

protein(s) alters the structure of full-length ataxin-3,

exposing the polyglutamine domain. This conformationally

altered ataxin-3 is bound to the nuclear matrix. The

pathologic form of ataxin-3 with an expanded polyglutamine

domain also associates with the nuclear matrix (Perez et al

1999). These data suggest that an early event in the

pathogenesis of SCA3/MJD may be an altered conformation

of ataxin-3 within the nucleus that exposes the

polyglutamine domain. The abnormally strong or aspecific

interactions of this protein may be the key to the disease.

However, intranuclear aggregations of ataxin-3 can also

be observed. Human disease tissue and in vitro models show

redistribution of the 26S proteasome complex into

polyglutamine aggregates. In neurons from SCA3 brain, the

proteasome is localized to intranuclear inclusion bodies

containing mutant ataxin-3. Inclusion formation is

dependent on the nuclear localization of the mutant protein

and occurs in special subnuclear structures recently

implicated in the regulation of cell death. Inhibitors of the

proteasome cause a repeat-length dependent increase in

aggregate formation (Chai et al 1999). These results suggest

a central role for protein misfolding in the pathogenesis and

that modulating proteasome activity is a potential approach

to altering the progression of the polyglutamine diseases.

Frameshift mutations in expanded CAG tracts of

ataxin-3 can generate polyalanine mutant proteins that also

form intranuclear inclusions. The frameshifts may more

likely occur in longer CAG repeats (Gaspar et al 2000).

The Drosophila model for this disease has led to some

new observations. The sensitivity of different cell types is

variable to the inclusion of the ataxin-3 protein, and neurons

seem to be especially susceptible (Warrick et al 1998).

Molecular chaperones Hsp70 and Hdj1 (the Drosophila

homolog of human HSP40) show substrate specificity to

polyglutamine proteins and alter the solubility of the mutant

polyglutamine protein, suppressing neurotoxicity (Chan et

al 2000).

Latest results indicate that ataxin-3 is a transcriptional

inhibitor. Interactions of ataxin-3 and other regulators of

histone acetylation and transcription (p300, CREB-binding

protein) have been detected (Li et al 2002).

SCA5
In a family descendant from the grandparents of President

Lincoln, Ranum et al (1994) mapped the gene of SCA5 to

the centromeric region of chromosome 11 by linkage to

DNA markers. The most dramatic examples of anticipation

occur with maternal transmission. There are several

3-generation examples of grandmothers having onsets

10–20 years later in life than their daughters, who in turn

had onsets 10–20 years later in life than their children.

Furthermore, all 4 cases of juvenile onset (10–18 years) are

instances of maternal inheritance.

SCA6
SCA6 was mapped by genomewide linkage analysis in 15

Japanese families with autosomal pure cerebellar ataxia

(Ishikawa et al 1997). CAG repeat arrays are translated

as polyglutamine tracts in the protein product, which is

the alpha (1A)-voltage-dependent calcium channel

(CACNA1A) (Zhuchenko et al 1997).

The calcium channel mRNA/protein containing the CAG

repeat/polyglutamine tract is most intensely expressed in

Purkinje cells of normal human brains. In SCA6 brains,

numerous oval or rod-shaped aggregates can be seen

exclusively in the cytoplasm of Purkinje cells. These

cytoplasmic inclusions are not ubiquitinated, which contrasts

with the neuronal intranuclear inclusions of other CAG

repeat/polyglutamine diseases. In cultured cells, formation

of perinuclear aggregates of the channel protein and

apoptotic cell death can be seen when transfected with full-

length CACNA1A coding an expanded polyglutamine tract.

It can be stated that the mechanism of neurodegeneration in

SCA6 is associated with cytoplasmic aggregations of the

alpha-1A calcium channel protein caused by a small CAG

repeat/polyglutamine expansion in CACNA1A (Ishikawa

et al 1999).

Genetic anticipation in case of these CAG repeat

expansions is not so trivial, some alleles seem to be very

stable (Ishikawa et al 1997). Point mutant allelic forms of
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SCA6 cause different neurologic disorders (as mentioned

above).

SCA7
SCA7 has a special clinical symptom: this is the only ataxia

associated with retinal degeneration (Froment et al 1937).

The pathogenic SCA7 CAG expansion was cloned by

RAPID (repeat analysis, pooled isolation, and detection)

from an archived DNA sample from an individual affected

with ataxia and retinal degeneration (Koob et al 1998).

Mice expressing mutant human ataxin-7 show nuclear

inclusions of ubiqutinated ataxin-7 protein that recruits

subunits of proteases and chaperons. Proteolitic cleavage

and transneuronal responses are likely to be involved in

pathogenesis (Yvert et al 2000).

In yeast 2-hybrid system, ataxin-7 interacts with CRX,

a nuclear transcription factor predominantly expressed in

retinal photoreceptor cells. Coimmunoprecipitation

experiments colocalized ataxin-7 with CRX in nuclear

aggregates. Polyglutamine-expanded ataxin-7 suppresses

CRX transactivation in transgenic retinas. SCA7 transgenic

mice faithfully recapitulate the process of retinal

degeneration observed in human SCA7 patients. Thus, the

specificity of the mutant protein can be explained by

interactions with specific partners of the ataxin-7 protein

(La Spada et al 2001).

Latest results in the research on interactive partners of

the protein show that ataxin-7 is a member of at least three

different complexes involved in the regulation of mammalian

chromatin structure. Ataxin-7 is an integral component of

SAGA-like complexes (SAGA in yeast contains the Gcn5

acetylase), the TATA-binding protein-free TAF-containing

complex (TFTC) and the SPT3-TAF9-GCN5 acetyl-

transferase complex (STAGA). A Zn-binding domain

potentially involved in protein–protein interactions of the

ataxin-7 protein was also identified. An interesting finding

is that the elongated polyglutamine domain does not affect

incorporation of ataxin-7 into the complexes (Helmlinger

et al 2004).

SCA8
SCA8 was identified by Koob et al (1999). It was mapped

to the 13q21 and was cloned using the RAPID technique.

SCA8 is also a CAG repeat disorder. Repeat length

contracts with paternal transmission, but expansion can be

observed in maternal transmission. The CAG repeat in the

mutant alleles is not translated into a polyglutamine tract,

but the CTG repeat in the complement strand is part of a

transcribed but not translated RNA. The gene organization

in this region is very complex: it is hypothesized that SCA8

RNA is an endogenous antisense, which is transcribed

through the first exon of the gene KLHL1 (Nemes et al 2000).

Thus, the SCA8 gene codes for an untranslated RNA

functioning as a gene regulator (Erdmann et al 2001).

The gene often contains CCG, CTA, CTC, CCA, or CTT

interruptions preceding the repeat region that may play a

role in reducing the penetrance of disease alleles (Moseley

et al 2000).

SCA8 repeat expansion can coexist with SCA1 and SCA6

repeats, and the protein product can act through the SCA6

coded calcium channel (Izumi et al 2003, Sulek et al 2003).

SCA10
SCA10 is determined by a gene which maps to the 22nd

chromosome (Zu et al 1999) and includes an ATTCT

pentanucleotide repeat region in the 9th intron of the gene

(Matsuura et al 2000). Mutant alleles contain expansion of

this repeat.

SCA14
The gene responsible for SCA14 ataxia was mapped to the

19q13.4-qter (Yamashita et al 2000). SCA14 type ataxia is

not attributable to trinucleotide repeat expansion (Brkanac

et al 2002) but to various mutations in the PRKCG (protein

kinase C gamma) gene which result in altering a highly

conserved residue in the cystein rich region of the respective

protein (Chen et al 2003).

SCA17
The SCA17 gene codes for the TATA-binding protein (TBP).

Elongated CAG repeats in the coding region cause this type

of ataxia (Koide et al 1999). Using anti-TBP and 1C2 (which

is used to identify polyglutamine tracts) antibodies, neuronal

intranuclear inclusion bodies can be observed in Purkinje

cells (Rolfs et al 2003). There is only a weak correlation

between the repeat number and the age of onset, but an

extremely expanded repeat region can cause very severe

phenotypes and early onset (Maltecca et al 2003).

Perspectives and potential therapy
Although molecular aspects of described ataxias are

intensively studied, we still need to gain more information

to be able to design a treatment of ataxia patients. One

possible way could be the inhibition proteases (eg, caspases)
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that are involved in the formation of inclusion bodies from

the respective polyglutamine proteins. This task requires

extensive research of proteases that are specific for the given

type of SCA. Another approach to treatment could be

modulating proteosome activity. The observation that the

elongated form of ataxin-3 in inclusion bodies is colocalized

with the 26S proteosome complex (Chai et al 1999) implies

that the proteosome could have a major role in the

development of the disorder.

It is also proven that polyglutamine proteins need

molecular chaperons to gain their conformation, and in some

cases elongated polyglutamine tract containing proteins are

localized together with chaperons (eg, heatshock proteins)

(Cummings et al 1998). Research on the effect of altering

the level of specific chaperons could also be very informative

in designing a treatment for spinocerebellar ataxias.

The latest results indicate that oxidative stress may have

a role in the development of spinocerebellar ataxias. The

mutant form of ataxin-1, which contains the expanded poly-

glutamine tract, recruits Cu/Zn-superoxid dismutase into the

nucleus of HeLa cells and also decreases the activity of the

enzyme. This process exposes the cells to reactive oxygen

species (Kim et al 2003). Increasing superoxid dismutase

activity or reducing the level of reactive oxygen species may

also delay the development of the disorder.

Inhibition of phosphorylation of certain aminoacids

could also hinder the development of the disease by blocking

the molecular interactions of the expanded polyglutamine

domains (Emamian 2003).

In studying and understanding the pathomechanism and

molecular features of ataxias, models (mouse and

Drosophila) are going to be indispensable. In some types of

ataxias these have already been generated and are in use.

This is a great step compared with studies in cell lines,

because gaining in vivo data is very important in determining

the molecular interactions of ataxia-related proteins. The

aim is to gain a wide range of information in the molecular

and biochemical alterations in these disorders and to design

an effective therapy.
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