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Abstract: Nanoparticles (NPs) have remarkable properties for delivering therapeutic drugs to the
body’s targeted cells. NPs have shown to be significantly more efficient as drug delivery carriers than
micron-sized particles, which are quickly eliminated by the immune system. Biopolymer-based poly-
meric nanoparticles (PNPs) are colloidal systems composed of either natural or synthetic polymers
and can be synthesized by the direct polymerization of monomers (e.g., emulsion polymerization,
surfactant-free emulsion polymerization, mini-emulsion polymerization, micro-emulsion polymer-
ization, and microbial polymerization) or by the dispersion of preformed polymers (e.g., nanoprecip-
itation, emulsification solvent evaporation, emulsification solvent diffusion, and salting-out). The
desired characteristics of NPs and their target applications are determining factors in the choice of
method used for their production. This review article aims to shed light on the different methods
employed for the production of PNPs and to discuss the effect of experimental parameters on the
physicochemical properties of PNPs. Thus, this review highlights specific properties of PNPs that can
be tailored to be employed as drug carriers, especially in hospitals for point-of-care diagnostics for
targeted therapies.

Keywords: polymeric nanoparticles; nanoprecipitation; emulsification solvent evaporation;
emulsification solvent diffusion; polyhydroxyalkanoates (PHA); natural nanoparticles

1. Introduction

Nanoparticles (NPs) are defined as particles with all three dimensions confined within
the range of 1 to 100 nm [1–4]. The growing attention towards NPs stems from the fact that
their mechanical, chemical, optical, electrical, and magnetic properties differ from those of
their bulk counterparts, and these properties can be altered by varying the size of NPs [5,6].
NPs are of great interest in a variety of sectors, including physics, agriculture, chemistry,
engineering, electronics, biology, food technology, medicine, and bioengineering, due to
their small size and ability to tailor their properties for specific requirements [7–17].

NPs offer the perfect characteristics for delivering therapeutic medications to the
body’s target sites [18]. In contrast to micron-sized particles that are rapidly eliminated
by the immune system, NPs demonstrated much higher efficiency as drug delivery
carriers [19–21]. Because of their larger surface area, NPs can effectively penetrate cells
and traverse the blood–brain barrier and they are easily destroyed [22–24]. NPs can be
produced using a variety of natural and synthetic materials, which are biodegradable
or non-biodegradable [25]. Examples of NPs include solid–lipid nanoparticles, silver
nanoparticles, gold nanoparticles, magnetic nanoparticles, mesoporous silica nanoparti-
cles, nanocrystals, carbon nanotubes, albumin nanoparticles, fullerene nanoparticles, and
polymeric nanoparticles (PNPs).

Many types of NPs have been investigated for clinical use but have not been ac-
cepted widely due to their toxicity to some extent [26]. Biopolymers are employed in the
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manufacturing of NPs for biomedical applications to avoid cytotoxicity concerns [27,28].
Biopolymers are well-known for being non-toxic, biodegradable, and biocompatible [29,30].
Depending on the intended uses, PNPs can be simply and cost-effectively generated on
a wide scale using a variety of technologies. PNPs have applications in different fields
such as electronics [31], photonics [32], environmental technology [33], medicine [34], bio-
imaging [35], diagnostics [36], biotechnology [37], biomedical drug delivery [38–40], and
energy harvesting [41].

Due to their subcellular size, biodegradability, biocompatibility with tissue and cells,
and controlled and sustained-release capabilities, PNPs are attractive candidates for the
delivery of vaccinations, antibiotics, and cancer treatments [42–46]. PNPs can enhance
the bioavailability, solubility, and retention time of drugs. Moreover, PNPs do not cause
any toxic, inflammatory, or immunogenic side effects [47,48]. Different polymers such
as polyhydroxyalkanoate (PHA) [49–52], polylactic acid (PLA) [53–55], poly(lactic-co-
glycolic acid) (PLGA) [56,57], polycaprolactone (PCL) [58–60], polyglycolide (PGA) [61],
polyanhydride [62], polycyanoacrylate [63], poly glutamic acid [64], polymalic acid [65,66],
poly(N-vinyl pyrrolidone) [66,67], poly(methyl methacrylate) (PMMA) [68,69], poly(vinyl
alcohol) [70,71], poly(acrylic acid) [72,73], poly acrylamide [74,75], and poly(methacrylic
acid) [76,77] have been used for the synthesis of PNPs.

This review paper describes the different methods used for producing PNPs and
how variation in experimental parameters can enable the control of NP properties. As
PNPs are colloidal systems made up of natural or synthetic polymers, their synthesis
methods are generally categorized into two groups. They are (1) the direct polymerization
of monomers (emulsion polymerization, surfactant-free emulsion polymerization, mini-
emulsion polymerization, micro-emulsion polymerization, and microbial polymerization)
and (2) the dispersion of preformed polymers (e.g., nanoprecipitation, emulsification
solvent evaporation, emulsification solvent diffusion, and salting-out). Table 1 describes
the advantages and limitations of these two types of polymer synthesis methods.

Table 1. Advantages and limitations of two types of polymer synthesis methods; dispersion of
preformed polymer and direct polymerization.

Method Advantages Limitations References

Dispersion of preformed polymers

nanoprecipitation

Requires low energy
Reproducible
Single step
Scalability

Size of NPs can be affected by
stirring rate
Low efficiency of drug
encapsulation

[78,79]

emulsification solvent evaporation

Scalability
Single step emulsion for
hydrophobic agents
Double or multiple step emulsion
for hydrophilic agents

Requires heating or vacuum for
evaporation
Residual solvent or stabilizer
Not stable

[80,81]

emulsification solvent diffusion
Does not require homogenizer
High reproducibility
Easy to scale up

Uses high volumes of water
Probable leakage of
water-soluble drugs into
external phase
Lower efficiency in lipophilic
drug encapsulation

[82,83]

salting out

Does not require heating
Avoids chlorinated solvents
Suitable for DNA, RNA, and
proteins

Requires high speed
homogenization
Exclusive for the encapsulation
of lipophilic drugs
Time-consuming
Limited scalability

[84,85]
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Table 1. Cont.

Method Advantages Limitations References

Direct polymerization

emulsion

Produce polymers with high molar
mass
Uses water as dispersion medium
Excellent heat dissipation

Requires removal of surfactant
Time consuming
High cost

[86,87]

surfactant-free emulsion
Does not require surfactant
Simple and green process
Uses water-soluble initiators

Requires the preparation of
monodisperse and uniformly
distributed particle sizes

[88,89]

mini emulsion

Uses a low molecular mass
co-stabilizer
Small particle size
Low volume of surfactant

Uses a high-shear device
Surfactant is retained in the
polymer

[90,91]

micro-emulsion Uses water-soluble initiators
Thermodynamically stable

Formation of empty micelles
Destabilized microdroplets
Increased particle size
Requires a high ratio of
surfactant

[92,93]

microbial
Non-toxic
Eco-friendly
Biocompatible

High production cost [94,95]

2. Methods for Producing PNPs

PNP preparation can be divided into two categories: monomer polymerization and
preformed polymer dispersion [96–98]. Emulsion polymerization, surfactant-free emulsion
polymerization, mini-emulsion polymerization, and micro-emulsion polymerization are all
processes that can be used to polymerize monomers [99,100]. Likewise, nanoprecipitation,
emulsification solvent evaporation, emulsification solvent diffusion, and salting-out can
all be utilized to make PNPs from preformed polymers [101–103]. The type of polymer,
size requirement, and application region all influence the method of preparation [104,105].
The technique of preparation is crucial to achieving the desired qualities. PNPs made for
biological applications, for example, should be free of additives and reactants [106].

The type of polymer used determines the features of the produced NPs that are
designed for a certain purpose [107,108]. The drug delivery capabilities of PLGA and
poly(3-hydroxybutyrate) P(3HB) were studied by employing docetaxel (DTXL). Although
the toxicity profiles of P(3HB) and PLGA were similar, P(3HB) had a nearly two-fold higher
loading efficacy and poorer retention rates than PLGA [109]. Dissolution, solubility, cellular
uptake, release of drugs, bio-distribution, and circulatory half-life are all influenced by
the size of PNPs [110–112]. The challenge in the preparation of PNPs is the ability to
produce uniform particles to have consistent performance [113,114]. NPs with a broad size
distribution result in difficulty in establishing their applications [115].

2.1. Formation of NPs from Preformed Polymers

This section discusses the many ways to make PNPs from pre-formed polymers,
including nanoprecipitation, emulsification solvent evaporation, emulsification solvent
diffusion, and salting-out [101–103]. The initial stage in all of these approaches is to prepare
an emulsification system, which is the same for all of them. The second step is the formation
of PNP, which is different for each method. The name of the method is conferred by the
principles of the second step, which can occur either by precipitation or by the evaporation
of the organic solvent [116,117].
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2.1.1. Nanoprecipitation

Fessi et al. devised the nanoprecipitation approach, often known as the solvent
displacement, antisolvent precipitation, solvent shifting, and desolvation methods, for the
creation of PNPs in 1989 [118]. Nanoprecipitation is a simple, easy, fast, and reproducible
single-step method. This approach does not demand a lot of energy and can be scaled
up simply [119]. Nanoprecipitation is time-efficient, inexpensive, and does not need
a precursor emulsion like other methods [120]. The size of the NPs generated by this
approach is changed by altering the parameters, and they are small with a limited size
distribution [121]. Nanoprecipitation is based on interfacial deposition, in which the
transport of a solvent into a non-solvent causes the polymer to dissolve, leading to nuclei
growth, crystal growth, and nanoprecipitation [122–124].

An organic phase is introduced to the aqueous phase during nanoprecipitation. The
polymer and water-miscible organic solvent, which must be miscible in the aqueous
medium, make up the organic phase, which has a diffusion effect [125–131]. To slow
aggregation, the polymer must be insoluble in the aqueous solution, which might contain
a stabilizer like a surfactant [132–135]. Dropwise addition of the organic phase to the
aqueous phase with moderate agitation produces NPs [136,137]. Ultracentrifugation is
used to collect the NPs, which are subsequently rinsed with water to remove the surfactant.
The organic solvent evaporates, hardening the NPs, which are subsequently recovered
by filtering, spinning, or freeze-drying [138,139]. Organic solvents that evaporate easily
such as ethanol, acetone, hexane, or methylene chloride should be chosen as a polymer
solvent. Binary solvent blends such as combinations of acetone with either ethanol or
methanol can also be used. Likewise, a mixture of non-solvents can be used to form NPs
in this method [140–142]. Figure 1 shows a schematic illustration of the nanoprecipitation
process. According to Quintanar et al., the difference in surface tensions induces intrafacial
turbulence and thermal disparities in the system, resulting in the production of continuous
solvent eddies at the interface of both liquids. When the polymer aggregates on the
hydrophobic drug surface as the solvent runs away (solvent diffusion) from low surface
tension regions, nanocapsules are generated. [97].
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Figure 1. The nanoprecipitation process illustrated in a diagram. The enlarged image (inset) illustrates
the process of nanoparticle (yellow spheres) formation owing to the surface tension difference between
the aqueous phase (high surface tension) and organic phase (low surface tension). Adapted from
Wang et al. (2016) [78].

The polymer content, variety of solvent and non-solvent, proportion of solvent to non-
solvent, rate of the addition of solvent to non-solvent, the effect of the stabilizer, and stirring
speed all influence the size of NPs [143,144]. Due to the increase in viscosity that hinders
polymer diffusion from the solvent to the non-solvent, an increase in polymer concentration
leads to the creation of bigger nanoparticles [144]. Smaller NPs in a narrow size range are
produced by solvents with high diffusion coefficients, such as acetone and acetonitrile [145].
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It has also been established that a decrease in the solvent-to-non-solvent-volume ratio
results in smaller NP sizes [146]. The nature of the stabilizer and its concentration has been
shown to influence the size of NPs [147,148].

A study found that increasing the amount of surfactant (e.g., Pluronic) reduced the
size of NPs by lowering interfacial tension [149]. In addition to that, employing a surfactant
in the nanoprecipitation method is not necessary, enabling the production of surfactant-
free particles [150]. Meanwhile, higher stirring rates have been found to produce smaller
NPs [151,152]. Zhang and colleagues demonstrated that raising the stirring speed from 300
to 1200 rpm reduces particle diameter from 800 to 300 nm [153]. Specifically, low external
energy input is sufficient for the nanoprecipitation method, hence a moderate stirring speed
is required instead of a high stirring speed that raises the temperature [154–156].

NP formation using the nanoprecipitation method occurs through three different steps;
particle nucleation, molecular growth and particle agglomeration [157]. Nucleation takes
place when the polymer concentration reaches the saturation level, i.e., when the polymer
solute in the solution is more than the amount that the solvent can dissolve [158]. The mean
particle size increased significantly as the polymer concentration was increased [159,160].
Molecular growth and particle agglomeration occur with a release of energy [161,162].

Chorny and coworkers used the nanoprecipitation approach to make PLA NPs loaded
with tyrphostin. Particle size increases from 70 nm to 140 nm when the polymer con-
centration is increased from 100 mg (5 mg/mL) to 300 mg (15 mg/mL) [163]. NPs of
poly(lactide)-poly(ethylene glycol)-poly(lactide) (PLA-PEG-PLA) were synthesized by the
nanoprecipitation method under different conditions. It was discovered that increasing the
agitation rate resulted in a reduction in particle size [164]. Meanwhile, in another study
comparing two methods for NP preparation, the nanoprecipitation method was found to
be more efficient for preparing PLGA NPs encapsulating cucurbitacin compared to using
the emulsion solvent evaporation method [165].

In the preparation of cellulose NPs loaded with mefenamic acid [166] and PLGA NPs
loaded with N-acetylcysteine (NAC), the solvent/nonsolvent ratio, the concentration of
polymer and the choice of solvent as well as nonsolvent were found to affect the size of
NPs. The nanoprecipitation method, in addition to efficiently entrapping hydrophobic
molecules, also has a great potential as an alternate entrapment method for hydrophilic
chemicals, according to the findings [167]. Chidambaram et al. proposed changes to the
traditional nanoprecipitation process in order to reduce NP size and create NPs with a
narrow size distribution. They used sonication to prepare both the organic and aqueous
phases, yielding Eudragit E100 NPs with a particles size of 114 nm and a uniformity of
0.259 [168].

Three distinct proteins (tetanus toxoid, lysozyme, and insulin) were entrapped in
poly(D,L-lactic acid) and poly(D,L-lactic-co-glycolic acid) NPs using modified nanopre-
cipitation and double emulsion (w1/o/w2) techniques in a separate investigation. The
use of miscible organic solvents like dimethylsulfoxide (DMSO) rather than conventional
organic solvents like acetone or ethanol, as well as non-solvents like methanol or ethanol
rather than water, have all been added to the nanoprecipitation process. Nanoprecipitation
proved to be a suitable option to the extensively employed double emulsion approach.
Nanoprecipitation was found to be the best approach for protein trapping in small, densely
loaded NPs [169]. Luo et al. applied a combination of electrospraying and nanoprecipita-
tion to produce multifunctional superhydrophobic polymethylsilsesquioxane (PMSQ) NPs
with sizes smaller than 100 nm [170].

Additionally, continuous flow microfluidics is a great solution for nanoprecipitation
operations, enhancing product controllability, homogeneity, and reproducibility. Nanopre-
cipitation through a hydrodynamic flow-focusing microchannel was used to synthesize
PLGA-poly(ethylene glycol) nanoparticles (PLGA-PEG NPs). Variations in flow rates,
polymer concentration, and polymer composition can be used to obtain the preferred size,
drug loading, and polydispersity of the synthesized product [171]. Polycaprolactone (PCL)
nanoparticles, which are biodegradable and have a tremendous potential for controlled
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drug delivery, were synthesized through a similar nanoprecipitation process [172]. More-
over, this technique may be used to assemble other polymers like chitosan, heparin, and
hyaluronic acid in microfluidic devices, especially to produce PNPs for controlled release
as well as drug delivery [173].

Meanwhile, P(3HB) NPs were prepared by nanoprecipitation with a variety of solvent/
non-solvent combinations such as ethyl acetate:DMSO, chloroform:water, chloroform:DMSO,
and ethyl acetate:water. In the reported study, spherically shaped P(3HB) NPs with sizes
ranging from 40 to 100 nm were successfully formed while the size of loaded PNPs were
typically between 200 to 600 nm as shown in Figure 2 [174]. In another attempt, P(3HB) NPs
were prepared by nanoprecipitation with a low concentration of Tween 80 as a surfactant.
The size and size distribution of NPs decreased as the amount of Tween 80 in water
increased to 1% (v/v) [175].
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Figure 2. Scanning electron micrographs of synthesized P(3HB) NPs. (a–d) NPs were prepared using
chloroform and (a) DMSO, (b) DMSO (loaded), (c) water (d) water (loaded), (e–h) ethyl acetate,
and (e) DMSO, (f) DMSO (loaded) (g) water, (h) water (loaded). Adapted from Senthilkumar et al.
(2018) [174].
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In all the examples mentioned above, P(3HB) is initially biosynthesized by microor-
ganisms and stored in the microbial cell cytoplasm. The produced and accumulated natural
polyester is then removed from the bacterial cells using suitable solvents like chloroform
and purified by reprecipitation in a non-solvent like methanol. The purified P(3HB) can be
mixed in solvents and used in the nanoprecipitation process to make NPs.

2.1.2. Emulsification-Solvent Evaporation

The first and most extensively used method for the synthesis of PNPs is emulsification-
solvent evaporation. The first step involves emulsifying the polymer solution into an
aqueous phase, and the second step entails the evaporation of the solvent, which results
in polymer precipitation, resulting in the production of NP [176–178]. The first step is to
form the emulsions, which can occur by either of two main strategies. The first strategy
is to produce single-emulsions, i.e., oil-in-water (o/w) and the second one is to produce
double-emulsions, i.e., water-oil-water (w/o/w) or oil-water-oil (o/w/o) [179,180]. In a
double emulsion, the primary emulsion (w1/o) is first prepared by dispersing the aqueous
phase in an immiscible organic solvent containing the polymer. Subsequently, the primary
emulsion is homogenized in an outer aqueous phase containing the emulsifier using a
high-shear homogenizer to form the organic phase and then emulsified in the aqueous
phase containing a surfactant [181–186].

The solvent is then continuously evaporated while the NPs are recovered by ultracen-
trifugation [187,188]. The NPs are thoroughly rinsed with water and then lyophilized to
remove the surfactants [189–191]. Figure 3 depicts a schematic illustration of the solvent
evaporation procedure. The diameter of NPs can be controlled by adjusting the stirring
speed, the viscosity of the aqueous and organic phases, and the type and concentration of
the dispersing agent [192]. The solvent evaporation approach was used by Musyanovych
et al. to make poly(L-lactide) (PLLA), PLGA, and poly(caprolactone) (PCL) NPs. The size
of the NPs produced is affected by the type of polymer used. The smallest particle size was
found in PLGA NPs, whereas the highest particle size was found in PCL NPs [192].
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Another study generated haloperidol-loaded PLGA/PLA NPs and found that raising
the polymer concentration from 5 to 66.6 mg/mL improved the NP size from 200 to 300 nm
while retaining a unimodal particle-size distribution. It was discovered that lowering
the solvent/non-solvent volume ratio reduced the size of PLGA/PLA NPs [193]. Bilati
et al. examined at how the sonication procedure affected the properties of poly(lactide-co-
glycolide) nanocapsules made by the water-in-oil/water solvent evaporation method. The
second mixing step’s sonication time (for w/o/w emulsion) has a bigger impact on the
final NP size than the first step’s sonication duration (for water-in-oil emulsion). [194].

Poly(D,L-lactide-co-glycolide) NPs containing praziquantel were produced by employ-
ing methylene chloride or ethyl acetate, separately, as an organic solvent in the dispersion
phase. The size of methylene chloride-prepared NPs was larger than that of ethyl acetate-
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prepared NPs [195]. When ethanol was used as a solvent and Pluronic F-108 was used
as a stabilizer, the average size of poly(ethylene oxide) (PEO) NPs generated using the
single-emulsion approach was 100 to 150 nm. It was evident that the polymer concentration
influenced the characteristics of the PEO NPs [196].

By modifying experimental conditions such as homogenization rate, surfactant con-
centration, and polymer/solvent ratio, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)
[P(3HB-co-3HHx)] NPs could be produced in the size range of 180 nm to 1.5 µm. The size of
P(3HB-co-3HHx) NPs decreased as the surfactant concentration and homogenization rate
increased, whereas P(3HB-co-3HHx) NP size increased by increasing the polymer to solvent
ratio [197]. When the ultrasound exposure period, amplitude, and exterior aqueous phase
volume were increased, PCL NPs generated using the double emulsion solvent evaporation
method showed a decrease in particle size. The size of NPs grew from 235 to 748 nm
when the concentration of PCL was raised from 1 to 5 g. Meanwhile, the size of PCL NPs
decreased with increasing surfactant (e.g., PVA) concentration from 0.05 to 0.2% [198].

Folate-targeted poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) P(3HB-co-3HO) NPs
were prepared by the w1/o/w2 solvent evaporation method. These NPs were loaded with
doxorubicin (DOX), a chemotherapeutic drug in cancer treatment. An in vivo antitumor
study of the NPs revealed a great potential of these NPs to improve the sustained release
profile of doxorubicin [199]. This approach produced PEG end-capped P(3HB-co-3HHx)
with a particle size of roughly 200 nm, which showed promise as a nanocarrier for sustained
rapamycin delivery with increased cellular absorption and kinase inhibitory efficacy [200].
In addition to the P(3HB-co-3HO) NPs, poly(3-hydroxyvalerate-co-4-hydroxybutyrate)
P(3HV-co-4HB) NPs could also be synthesized by the emulsification–solvent evaporation
method. It was found that the cisplatin-loaded NPs accumulated more efficiently in the
tumor cells and had a higher tumor regression effect than freely administered cisplatin,
indicating that this nanocarrier was suitable for drug delivery applications [201]. Curcumin
was loaded into the P(3HB-co-3HHx) NPs for use in breast cancer treatment. Higher
drug release and better decline in tumor cell activity were observed in curcumin-loaded
P(3HB-co-3HHx) NPs than curcumin alone, indicating that the P(3HB-co-3HHx) NPs are a
promising tool to enable the sustained and controlled release of some drugs [202].

As a nanocarrier for ellipticine, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-
co-3HV) NPs were produced by solvent evaporation (EPT). In an in vitro test, the percentage
of inhibition for EPT-PHBV NPs was around two times that of free EPT, showing that P(3HB-
co-3HV) NPs are a viable vehicle for the administration of hydrophobic medicines for cancer
treatment [203]. For cisplatin delivery, poly(4-hydroxybutyrate)-mPEG (P(4HB)-mPEG
nanocarriers were developed. The cisplatin-loaded P(4HB)-mPEG NPs were shown to be
more effective than free cisplatin, demonstrating that the P(4HB)-mPEG) nanocarriers are
effective in delivering cisplatin to cancer cells [204].

2.1.3. Emulsification Solvent Diffusion

Leroux et al. were the first to propose the emulsification-solvent diffusion approach. To
start, the polymer is dissolved in an organic solvent that is saturated with water, generating
an organic phase. The organic phase is then emulsified in the aqueous solution, resulting in
solvent diffusion and NP production [78,135]. To precipitate the polymer, it is necessary to
dilute the solvent with extra water to improve its diffusion. Lastly, the solvent is eliminated
by distillation or crossflow filtration [205–208]. The aqueous phase contains a stabilizer,
and the dilution phase is often water. This process has the benefit of not necessitating a
homogenizer, having excellent reproducibility, and being simple to scale up [209,210]. The
drawback of this procedure is that it requires a large amount of water to be eliminated from
the suspension [211]. Figure 4 shows a schematic illustration of the emulsification solvent
diffusion process.
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Quintanar et al. proposed a mechanism for NP formation in which each droplet forms
several NPs [209]. Perez et al. and Ma et al. then proceeded to modify the method suggested
by Quintanar et al. for the nanoencapsulation of hydrophilic active substances. In their pro-
posed method, the aqueous inner phase includes an active substance as well as a stabilizing
agent such as PVA or poly(vinylpyrrolidone) (PVP), while the external phase comprises
the polymer and organic solvent. The emulsion was initially diluted with the solvent
(ethanol), resulting in organic solvent migration. Then, water was added to facilitate the
collection of NPs [212,213]. Hassou and Moinard-Chécot et al. used a step-by-step diffusion
analysis using the stopped-flow methodology to represent different states that occur in the
emulsification solvent diffusion method during the dilution stage. It was discovered that
the solvent diffuses quickly from the droplets, taking less than 20 ms [214,215]. Pramual
et al. formulated 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H, 23H-porphine pTHPP (hy-
drophobic photosensitizer) loaded P(3HB-co-3HV) NPs for photodynamic therapy (PDT)
by the emulsification-diffusion method. The size distribution of P(3HB-co-3HV) NPs was
narrow, ranging from 169.0 to 211.2 nm. The pTHPP-loaded P(3HB-co-3HV) NPs exhibited
high photocytotoxicity towards HT-29 human colon cancer cells compared to pTHPP alone.
These results indicated that the P(3HB-co-3HV) NPs are potential vehicles for the delivery
of hydrophobic photosensitizer drugs in photodynamic therapy [216]. PHA NPs encapsu-
lating TGX221 anti-cancer drugs were also developed. TGX221 was slowly liberated from
the PHA-based NP and proliferation in NP-TGX221-treated cells was considerably slower
than in cells receiving free TGX221 [217].

Using a modified emulsification solvent diffusion process, Chen et al. developed
curcumin-loaded PLGA (PLGA-Cur) NPs with a mean range of 190 nm. Anti-tumor
activity was successfully detected following the delivery of PLGA-Cur NPs into cells, and
in comparison, with free curcumin, PLGA-Cur NPs demonstrated the increased inhibition
of HL60 and HepG2 cancer cells with lower IC50 values. Moreover, confocal microscopy
analysis showed that the curcumin-loaded PLGA NPs increased apoptosis in cancer cells
when compared with free curcumin [218]. PCL NPs were made using ethyl acetate as the
solvent and PVA as the stabilizing agent, respectively. The polymer concentration, solvent
volume, type and amount of the surfactant, as well as the concentration of oil in the organic
phase, were all observed to affect the size of PCL NPs [219]. The solvent and stabilizing
agents utilized to make PLA NPs were ethyl acetate and Pluronic F68, respectively. Particle
size increased from 260 to 530 nm as PLA content increased [220]. In another investigation,
as the amount of surfactant was raised, the size of PCL NPs shrank [221]. A comparison
made using different stabilizers, di-dodecyl dimethylammonium bromide (DMAB) and
PVA, for the production of PLGA NPs revealed that DMAB produced smaller PLGA
NPs [222]. The influence of homogenization and sonication on the size of PLGA NPs was
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explored by Jain et al., who discovered that sonication resulted in smaller particles with an
average size of 165 nm, whereas homogenization resulted in particles with an average size
of 225 nm [223].

2.1.4. Salting-Out Technique

The salting-out method is a variation of the emulsification-solvent diffusion method
that makes use of the salting-out effect [224,225]. The difference between the salting-out
method and the emulsion diffusion method is that the former method does not require a
solvent diffusion step, due to the existence of salts [226,227]. The aqueous phase consists of
water, stabilizer, and salting-out agents. Electrolytes including sodium chloride, magnesium
chloride, calcium chloride, and magnesium acetate, as well as non-electrolytes like sucrose,
are salting-out agents [228–230]. The salting-out agents should be insoluble in the organic
solvent. The kind of salting-out agent used has a big impact on how well drugs are
encapsulated [231,232].

The organic phase, which contains the polymer in a water-miscible organic solvent,
is introduced to the aqueous phase in this process. The emulsion is then diluted with
adequate amounts of water while constantly swirling to reduce the electrolyte’s ionic
strength and improve solvent diffusion [233,234]. The generation of NPs is caused by the
migration of the solvent from the organic phase to the aqueous phase during dilution.
Lastly, crossflow filtering is used to remove the salting-out agent, and the produced NPs
are collected [85,235,236]. The lack of chlorinated solvents, which are hazardous to the
physiological system, is an advantage of the salting-out procedure. The use of salt in
the preparation process necessitates purifying processes, which is a downside of this
method [84,85]. A schematic representation of the salting-out technique is shown in
Figure 5.
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Poly(trimethylene carbonate) (PTMC) NPs were produced by single-emulsion and
salting-out methods. The PTMC NPs formed by the salting-out method were smaller than
those formed by the single-emulsion method. In the single-emulsion approach, the effect
of polymer concentration and stirring speed on NP size was more pronounced. Another
difference between these two processes is the type of organic solvents utilized; in the salting-
out approach, water-miscible THF was used, whereas in the single-emulsion method, water-
immiscible dichloromethane (DCM) was used [237]. Salting-out, emulsification-diffusion,
and nanoprecipitation procedures were used to make methacrylic acid copolymer NPs.
The size range of the methacrylic acid copolymer NPs was broader for the salting-out
method (123–710 nm) compared to the emulsification-diffusion method (108–715 nm) and
the nanoprecipitation method (147–245 nm) [238]. Ethylcellulose (EC) and Eudragit-S-100
(ED) NPs produced by the salting-out technique had a mean particle size and zeta potential
value of 211 nm and −43.7 mV, respectively [239].

In another work, sodium chloride was used as the salting-out agent rather than mag-
nesium chloride or magnesium acetate to make PLGA NPs. The NPs generated were
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spherical, measuring 111.4 ± 2.35 nm in diameter and having a modest polydispersity
(0.062 ± 0.023) [240]. Meanwhile, tetrahydrofuran (THF) was used to make PLA NPs
with a diameter of less than 200 nm [241], while paracetamol-loaded Eudragit S100 NPs
were produced using ethanol as solvent, sodium carboxymethylcellulose as a stabilizer,
and zinc sulfate heptahydrate (ZnSO4·7H2O) as the salting-out agent [242]. Zweers et al.
used acetone and magnesium chloride hexahydrate (MgCl2·6H2O) as the organic sol-
vent and salting-out agent, respectively, to make PEO-PLGA NPs with a size of about
200 nm [243,244]. Similarly, PLA end-capped with 1- pyrenebutanol (PLAP) NPs were
synthesized using MgCl2·6H2O as the salting-out agent [245].

2.2. Formation of Nanoparticles by Polymerization of Monomers

The methods that were explained in the previous sections are used to produce PNPs
from preformed polymers. PNPs can also be produced by the polymerization of monomers.
This section explores the methods employed for the polymerization of monomers such as
emulsion polymerization, surfactant-free emulsion polymerization, mini-emulsion poly-
merization and micro-emulsion polymerization.

2.2.1. Emulsion Polymerization

Emulsion polymerization is one of the most commonly used, fastest, and readily
scalable method for producing PNPs. The method of emulsion polymerization can be
divided into two groups, depending on whether the continuous phase is organic or aque-
ous. The dispersion of monomer into an emulsion or a substance in which the monomer
is not soluble is part of the continuous organic phase technique. The monomer is dis-
solved in a continuous phase, which is commonly an aqueous solution, without the use
of surfactants or emulsifiers in the aqueous continuous phase [211,246]. Surfactant-based
emulsion polymerization can be divided into two types: conventional and surfactant-free
emulsion polymerization [86,247]. A water-soluble initiator, water, a somewhat water-
soluble monomer, and surfactant are utilized in the traditional approach. Water is an
environmentally friendly dispersion medium that also helps to dissipate heat during poly-
merization [107,108,248]. When a monomer dissolves in the continuous phase, initiation
takes place with an initiator molecule. The initiating agent forms monomeric radicals that
interact with the monomer and initiate the reaction. The radicals propagate until they reach
a critical chain length, at which point their aqueous solubility is reduced. At this stage most
of the surfactants are engaged in stabilization process and have formed polymer particles.
However, the polymerization reaction continues until no new particles are nucleated. The
termination process occurs at the end stage when there is a decrease in the polymerization
rate [249–251]. Figure 6 depicts a schematic illustration of the emulsion polymerization
technique.
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Other PNPs successfully produced by the same method include polystyrene-b-
poly[poly(ethylene glycol) methyl ether methacrylate] (PS-b-P(PEGMA300), and PS-b-
P(PEGMA1100)) PNPs [252]. Using SDS as a surfactant, Garay-Jimenez et al. synthesised
polyacrylate NPs by the emulsion polymerization of acrylate compounds in a mixture of
butyl acrylate and styrene. Anionic, cationic, zwitterionic, and noncharged (amphiphilic)
surfactants were used to create poly(butyl acrylate-styrene) emulsions. The emulsions’
cytotoxicity and microbiological activity were compared before and after purification. The
findings showed that attaching a polymerizable surface to the nanoparticle matrix has no
effect on the emulsion’s cytotoxic or antibacterial effects, irrespective of whether the emul-
sion is purified or not and that the perfect properties are associated with using non-ionic
surfactants rather than those with zwitterionic, cationic, or anionic [253].

To encapsulate magnetite particles and improve particle-size distribution, emulsion
polymerization was used to create magnetic polymer matrix composite nanoparticles (MPC-
NPs) (PSD). Transmission electron microscopy (TEM) and vibrating sample magnetometry
were used to characterize MPCNPs (VSM). The results showed that the emulsion poly-
merization approach was successful in encapsulating magnetite particles [254]. Under
microwave radiation, styrene emulsion polymerization was carried out at 70 ◦C using
sodium dodecyl sulphate (SDS) as a surfactant and potassium persulfate (KPS) as an
initiator [255]. Another study used microwave irradiation to accomplish the emulsion
polymerization of methyl methacrylate (MMA) and butyl acrylate (BuA) using potassium
persulfate (K2S2O8) as an initiator and Disponil A3065 as an emulsifier [256]. The size of
polystyrene NPs produced by the ultrasonic irradiation emulsion polymerization of styrene
using polymeric carboxymethyl cellulose and alkyl poly(etheroxy) acrylate (CMCA9) as
surfactant was 30 to 60 nm [257]. The size of PVK NPs is regulated by the concentration
of VCz. Polyvinylcarbazole (PVK) NPs were generated via emulsion polymerization of
N-vinylcarbazole (VCz) [258].

2.2.2. Surfactant-Free Emulsion Polymerization

Surfactants are utilized in the traditional emulsion polymerization procedure and
should be eliminated from the finished product. Surfactant removal is a time-consuming
operation that raises manufacturing costs [89,259]. An emulsion polymerization process
without surfactants, i.e., a surfactant-free emulsion polymerization method, was devised to
alleviate this limitation [260,261]. To generate PNPs, this method offers a straightforward,
green approach that does not require the inclusion and subsequent removal of stabilizing
chemicals. A water-soluble initiator (KPS, potassium persulfate), monomers, and water are
the reagents utilized in this process. The stabilization of PNPs is achieved using ionizable
initiators or ionic co-monomers in this technique [262–265].

The surfactant-free emulsion polymerization procedure using microwave irradiation
produced PMMA NPs with a narrow size distribution. When the monomer concentration
was increased from 0 to 0.3 mol/L, the size of the NPs rose from 103 to 215 nm [266]. The
Cu2+/HSO3

− redox initiation system was used to commence the surfactant-free emulsion
polymerization of MMA and PMMA NPs with a negative charge in the size range of 165 to
223 nm were produced [267]. PMMA NPs in the size range of 200 to 600 nm were success-
fully developed using hydrophilic laponite clay to stabilize methyl methacrylate emulsions
dispersed in distilled water [268], while NPs with a dimension less than 100 nm and high
solid content were accomplishment of this project using KPS and acetone as initiator and
co-solvent, respectively [269]. Using NaSS as a stabilizing agent and water as the reaction
medium, poly-acrylate NPs with fluorine and silicon in the shell with a mean range of
172.5 nm were produced [270]. By the surfactant-free emulsion polymerization of styrene
utilizing ultrasonic irradiation in the presence of potassium persulfate (KPS) as an anionic
initiator and cetyl alcohol as a co-stabilizer, Faridi Majidi et al. produced polystyrene
NPs in the size range of 200–250 nm [271]. Surfactant-free emulsion polymerization pro-
duced poly(hydroxyethyl methacrylate) (PHEMA) NPs with a mean size of 150 nm, a
polydispersity index of 1.171, and a surface area of 17,779 m2/g [272]. Lee et al. used Fe3+
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catalyzed emulsion polymerization to produce poly(styrene/thiophene) NPs with particle
sizes ranging from 300 to 800 nm [273]. Polyimide NPs were synthesized in a continuous
phase by heterophase polycondensation of various aromatic tetra-carboxylic acids and
diamines in imidazolium-based ionic liquids (IL) [274]. Kim et al. synthesized polypyrrole
NPs utilizing benzene octanol and ethyl acetate as continuous phases. Changing the water
and octanol volume ratios led to fewer particles with an average size of 60 nm [275].

Colloidal NPs with a PMMA or poly(butyl methacrylate) core and a cationic polymer
stabilizing shell were produced using reversible addition fragmentation chain transfer-
mediated surfactant-free emulsion polymerization and had hydrodynamic diameters rang-
ing from 32 to 96 nm. The wetting behaviour of such core-shell NPs, which can be fine-
tuned depending on the internal nanostructure (soft or rigid core) and external temperature,
allows for the creation of controllable functional hybrid colloidal arrays [276].

2.2.3. Mini-Emulsion Polymerization

The co-stabilizer, initiator, surfactant, monomer mixture, and water are all required
components for the mini-emulsion process. The utilization of a low-molecular-mass co-
stabilizer as well as a high-shear device such as ultrasound in this approach [91,277–280] is
the fundamental distinction between mini-emulsion polymerization and emulsion poly-
merization. The sort of co-stabilizer and initiator used has a big impact on how the NPs
develop and what they look like. Figure 7 shows a diagram illustration of the mini-emulsion
polymerization process.
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The mini-emulsion polymerization process was used to make a variety of PNPs. This
approach produced polyacrylonitrile NPs in the size range of 100 to 180 nm using HD
and SDS as the co-stabilizer and surfactant, respectively [281]. Similarly, PHEMA NPs
were made with the surfactant Span 80 or KLE3729 and the co-stabilizer CH or HD. The
nanoparticles produced were reported to be between 50 and 200 nm in size [282]. SDS/DMA
and SDS/SMA were used, in another study, to stabilize mini-emulsion polymerizations
of styrene [283]. Other examples include the composite colloidal NPs, made of magnetite
as magnetic core and poly(ethyl-2-cyanoacrylate) as a polymeric shell [284]; polystyrene-
single wall carbon nanotube (PS-SWNT) with SDS as surfactant and 1-pentanol as co-
stabilizer [285]; and phosphonated polystyrene, as well as PMMA NPs (size range of
102 to 312 nm) produced by the free-radical copolymerization of vinylphosphonic acid
(VPA) [286].

2.2.4. Micro-Emulsion Polymerization

A new method for manufacturing nanosized PNPs is micro-emulsion polymerization.
Despite the fact that emulsion polymerization and micro-emulsion polymerization are
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similar processes that form polymers with high molar mass, their kinetics differ, resulting
in micro-emulsion polymerization having smaller particle sizes and fewer chains per
particle [287–290]. A water-soluble initiator is introduced to the aqueous phase, which
contains a lot of surfactants, in the microemulsion polymerization technique. Because
initiation cannot occur simultaneously in all microdroplets, polymer chains begin to form
only in some of them. Due to osmotic and elastic forces, microdroplets will collapse
later, resulting in larger particles and the development of empty micelles [291–294]. In a
microemulsion, polymerization kinetics, PNP properties, and the concentration and type of
initiator, surfactant and monomer are determining factors [293]. Some researchers have
been carried out to see how these parameters affect the characteristics of NPs.

Micro-emulsion polymerization was used to create poly(vinyl acetate) lattices with
a high total solid [93]. On the micro-emulsion polymerization of vinyl acetate stabilized
with Aerosol OT (AOT), the effects of temperature, concentration and type of initiator
(V-50 and KPS) were investigated. It was found that the reaction rates increased with
the concentration of V-50 and temperature. Furthermore, the differences in electrostatic
attraction between KPS and V-50 free radicals, as well as charged micro-emulsion droplets,
resulted in quicker polymerization rates for KPS [295]. A cationic surfactant (e.g., CTAB)
and a non-ionic surfactant were used to make poly(dimethylsiloxane) (PDMS) NPs in the
range of sizes of 12–80 nm [296]. Furthermore, stabilizers of dodecyltrimethylammonium
bromide (DTAB) and didodecyldimethylammonium bromide (DDAB) were used to make
polyhexylmethacrylate NPs with a size range of 38 to 53 nm [297]. SABS-8 and SABS-10,
two polymerizable anionic surfactants, were employed successfully in microemulsion
polymerization of butyl methacrylate (BMA) at room temperature utilizing the redox
initiator ammonium persulfate (APS)/tetramethylethylenediamine (TMEDA) [298]. Some
other work used the cationic surfactant decyltrimethylammonium bromide DeTAB to
make polypyrrole NPs with a particle size of 2 nm [299]. The polymerization of butyl
acrylate with a sodium dodecyl sulfate/Aerosol OT surfactant combination and potassium
peroxodisulfate as an initiator yielded particles smaller than 40 nm [300].

3. Biologically Synthesized Biodegradable Polyhydroxyalkanoate-Based Nanoparticles

A non-toxic, reliable, and eco-friendly experimental protocol for the synthesis of NPs
is highly in demand. Natural entities such as secondary metabolites, enzymes, polysac-
charides, biodegradable polymers, vitamins, and microorganisms can be utilized for the
synthesis of NPs [95,301]. One such promising approach is the biosynthesis of NPs using
bacteria. To date, a large variety of bacterial species have already been studied in the hopes
of developing alternate NP synthesis techniques. For the time being, scientists are produc-
ing NPs using bacteria’s biomass or cell extracts [302]. In comparison to other biological
entities, bacteria are thought to be a promising biofactory for the synthesis of NPs. Bacterial
biosynthesis of NPs is a fast-growing study area in the field of science and nanotechnology,
with many species of bacteria being used to synthesize NPs all around the world [303].

PHA is one of the PNPs generated spontaneously in the bacterial cytoplasm. PHA belongs
to the aliphatic polyesters family of biodegradable and biocompatible polymers [304–306].
PHA is produced spontaneously by some bacteria in the form of nanosized granules
under unbalanced growth conditions, such as an excess of carbon source and nutritional
limitations, such as nitrogen, oxygen, and phosphorus [307–309]. Figure 8 depicts TEM
images of nanosized PHA granules inside bacterial cells. Numerous parameters can affect
the size of PHA granules such as PHA granule-associated proteins (phasins), bacterial
species or strains, cultivation conditions, and time [310–314]. PHA granules made this way
are tunable (for chemical composition, size, or other key qualities) to levels not possible
with chemical synthesis, genetically altering the bacterial strain or adjusting the production
circumstances such as the culture media composition. The crux of interest that lies in PHA
NPs is their self-assembling properties, their production using easily cultivated bacterial
species, and the different morphological types of particles [315].
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P(3HB-co-3HV) nanocarriers were used by Williams et al. for the controlled release of
tetracycline [316]. In the hepatocellular carcinoma cell BEL7402, the PHA granules binding
protein PhaP has been used in a receptor-mediated drug carrier using RBITC as a drug
delivery model created using the modified emulsification/solvent diffusion approach [317].
Meanwhile, P(3HB) NPs with 55 nm average diameter were used for encapsulating retinoic
acid through the dialysis method [318]. Shishatskaya et al. studied P(3HB) incorporated
with rubomycin in vivo, and it was found that rubomycin-loaded PHB fabricated using the
solvent evaporation method was effective in arresting carcinoma proliferation and thus,
increased mice survival [319]. P(3HB-co-3HO) was employed as the drug carrier in targeted
drug delivery. In another study, a new nanocarrier was formulated with folic acid (FA)
and doxorubicin (DOX) as the targeting ligand and anticancer drug, respectively. This
nanocarrier was found to be a potential candidate for the targeted delivery of anticancer
drugs to the folate receptor-overexpressed cancer cells [320]. Sulperazone-loaded P(3HB-co-
3HV) was employed for an in vitro antibiotic release [321]. Rossi et al. studied the release
profile of gentamycin incorporated into P(3HB-co-3HV) and found that the copolymer with
higher HV content released more gentamycin [322]. Additionally, P(3HHx-co-3HO) NPs
were found to facilitate the permeation of tamsulosin drugs into the skin [323].

4. Conclusions and Future Perspectives

Different methods for the formation of PNPs were discussed in this review, including
the dispersion of preformed polymers (emulsification solvent evaporation, nanoprecipita-
tion, emulsification solvent diffusion, and salting-out) and the polymerization of monomers
(emulsion polymerization, surfactant-free emulsion polymerization, mini-emulsion poly-
merization, and micro-emulsion polymerization). Furthermore, the effects of experimental
variables on the characteristics of the formed PNPs were discussed. PNPs have a wide
variety of applications; however, there are many challenges associated with the synthesis
of PNPs that need to be addressed before PNPs can be fully utilized and integrated into
applications, for example, the ability to reproduce PNPs with a good size distribution.
The size distribution of PNPs obtained using currently existing methods is usually very
broad and is not suited for most applications. In addition, there are not many reports
on the scaled-up production of PNPs. Many scientific reports have also claimed that the
synthesis of PNPs at a lab scale exists only as a proof of concept of the technology. Many
produced and evaluated NPs never reach clinical trials due to their non-biocompatible
physiochemical properties. For this reason, PHA NPs are ideal for use as drug carriers as
they abide by the present regulatory requirements in terms of biodegradability, stability,
and non-toxicity. Furthermore, because the size distribution is extremely large, the particle
size loses certainty due to the wide range of size distribution. This situation poses a great
challenge in using PNPs for drug delivery applications. Furthermore, PHA NPs can be
produced using bacteria, which allows for green synthesis to produce nanocarriers that can
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be used extensively in the field of nanomedicine. With regards to application, PNPs can be
used as drug carriers to target specific sites within cells or organs for more advanced treat-
ment due to their unique properties and size. This would greatly improve the performance
of targeted therapies. The PNPs can also be used for diagnostic purposes, either in the lab
or in hospitals (point-of-care diagnostics).
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