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Abstract

Background: Molecular database search tools need statistical models to assess the significance for the resulting
hits. In the classical approach one asks the question how probable a certain score is observed by pure chance.
Asymptotic theories for such questions are available for two random i.i.d. sequences. Some effort had been made
to include effects of finite sequence lengths and to account for specific compositions of the sequences. In many
applications, such as a large-scale database homology search for transmembrane proteins, these models are not
the most appropriate ones. Search sensitivity and specificity benefit from position-dependent scoring schemes or
use of Hidden Markov Models. Additional, one may wish to go beyond the assumption that the sequences are i.i.d.
Despite their practical importance, the statistical properties of these settings have not been well investigated yet.

Results: In this paper, we discuss an efficient and general method to compute the score distribution to any
desired accuracy. The general approach may be applied to different sequence models and and various similarity
measures that satisfy a few weak assumptions. We have access to the low-probability region ("tail”) of the
distribution where scores are larger than expected by pure chance and therefore relevant for practical applications.
Our method uses recent ideas from rare-event simulations, combining Markov chain Monte Carlo simulations with
importance sampling and generalized ensembles. We present results for the score statistics of fixed and random
queries against random sequences. In a second step, we extend the approach to a model of transmembrane
proteins, which can hardly be described as i.i.d. sequences. For this case, we compare the statistical properties of a
fixed query model as well as a hidden Markov sequence model in connection with a position based scoring
scheme against the classical approach.

Conclusions: The results illustrate that the sensitivity and specificity strongly depend on the underlying scoring
and sequence model. A specific ROC analysis for the case of transmembrane proteins supports our observation.

Background
A large amount of molecular biological data is stored in
form of sequences of symbols in huge data bases, e.g.,
DNA sequences or the primary structure of proteins. It
is one main task of Bioinformatics [1] to develop algo-
rithms [2] which allow to find, via sequence comparison,
for a given “query” sequence the most similar “subject”
sequences in a data base. All widely-used algorithms
depend on many parameters, the so-called scoring
schemes [2], which are usually suitably adopted to test

sets of data. Parts of these scoring schemes involve also
rules how to deal with small non-similar subsequences,
the so-called gaps. The most popular sequence-compari-
son algorithms are the Smith-Waterman algorithm [3]
for pairwise local sequence alignment (which means that
the most similar subsequences of two sequences are
found) and the Viterbi algorithm for sequence-to-HMM
alignment. In the latter case, one specific sequence is
compared to a full set of sequences which is specified
via a Hidden Markov Model (HMM) [4]. For practical
applications, often very fast heuristics are used, which
do not find the exact best-matching (sub-)sequences
but only approximations of the optimum. The BLAST
algorithm [5] is used widely. Sequence-comparison
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algorithms return a raw similarity score, i.e., a number,
that quantifies the similarity between the input objects.
Unfortunately, this raw score is hard to interpret
because one does not know its absolute scale.
An interpretation becomes possible when we specify a

probabilistic null model for the input: Then the similar-
ity score becomes a random variable S whose probabil-
ities Prob(S = s) under the null model can be
determined. Sometimes this can be done analytically,
but usually one has to apply numerical simulation [6].
The p-value assigned to an observed score s is defined
as pval(s): = Prob(S ≥ s) in the null model, and log pval
(s) is a measure of surprise (and hence a universally nor-
malized score) for s. The key problem is, of course, to
find Prob(S = s) for a given sequence-comparison algo-
rithm, a given scoring scheme, and a given null model.
In this paper, we explain and extend an efficient and

generally applicable numerical technique that solves this
problem in many different sequence comparison set-
tings, such as for a BLAST-like database search [5] with
a fixed query, for position-specific scoring and/or gap-
cost schemes (essentially HMMs), or for normalized
alignment [7]. In each of those settings a variety of null
models in addition to the i.i.d. model is possible.

Previous work
We start by introducing some necessary formal
notations. For a full description, please refer to Ref. [2].
Let Σ be a fixed alphabet of symbols, denoting e.g.
nucleotides (|Σ| = 4) or amino acids (|Σ| = 20).
Most of the existing statistical work for pairwise

sequence comparison focuses on null models where both
sequences are random and at each position a symbol s Î
Σ is chosen independently of the other positions ("i.i.d.

model”), with a given frequency f f   0 1    .
f often reflects the average composition of proteins in the
UniProt/SwissProt database [8]. An alignment of the two
sequences is a set of pairs {(ik, jk)}, which means that sym-
bol of position ik of the first sequence is aligned (or paired)
to the symbol at position jk of the second sequence. The
pairs must not cross, i.e., if for two pairs (ik, jk) (il, jl) the
condition ik <il holds, then also jk <jl. Positions which are
not paired, i.e., which do not appear in the alignment, con-
tribute to the above mentioned gaps. The length of a gap
is the number of adjacent ungapped positions. In the fol-
lowing example, where the two sequences are shown such
that paired symbols are atop on each other,

Q G E G G D A W C

Q G G D A T T T W C
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two gaps of lengths two and three appear.

Scores for individual pairs of symbols are given by a
constant (position-independent) symmetric Σ × Σ scor-
ing matrix with negative expected score, such as BLO-
SUM62 [9]. The score of an alignment is given by the
sum of the scores of the pairs, plus (negative) contribu-
tions for the gaps. For the conventional gap-scoring
schemes (called “affined”), each gap contributes a score
which depends only linearly on its length (times a para-
meter called gap-extension penalty) plus a constant
(gap-open penalty). We shall refer to this model later as
“random query - general-purpose scoring” (RQGS).
For gapless pairwise local sequence alignment, the raw

score distribution can be derived numerically by Markov
chain analysis [10] and also asymptotically for infinite
sequences (Karlin-Altschul or Dembo-Karlin statistics
[11]): It is an extreme-value distribution (EVD), also
called Gumbel distribution [12]:
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where the parameters l > 0 and c > 0 depend on the
score matrix, on the symbol frequencies f, and on the
query and subject sequence lengths LQ and LS. Asymptoti-
cally we have c = KLQLS for a length-independent K > 0.
For gapped pairwise local sequence alignment, which

is the most relevant case in database queries there exist
no universal analytic results, with the exception of few
special cases [13]. Empirical evidence also indicates con-
vergence towards the Gumbel form for long sequences;
l and K additionally depend on the gap-cost function
[14]. Several works have focused on efficient numerical
estimation of these parameters [15]. The influence of
varying lengths of the finite sequences [16] is treated in
various ways, e.g. by adjusting the lengths of the
sequences to “effective lengths” but still assuming a
Gumbel form of the distribution. Nevertheless, for mod-
erate sequence lengths, which are biologically most rele-
vant, the true distribution differs strongly from a
Gumbel form [17,18], which can be dealt with by
including a correction term to the Gumbel form (giving
rise to an additional parameter).
The (RQGS) model is convenient, because the pro-

blem of computing significance values reduces to the
estimation of only two parameters, which can be pre-
computed for each scoring scheme. However, there are
also several problems. For instance, even if one consid-
ers just the gapless case, it is in general not easy to
extend the analytic asymptotic theory to more complex
null models. Furthermore, for practical applications
where finite sequence lengths are considered, of even
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more importance is: The p-values reported by (the
original) BLAST only depend on the raw score, the
query and the subject length, and not on the actual
query sequence. This leads to large distortions when the
composition of the query sequence does not match the
composition of the null model. For example, when we
run a homology search for the human transmembrane
protein rhodopsin (UniProt accession P08100) with
BLAST (BLOSUM 62, gap-init 12, gap-extend 1, no
composition adjustment, no filtering), we find a possibly
remote homolog Q8NH42 with an E-value of 9 · 10-8.
The E-value for score s is the expected number of data-
base hits with score at least s and can be easily com-
puted from pval(s) and the database size. Hence, it
appears unlikely to obtain such a homolog by pure
chance, i.e., the homolog appears to be relevant. How-
ever, using a recent “composition-based adjustment”
option [19,20] leads to a very different E-value of 0:001
for the same protein. This underlines the importance of
query-specific or at least composition-based statistics,
particularly for intermediate p-values.
The statistics of position-dependent scoring and/or

gap-cost schemes, as used in PSI-BLAST [21] or in hid-
den Markov model (HMM) frameworks, are less well
explored. The central question here is, “given a query Q
and a position-specific scoring scheme, what is the score
distribution when random null-model sequences of
given length are scored against Q?”. We refer to this
model as “fixed query - position-dependent scoring”
(FQPS). As a compromise between the general (RQGS)
and the very specific (FQPS) models, one may neither
use a completely free (i.i.d) nor use a fixed query but
draw query sequences according to more specific mod-
els, e.g., HMMs for transmembrane proteins.
In all these cases EVDs Eq. (2) may still used heuristi-

cally by fitting the parameters of the EVD to the simu-
lated data. This can be achieved by generating pairs of
random sequences according to the given null model
while recording the histogram of observed alignment
scores. Using such a “simple sampling” approach, the
large-probability region of the score distribution can be
investigated, e.g., for probabilities about > 10-4 when
generating 104 sequence pairs. Such an approach is
implemented, e.g. in the hmmcalibrate program from
the HMMER package [22]. Nevertheless, this procedure
may fail to describe distribution in the “rare-even tail”, i.
e., where the probability is small (say < 10-4), although
this part of the distribution is most important for the
estimation of the statistical significance.
Our motivation for a simulation-based method that

makes no initial parametric assumption refers to the
approach [23] to increase the sensitivity of detecting
homologs of a given transmembrane (TM) protein in a
database search: A bipartite scoring scheme with a (non-

symmetric) transmembrane helix specific scoring matrix
(such as SLIM [23]) for the TM helices and a general-
purpose scoring matrix (such as BLOSUM [9]) for the
remaining regions of the query protein were applied, see
Figure 1. This results in higher search sensitivity and spe-
cificity. However, a statistical theory or efficient compu-
tational method to obtain the score probabilities in such
a (FQPS) framework is missing so far.

Our contributions and paper outline
We present a general framework for efficient estimation of
raw score distributions in sequence comparison problems.
In particular the rare-event tail for large scores can be
accessed. We only make the following assumptions:

1. We are able to sample pairs x, y of sequences
according to the null model and to compute the null
model probability of any given x, y.
2. We have an efficient algorithm  that computes
the score S(x, y), where x, y could be a pair of ran-
domly drawn sequences (RQGS or HMM), or one
fixed and one random sequence (FQPS).
3. The scores are rational numbers with a common
denominator. Hence, without loss of generality, they
can be assumed to be integers.
4. Optionally for the (HMM) approach, we have an
efficient algorithm  that predicts the most likely
state sequence for a given sequence.

Our framework is readily applicable to the (RQGS),
(FQPS) and (HMM) models, but also to more exotic

Q
uery sequence

TM

TM

Database subject sequence

BLOSUM
Use SLIM in these rows

Use BLOSUM in these rows

SLIM

BLOSUM

Other

Other

Other

Figure 1 Bipartite scoring scheme. Bipartite scoring scheme for
the detection of homologous transmembrane proteins from Ref.
[23]. The figure represents the Smith-Waterman alignment matrix
and indicates which scoring matrix is used for which query
positions (rows): In transmembrane helices, a transmembrane-
specific scoring matrix is used. For p-value computations, the query
is assumed fixed or generated by the TMHMM and the subject is
assumed a random i.i.d. sequence drawn from the distribution of
amino-acid frequencies of the database.
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settings, such as normalized alignment [7], where the
score is not additive, but normalized by the alignment
length, for which no statistical framework exists so far.
Very recently Eddy [24] studied the distributions of
Viterbi and Forward scores under probabilistic local
alignment, for which a numerical analysis of the rare-
event tail would be of interest as well.
In the current stage of the methodology, the computa-

tion of an accurate “on the fly” p-value for each particu-
lar database query might be impracticable as each full
calculation is not achieved within a few minutes.
We will illustrate the approach for the HMM for TM

proteins (TMHMM [25,26]), which has been proven
valuable in predicting TM helices. In this approach (and
possible in other models as well) one is able to specify
the score distribution in more detail. Each query may
be classified to be a member of certain given sub-
classes  . In this case, it could be meaningful to obtain
an individual score distribution for each subclass. A nat-
ural classification of the TMHMM is the number of
transmembrane regions. Since for a given sequence this
number is usually not known exactly, one takes the
most likely one.
The rest of the paper is organized as follows. The fol-

lowing section presents the mathematical background
on importance sampling and Markov chain Monte
Carlo methods which are fundamental to the methods
used to obtain the score distribution, in particular in the
rare-event tail, for different null models. Next, we pre-
sent a description of the methodology. Section “Results”
shows computational results on transmembrane protein
similarity statistics in (RQGS), (FQPS) and (HMM).
A discussion closes the paper.

Methods
Importance sampling
Importance sampling is a general technique to reduce
the variance in the estimation of quantities that can be

written as an expectation [ ( )]h Z , where Z is a random

object representing the null model and h is a real-valued
function. We assume that we can draw within a compu-
ter simulation n random samples z1, ..., zn according the
null model. The expectation is then approximated by

the empirical mean [ ( )] / ( )h Z n h zii

n  1
1

.

In our setting, to estimate the score distribution (and
then p-values), we consider the state space

   L LQ S , from which we generate n random

pairs of sequences({x(1) , y(1)} ,..., {x(n) , y(n)}).
These pairs are then aligned by a given algorithm 

and the corresponding similarity scores S(x(i), y(i)) are
computed. To formally write a histogram as an

expectation value, we consider the family of indicator

functions hs   { , }0 1 for all s > 0, defined by hs(x,

y) := 1 if S(x, y) = s, and hs(x, y) := 0 if S(x, y) ≠ s, hence

Prob( ( , ) ) [ ( , )]
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This means, we approximate the unknown exact prob-
ability Prob(S(X, Y)) by normalized score histograms
over all sampled sequence pairs. If the probability to be
estimated is small, say 10-9, when using simple sampling,
we need about 1012 samples to estimate it with reason-
able precision. Thus, for very rare events, this sampling
quickly becomes infeasible.
Importance sampling generates the “interesting”

events more often by sampling from a different distribu-
tion and correcting for this bias afterward, which results
in a more accurate estimate with a reasonable number
of samples. Let p be the probability mass function (pmf)
of (X, Y), and let q be another pmf satisfying q(x, y) > 0
whenever p(x, y) > 0. Then
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(2)

where each pair (x’(i), y’(i)) is sampled from the pmf q.
Eq. (2) gives us the relationship between the expectation
value w.r.t. the unknown distribution of interest, the tar-
get distribution p, and samples drawn from the actually
used sampling distribution q. To successfully apply
importance sampling, q has to fulfill three properties:
First, it needs to put high probability on the region of
interest; second, we need to be able to sample according
to q; third, we need to be able to compute the correct-
ing weight p(x, y)/q(x, y). Since directly sampling from q
often is impossible, we shall use a general sampling
method which we describe next.

Metropolis-Hastings sampling
If we need to generate samples from a discrete (or con-
tinuous) distribution q but have no simple direct
method to do so, the Metropolis-Hastings method [27]
provides a solution by constructing an ergodic Markov
chain with stationary distribution q in the following way.

Wolfsheimer et al. BMC Bioinformatics 2011, 12:47
http://www.biomedcentral.com/1471-2105/12/47

Page 4 of 19



Extensive introductions to such so-called Monte Carlo
simulations can be found, e.g., in Refs. [28,29]. Here we
just give a concise introduction specifically tailored to
the problem of sampling pairs of sequences. Let us call
the elements (x, y) of the sample space  configurations.
The sampling will be performed by randomly “moving”
in the space of configurations, such that for each step a
configuration is altered only slightly. Configurations
which can be visited and are connected by a move are
called neighbors. Hence, each configuration (x, y) has a

algorithm-dependent set  ( , )x y of potential neighbors

(x’, y’) Î  ( , )x y . The movement is performed in such

a way that each neighbor exhibits a positive probability
P(x,y), (x’,y’) as being the next configuration. The proposal
is accepted with probability

 x y x y

q x y P

q x y P
x y x y

x y

, ,

min ,
,

( , )
( , ),( , )

( , )

      


   


 

1
,,( , )

,
 











x y

(3)

in which case (x’, y’) becomes the new current config-
uration. Otherwise (x’, y’) is discarded and (x, y) remains
unchanged. Thus, a sampling algorithm is specified via

the neighborhoods  ( , )x y and the proposal probabil-

ities P(x,y),(x’, y’)
The acceptance criterion Equation (3) is quite general.

By using a symmetric proposal probability matrix, P(x’,y’)
(x, y) = P (x,y), (x’,y’), the relationship simplifies to

(( , ) ( , )) min ,
( , )
( , )

.x y x y
q x y

q x y
   

 







1 (4)

Since the distribution q appears only in form of a ratio
we need to be able to compute q(x, y) only up to a nor-
malization constant. If q(x’, y’) >q(x, y) we accept the
proposal and otherwise the proposal is accepted as new
configuration with the finite probability q(x’, y’)/q(x, y).
Hence, we need to choose the neighborhood of x, y

such that that the ratio
q x y

q x y

  
 

,

,
is not too far away

from one. Otherwise, virtually only proposals that
increase the probability are accepted and the sampling
procedure gets stuck at local maxima.
Equation (4) and its generalization Equation (3)

describe Markov chains in the configuration space

   L LQ S with the transition matrix T(x, y), (x’, y’) =

P(x, y), (x’, y’)·a((x, y) ® (x’, y’)).
For an appropriate choice of the neighborhoods

 ( , )x y and of the proposal distribution P(x, y), (x’, y’),

the so-constructed Markov chain is ergodic (each con-
figuration can be reached from any starting configura-
tion with finite probability). Furthermore, one can show
that the detailed balance condition

q x y T q x y Tx y x y x y x y( , ) ( , ) ,( , )( , ) ( , )( , )      (5)

which is fulfilled due to the choice of a(.) according to
Eq. (3), implies that the chain converges towards the
desired sampling distribution q.
We say that the chain has reached equilibrium when

convergence has occurred up to numerically negligible
error. Thus, if the configuration (x, y) is sampled after
equilibration, it will behave like a sample from q. In
practice, the exact speed of equilibration is unknown
and convergence diagnostics are applied (see below).
Several (almost) independent samples are obtained by
running the chain further and taking a sample every k-
th step for sufficiently large k to allow time for “forget-
ting” (i.e., decorreclating from) the state of the last
sampled configuration. This time is usually referred as
mixing time.

Implementation
In this section we show how the sampling algorithm
for pairs of sequences is actually designed, based on
the background given in the two preceding sections,
such that the tails of the probability distributions for
the scores can be addressed. The crucial point of the
Metropolis-Hastings update is the choice of an

appropriate neighborhood  ( , )x y (and the related

proposal probabilities) and the computation of the
probabilities of newly proposed states q(x ’ , y ’).
The neighborhood should be chosen such that the
acceptance rate Eq. (3) is between 0.3 and 0.7. We
shall factorize the (un-normalized) pmf q in two con-
tributions, firstly weights w: ℤ ® ℝ+ that assign each
score value of interest a weight and secondly the null
probability, i.e.

q x y w S x y p x y( , ) ( ( , )) ( , ).  (6)

Note that we will leave w(·) undetermined for a
moment, until Section “Wang-Landau Sampling”. The
importance reweighting equation Eq. (2) for hs is then

Prob( )S s h X Y
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with the normalization constant

Z
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For the (HMM) a single distribution of scores is not
sufficient: Each query is a member of a certain sub-class
characterized by the number of transmembrane regions
“# of TM helices” to be determined by the Viterbi algo-
rithm (see below). Thus, each class has its own probabil-
ity Pn(s) = Prob(S = s, # of TM helices = nTM). In order
to take this property into account, we deal with the
joint probability Prob(S = s, # of TM helices = nTM).
Accordingly, the weights have a two dimensional
domain, we write w(s, n). Also hs in Eq. (7) is replaced
by an indicator function hs,n that depends on two para-
meters: hs,n(x, y) equals 1 if S(x, y) = s and # of TM
helices of x = nTM. The sampling distribution is general-
ized to

q x y n w S x y n p x y( , , ) ( ( , ), ) ( , ),TM TM  (8)

and the the reweighting relationship reads as
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Generally the occurrence of two sequences x =
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... and y y yL 1  
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Prob( )

    query subject
Q1 1 SS

query subject

)

( ) ( ). f x f y

This simple factorization allows us to draw proposals
for the query and for the subject independently. Hence,
for simplicity, a neighboring configuration will leave one
of the two sequences unchanged. Thus, for selecting a
neighboring configuration, first one of the two
sequences is chosen at random with probability 1/2. In
the case of (FQPS) the subject is always chosen. Then
one sequence is chosen from the neighborhood of the
selected sequence, as described next. Formally, this

means for (RQGS) and (HMM) we use the factorized
proposal densities P(x, y), (x’, y’) = 0.5Px, x’ 1y, y’ or P(x, y)
(x’, y’) = 1x, x’ Py, y’ (1y, y’ denotes the indicator function
which is only one if y = y’, 0 else. Px, x’ denotes the pro-
posal of a single sequence) depending on the choice of
sequence in the first step.

Proposal densities for (FQPS) and (RQGS)
In the simplest case either both sequences are i.i.d. or

the query is fixed (to some sequence x ) and the null-
model probabilities of their occurrence factorize, i.e.

f x
f x f x

i

L

x x

iquery
iid Q

for (RQGS) and

for (FQPS)
( ) 

  


 

 1
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and of course in both cases

f y f y f y

i

L

i

s

subject iid( ) ( ) 



1

(11)

Due to the factorization that occurs in Eq. (10) it is

possible to draw sequences from  ( )x such that the

detailed balance condition fiid(x) Px,x’ = fiid(x’) Px’, x is
fulfilled by the following set of Monte Carlo moves (see
also Figure 2 and Table 1)

a) substitution of a single symbol at position k,
b) insertion of a single new symbol at position k
with left shift (deletion of the first symbol),
c) insertion of a single new symbol at position k with
right shift (deletion of the last symbol),
d) deletion of a single symbol at position k with
right shift and insertion of a single new symbol at
the beginning,
e) deletion of a single symbol at position k with left
shift and insertion of a single new symbol at the end.

Operation a) appears with probability 1/2 and the
other ones with probability 1/2 · 1/4 each. This is one
possible choice that guarantees detailed balance.

Note that all sequences in  ( )x have the same

length and each operation involves a replacement of an
existing symbol with a newly drawn symbol, in case
a) by a direct substitution and in the cases b)-e) indirect
via a shift operation. Each position of a sequence has
the same probability of being chosen and the replaced
symbol is chosen in all cases according to the frequen-
cies fs (s Î ∑).
With this construction the Metropolis-Hastings ratio

Eq. (3) simplifies to the special case of the Metropolis
algorithm, i.e.
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The right part in the second line cancels, because all
contributions to p(x, y) and p(x’, y’) where symbols from
(x, x’) and y, y) agree cancel directly and for the few
remaining letters, the proposal probability in the nomi-
nator contains exactly the frequencies of the null prob-
ability in the denominator, and vice versa. Thus, the
acceptance rate depends only on the score value of the
current configuration S(x, y) and the one of the proposal
S(x’, y’). Furthermore, it is easy to prove that the
detailed balance conditions in Eq. (5) is fulfilled for this
chain which in turn implies that the chain converges
towards the sampling distribution q.

Proposal densities for the (HMM)
In contrast to the approach presented in the previous
section, the generalized method we use here also
works for null models that do not allow for direct

sampling from  ( )x as in the case of i.i.d. sequences.

This framework can be summarized by following
algorithm:
METROPOLISHASTINGSUPDATE(x, y, z, p, s, n, w)
Input: Sequences x, y, a hidden state sequence z, the

null probability p(x, y) = f query(x). f subject(y), the score s
= S(x, y), the sub-class n and weights w
Output: Possibly new values for x, y, z, p, s, n.

1: Draw (x’, y’) Î N(x, y)
2: compute z’ := V(x) using  and determine the
corresponding class n’;
3: compute p’ := f query (x’) · f subject(y’);
4: compute s’ := S(x’, y’) using  .

5: Compute  :
[ , ]
[ , ]

,

,


    
 





w s n p P
w s n p P

x x

x x
.

▷ Designed such that
p(x’, y’) · P(x’, y’), (x,y) = p(x, y) · P(x,y),(x’, y’)

6: With probability min {1, a}:
Let (x, y, z, p, s, n)¬ (x’, y’, z’. p’, s’, n’)

7: return (x, y, z, p, s, n)

The algorithm is applicable to all models that allow
for a rapid calculation of the null probabilities f(·).
Sequence models based on HMMs fall into this class.
In the following we brie y describe this framework.
A detailed discussion can be found in the specialized lit-
erature on the topic [2,4].
In the probabilistic framework of HMMs one assumes a

sequence of “observed” symbols (the protein sequences
here) which is generated conditioned on a sequence of
“hidden” states. For the case of TM proteins, the state cor-
responds to the physical region where the corresponding
amino acid is located in, as detailed below. Within a mod-
eling using HMMs, this state sequence, also called path,
follows a simple Markov chain. The actually generated
symbols are connected to the hidden states by conditional
“emission” probabilities. More formally, a HMM consists of

• a finite set ∑ of (output) symbols (in our case the
amino acid alphabet),

a) b)

c)

d)

e)

L G Q I T EA

D

W G Q I T EAW

D

L

G Q I T AWL

D

E

G Q I T EA

D

L W

G Q I T AL E

D

W

Figure 2 Monte Carlo moves used in the simulation. (a) substitution, (b) insertion with left shift, (c) insertion with right shift,(d) deletion with
right shift and (e) deletion with left shift.

Table 1 Monte Carlo operations

operation resulting sequence

substitution of D at position 5 LGQIDTAE

insertion of D at position 5 with left shift GQIWDTAE

insertion of D at position 5 with right shift LGQIDWTA

deletion at position 5 with left shift LGQITAED

deletion at position 5 with right shift DLGQITAE

Valid Monte Carlo operations for input sequence s = LGQIWTAE (indexing
starts with 1). In order to obtain sequences of the same length as s, in the
case of a deletion a character (D) to be appended at the border has to be
specified.
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• a finite set Γ of (hidden) states,
• initial state probabilities πμ for all μ Î Γ with
∑ μÎΓ πμ = 1,

• emission probabilities p
 in each state μ Î Γ Σ

and for all s Î ∑ with p


 = 1 for all s Î ∑,

• a stochastic transition probability matrix P =

(pμ,τ)μ,τ Î Γ, i.e. p  ,  = 1 for all μ Î Γ.

Given these model parameters, the “most natural”
application of a HMM is to generate a sequence of hid-
den states by a stochastic process and, in parallel, to
generate a random sequence of symbols given the gen-
erated states. Hence, the stochastic process describes
pairs of states and symbols. But also given a fixed state
Z = Z1 ... ZL, the symbol sequence x = x1 ... xL is a sto-
chastic process, furthermore the opposite case of a fixed
sequence of output symbols, the state sequence is a sto-
chastic process.
For the Monte Carlo sampling as needed here, it is not

possible to simulate a HMM directly to generate symbol
sequences, since importance sampling changes the under-
lying sequence probabilities. Nevertheless, one still needs
to compute the probabilities fHMM(x) for the Monte Carlo
acceptance procedure, i.e. the probabilities that x is the
observed symbol sequence generated by the HMM using
any feasible state sequence. These probabilities can be
computed in  (L · |Γ|2) time using the well known for-
ward algorithm as described in the following. One intro-
duces the auxiliary variables fμ(i), which correspond to the
probability that the subsequence x1 ... xi is generated by
the HMM given that the last state variable Zi has the value
μ, i.e. fμ (i) = Prob(X1 ... Xi = x1 ... xi|Zi = μ). The overall
probability is then f HMM(x) = ∑ μÎΓ fμ (L). The probabil-
ities fμ (i) can be determined by the recursion

f i p f i pxi





 ( ) ( ) , 





1 (12)

with initial conditions f px 
( )1

1
 .

Within the same time complexity the Viterbi algo-
rithm  computes the most probable state path for a
given sequence of observations, that is

z z V x x

Z Z z x x
L L

z z
L L L

L
L

1 1

1

 
  




  



( )

.argmax Prob z |1 1 1


For this purpose one uses a different set of auxiliary
variables: Let vμ (i) be the probability of the most prob-
able path ending in state μ Î Γ with observed partial

output sequence x1, ..., xi. These values can be com-
puted recursively by

v i p v i pxi



  ( ) max{ ( ) }, 


1 (13)

with boundary condition v px
 ( ) ( )1

1
  . Note that

these probabilities are not normalized, in particular

v i
( )  1 . The missing normalization is no pro-

blem, since we are interested only in the most probable
path, which is reconstructed by back-tracking [2].
For the approach discussed in this section, the subject

sequences are drawn almost as above, see below. The
HMM approach we use to sample transmembrane queries
is the TMHMM developed by Sonnhammer et. al. [25]. In
this setting, the states are (structural) domains. Some of
them are “tied”, which means that they share the same
emission probabilities. They are classified into seven
groups:

• Helix core,
• two different groups of caps on either side,
• loops on the cytoplasmic side,
• short and long loops on the non-cytoplasmic side,
• globular domains.

The internal structure of the helix core and loop mod-
ule allows modeling different lengths of the correspond-
ing protein domain by assigning jump probabilities. The
globular domains have a self-looping structure and
hence may also have various lengths. The other modules
have fixed lengths. The overall number of model para-
meters is 216. Figure 3 shows the actual layout of
TMHMM. Each box represents a group of “tied” states.
The states corresponding to “helix core” represent the
transmembrane helices that connect states of the cyto-
plasmic side and the non-cytoplasmic side of the

globular

globular

globularloop

loop

loop

cap

cap

cap

cap

helix core

helix core

membranecytoplasmic side non−cytoplasmic side

Figure 3 The layout of the HMM for transmembrane proteins.
The layout of the HMM for transmembrane proteins according to
Sonnhammer et.al. [25]. Each box corresponds to a group of states.
For example the helix-core block consists of 25 internal states. Line
type of boxes represent different emission probabilities. For more
details we refer the reader to the original publication.
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membrane. The prediction of the positions of the “helix
core” states determines the loci of the special purpose
scoring matrix SLIM for position specific alignment (see
Figure 1).
The following Metropolis-Hastings update consists of

two steps: First, the proposal of a new configuration

from the neighborhood  ( )x is made by inserting/

replacing symbols with equal weights f  
1

| | for all

s Î ∑ using one of the five Monte-Carlo moves
described above. The acceptance ratio Eq. (3) in that
case is given by

(( , ) ( , ))

min ( ( , ), ) ( ) (

x y x y

w S x y n f x f y

  

     

1

TM
query subject ))

( ( , ) ) ( ) ( )

.

w S x y n f x f yTM
query subject

















(14)

The current and new number of TM regions nTM
and n ’TM are determined by the Viterbi algorithm
applied on the sequence x and x’ respectively. The cal-
culation of the query probabilities is based on the
TMHMM. The subject sequence probability is simply
calculated according to Eq. (11). Note that, in each
step, one of the two probabilities cancels, because only
one of the two sequences is changed within each step,
as above.
This approach allows us to sample noni.i.d. sequences

with appropriate weights and to predict transmembrane
helical regions that can be used in the position specific
alignment scheme (as described in [23]) even for ran-
dom sequences.

Wang-Landau sampling
The idea of importance sampling is to choose the
weights w(·), such that the drawn events in the region of
interest have a high probability to occur in the simula-
tion. Ideally, P(S) is already known and in that case one
might choose w(S) ∝ 1/P (S) on the entire range of
interest. Then all states are visited with equal probabil-
ity, and hence a at score histogram is achieved in the
limit of infinite sample size. Still, for practical applica-
tions with finite sample size, the distribution of scores
can be sampled with high accuracy over a large range of
its support. This idea refers back to statistical physics
and it is known as “generalized ensemble” or “ flat histo-
gram” methods. In the following we will denote this
weights by wflat.
Of course the true P(S) is unknown and the method

requires some guesses which approximate wflat to a sui-
table accuracy. The achieved score histogram becomes
only approximatively flat. The true (unknown)

distribution can then be estimated by reweighting the
histogram of visited states using the importance sam-
pling formula Eq. (7) for hs.
Many iterative sampling schemes to achieve initial

guesses had been developed in the 1990ies, for example
entropic sampling [30], multicanonical sampling [31]
and later transition matrix Monte Carlo [32-34], only to
mention a few. Here we use the Wang-Landau algo-
rithm [35,36] to approximate wflat as input for Metropo-
lis-Hastings sampling.
The Wang-Landau algorithm explicitly violates detailed

balance by dynamically updated weights depending on
the visited states in the following way: First, a score range
of interest [Smin, Smax] is chosen. The algorithm basically
employs a histogram H(S) and weights w(S) defined on
the desired score range. For more complicated models
such as the (TMHMM), these objects are two-dimen-
sional depending on the score S and the class nTM, i.e. H
(S, nTM) and w(S, nTM). Furthermore, real valued para-
meters ji > 1 are used in each iteration i. Initially, the
histogram values H(S, nTM) are set to 0 in the desired
range and all weights w(S, nTM) to a constant, say 1. For
the first iteration, i = 0, ji can be as large as e1. Then, a
simulation is performed using acceptance ratio Eq. (12)
or Eq. (14). After each step, corresponding to one step of
a (biased) random walk in the configuration space, w(S,
nTM) is updated as w(S, nTM) ¬ w(S, nTM) × ji, where S
is the current score value and nTM the sub-class of the
current state. Also the histogram H is updated by one H
(S, nTM) ¬ H(S, nTM) + 1. In the literature this is often
continued until an “approximately flat histogram” is
achieved. A possible flatness criterion might be

H S n
S S

H S n
S S

S
( , ) . ( , )

max min min

max
TM TM   


0 6 1

1 for all

S, nTM. Once the histogram is “ flat”, j is decreased by

the rule  i i 1 and all entries of the histogram H

are set to 0 again, while w is kept for the next iteration.
Note that the application of a flatness criterion is not
essential for the good performance of the algorithm. It is
enough to guarantee that all values of S have been visited,
for example by requiring that the random walker
has cycled several times through the interval of interest
[Smin, Smax].
To summarize, we have the following recipe:
WANGLANDAU(w, j, jfinal, N)
Input: Initial guess w[s, n], initial and final modifica-

tion factors j, jfinal, number of samples for production
run N
Output: Histogram of visited scores, H(s, n):= number

of samples with score s and class n and weights used in
the production run w(s, n) for all s and n
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1: ▷ Initialize and estimate w[s, n]
2: Pick any x, y Î  and compute its null probabil-
ity p := f query(x) · f subject(y);
3: compute s := S(x, y) using 

4: compute z := V (x) using  and determine corre-
sponding class n;
5: while j >jfinal do
6: H[s’, n’] ¬ 0 for all possible score values s’ and
classes n’
7: while H[s’, n’] is not at do
8: (x, y, z, p, s, n) ¬

METROPOLISHASTINGSUPDATE (x, y, z, p,
s, n,w);
9: H[s, n] ¬ H[s, n] + 1; w[s, n] w[s, n]/j;
10: end while

11:  
12: end while
13: ▷ Obtain N samples from q and their score
counts/histogram
14: H[s’, n’] ¬0 for all possible score values s’ and
classes n’
15: for i = 1..N do
16: H[s, n] ¬ H[s, n] + 1
17: repeat
18: (x, y, z, p, s, n) ¬

METROPOLISHASTINGSUPDATE (x, y, z, p,
s, n,w);
19: until mixing has occurred
20: end for
21: return counts H, weights w.

Due to the decreasing rule  i i 1 , the modifica-

tion factor j converges towards 1. The simulation is
stopped when j reaches a chosen threshold value which
is close to 1. It turned out that in our case the range
from j0 = exp(0.1) ≈ 1.105 to jfinal = exp(0.0002) ≈
1.0002 has been proven valuable.
Since detailed balance is violated explicitly, the con-

vergence of the algorithm can not be proven. For this
reason one should always use the Wang-Landau part as
a precomputation step just to obtain weights suitable w
(S). After this, one performs a simulation with j = 1 for
data production, which corresponds to the Metropolis-
Hastings algorithm.
Improvements
Of course there is much room for improvement. For
example, consider the time evolution of the histogram
H(S) for (RQGS) with LQ = LS = 348 up to Smax = 500
with Prob(S = Smax) ≈ 10-65 in Figure 4a.
When starting with an initial guess w(S) = 1 for all S Î

[23, 500], the random walker needed about 5.8 × 105

Monte-Carlo steps for a round trip, i.e. to move from the
lowest score Smin = 23 to the highest one Smax = 600 and
back. The duration of a round trip is a measure of the
mixing time of the corresponding Markov chain. Hence,
the shorter the round trip is time, the faster the chain
convergences. During the first round trip, the weights
have been improved such that the second round trip
(and further round trips) needed only 13% of the compu-
tational effort of the first one. Once the random walker
has performed its first round trip, the typical round trip
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0.008
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H
(s
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M

C
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tMC = 1,048,576
tMC = 524,288

(a)

0 100 200 300 400 500
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0.000
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0.020

0.025

H
(s

)/t
M

C

0 100 200 300 400
0.000

0.005

0.010

initial guess from LS = 400
initial guess from LS = 320

tMC = 8,192

tMC = 32,768

tMC = 65,563
tMC = 131,072

initial guess from LS = 200

(b)
Figure 4 Dynamics of the Wang-Landau algorithm. Typical time evolution of the histogram of visited states when starting with different
initial guesses. The model parameters are RQGS with LQ = LS = 348. The weights have been updated dynamically with modification factor j =
exp(0.1) ≈ 1.105. (a) w(s) = 1 for all s. The Markov chain converges relatively slowly. (b) w(s) ≈ 1/Prob(S = s|LQ = 348, LS = 200) has been used as
an initial guess. The histogram becomes flatter within remarkable less computational effort. Inset: a detailed balance simulation (j = 1 during the
simulation of 1, 048, 576 steps) with initial weights that are close to the inverse target distribution. Though the histograms are not “flat”, each
score value on the interval [23, 500] has been visited. The estimate from this data can be used in a longer production run.
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time does not change significantly. This tight bottleneck in
the very early stage of the algorithm can be overcome by
suitable initial guesses of w. In Figure 4b the time evolu-
tion of the same parameter set (RQGS with LQ = LS =
348) is shown except for the choice of the weights, which
have been chosen as w(s) ≈ 1 = Prob(S = s|LQ = 348; LS =
200), i.e. from a previous simulation of a different but
similar setup. One observes that the histogram becomes
“at” within a much smaller amount of Monte-Carlo steps.
Furthermore, the first round-trip time decreases to 1.3 ×
105 (i.e. 22% of the value for the naive guess w(s) = 1).
From a practical point of view, this allows us to save com-
puting time for two distributions with close by parameters
(e.g. close by sequence lengths). One can use the results of
one distribution as input for the second one. With this
approach we may also explore the parameter space succes-
sively. In some cases it is sufficient to run a short batch
run with the weights of a close by distribution and j = 1,
i.e. a detailed balance simulation, and then apply impor-
tance reweighting and use the so obtained approximation
of P(s) for a longer production run. This kind of procedure
is shown in the inset of Figure 4b: The detailed balance
simulations were performed with LQ = LS = 348, whereas
the weights w(s) came from a simulation with LS = 320
and LS = 400, respectively. The result shows that the histo-
grams are not “ flat” at all, but the distributions were close
enough to visit all score values on the range of interest. In
this successive way of iterations a broad range of the para-
meter space is accessible.
Estimation of the statistical error
Statistical analysis of Markov-chain Monte-Carlo data
requires a careful inspection of correlation effects
because the events depend on the history of the chain.
This correlations vanish within a typical timescale:
Events that are separated by a sufficient number of steps
can be assumed to be independent. However, since
Monte-Carlo methods are only approximative, an
assignment of statistical errors are requisite. In this
study we used Flyvbjerg and Peterson’s [37] blocking
method to estimate the error.

Results
To our knowledge we present the first highly accurate
score statistics for alignments with position-specific
scoring schemes. The alignment scores were calculated
with the standard Smith-Waterman algorithm with the
BLOSUM62 matrix for the (RQGS) and a bipartite ver-
sion BLOSUM62/SLIM for (FQPS) and (HMM) (see
Figure 1). For the a fine gap costs we have chosen the
standard values with a gap-open penalty of 12 and a
gap-extension penalty of 1, and UniProt symbol fre-
quencies for i.i.d. sequences.
We discuss four different transmembrane proteins as

queries (see Table 2) in the (FQGS) scheme. The results
are shown in Figure 5, where the distributions of
(FQGS) and (RQGS) are compared against each other.
The subject lengths are set to the query lengths. For the
production run of one distribution in Figure 5 (LQ = LS
= 348) 16,777,216 Metropolis-Hastings updates have
been performed. This took about 16 hours on an Intel
Pentium 4 with 3.4 GHz. The performance of the corre-
sponding HMM is weaker for three reasons: Firstly, we
are interested in a joint distribution for that we need
more samples. Secondly, more proposals are rejected
from the sampler due to the HMM-weights and finally
the computation of the forward-probabilities requires
additional floating point operations. The computation of
16,777,216 Metropolis-Hastings updates for this model
costs about 45 CPU hours. We use an 8 times larger
sample size in order to account for the first drawback.
Hence, we put an overall computational effort on this
model, which is 23 times as large as for (FQGS) and
(RQGS) (apart from the Wang-Landau iterations).
Here we observe in Figure 5b that on the log scale the

curvature of the tail of the distribution, i.e., the deviation
from the exponential tail of the pure Gumbel form Eq.
(2), is more pronounced in the (FQPS) model: Significant
differences of shapes already show up in the high prob-
ability region, which is accessible by simple sampling
(Figure 5a). The (RQGS) distributions for different
lengths match almost perfectly (only two lengths are
shown), whereas the shape of the (FQPS) distributions
varies slightly with the sequence type. This supports the
observation of Müller et.al. [23] that position-specific
scoring in connection with a fixed query sequence may
better discriminate between different sequences than the
standard approach where two random sequences are
compared with position-independent scoring matrices.
The asymptotic theory for i.i.d. sequences predicts an

EVD of the form of Eq. (2). The parameters l > 0 and c
> 0 depend on the score matrix, on the symbol frequen-
cies f, and on the query and subject sequence lengths LQ
and LS. Altschul and Gish [16] pointed out that asymp-
totic results where c = KLQLS (with K > 0 a constant)
need to be corrected by using effective sequence lengths.

Table 2 A selection of transmembrane proteins

ID AC Description Organism Length

OPSD_HUMAN P08100 Rhodopsinm H. sapiens 348

AGTR2_HUMAN P50052 type-2 angiotension II
receptor

H. sapiens 363

YXX5_CAEEL Q18179 putative neuropeptide
Y receptor

C. elegans 455

ADA1A_HUMAN P35348 Alpha-1A adrenergic
receptor

H. sapiens 466

A selection of transmembrane proteins. ID: UniProt identifier; AC: accession
number.
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An alignment may extend to the end of either sequence
and the score will be distorted towards lower values and
high scores become less probable. In the limit of infinite
sequences this effect vanishes and the tail of the Gumbel
distribution can be understood as an upper bound for
finite sequences. Indeed, we clearly see that the curves
in Figure 5b are not straight lines in the right tail, but
have negative curvature.
A better t to the empirical distribution is obtained by

determining parameters s0, l > 0, l2 > 0 for a “modi-
fied” Gumbel distribution with

log ( ) log( ) ( ) ( ) ,Prob S s s s s s       0 2 0
2 (15)

where s0 can be interpreted as the center of the distri-
bution. This corresponds to a EVD multiplied with a
Gaussian correction factor, given by the last term. The
parameter l2 is generally small (and thus shows its effect
only in the far right tail). It vanishes for sequences of
equal length as the length tends to infinity. Previously,
such a correction has been proposed for (RQGS) statis-
tics and has been computed for different parameter sets
of BLOSUM62 and PAM250 with a ne gap costs [17,18].
More pronounced differences are seen in the behavior

of the tail (Figure 5b), which is only accessible via
importance sampling approach. The difference between
the probabilities spans several orders of magnitude;
hence a wrong choice of the model would falsify the
estimation of significance drastically. Most importantly,
the pmf obtained using the position-specific scoring is
considerably curved. Thus, using EVDs from fits to data

of the high-probability region is even more questionable
here than in the (RQGS) model, where the pmf is
almost a straight line. Note that for the (RQGS) model,
previous simulations [18] have already shown that for
the special case of LS = LQ, the pmf converges for large
sequence length indeed to an EVD.
Note that the Gaussian correction for local alignment

parameterized by l2 is purely heuristic. Looking at the
data, the shape in Figure 5b looks similar to the one of
the Tracy-Widom distribution [38]. Interestingly,
Majumdar and Nechaev [39] as well as Priezzhev and
Schütz [40] obtained analytically the Tracy-Widom dis-
tribution as the asymptotic distribution for the model of
the longest common subsequences which is closely
related to global alignment. Also, Sardiu, Alves and Yu
[41] observed that the the statistics of the score fluctua-
tions of global alignment in the large probability region
is compatible with the Tracy-Widom distribution. There
could be a connection to our results, because in the
rare-event tail, alignment lengths are of the order of the
sequence lengths, hence the alignment is effectively glo-
bal. Nevertheless all our results are obtained for finite
sequence lengths. In contrast, distributions like Gumbel
or Tracy-Widom are obtained in the asymptotic limit of
infinite sizes of the underlying systems. Since finite-size
corrections are hard to obtain, or even unknown, we do
not attempt to determine the “true” shape of the distri-
bution and are satisfied by our heuristic formula.
Next, we discuss the usefulness of the (FQPS) statis-

tics in terms of retrieval performance. For this purpose
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Figure 5 Score distributions for (RQGS) and (FQPS) models. Score distributions for (RQGS) (classical) and (FQPS) models where the subject
length equals the query length. In order to compare the shape, the distributions have been shifted by the center s0. (a): Linear view; all
distributions from the (RQGS) agree outside the tails (only two lengths are shown). The shape of the (FQPS) distributions is more variable. (b):
Logarithmic view; significant differences between the two models appear in the tail of the distribution. High scores are more probable for the
(FQPS) alignment. Furthermore the curvature, i.e. the deviation from the Gumbel form, is much larger for (FQPS) than for the classical model.
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we considered the ASTRAL compendium [42] version
1.75 with less than 40% identity to each other. It con-
tains a set of reference proteins classified hierarchically
based on their tertiary structure. It is a subset of the
SCOP database with removed redundancy. The main
hierarchy levels in the SCOP classification scheme are
class, fold, superfamily, family. Proteins in the same
class share the same type of secondary structure,
whereas the fold level describes more specific the
arrangement of the secondary structure. As the position
specific scoring scheme is designed to be more sensitive
to discriminate transmembrane proteins against others,
its performance can be measured by searching a collec-
tion of transmembrane proteins from the ASTRAL set
against the complete set. From the 10569 sequences in

the database we have chosen 63 sequences which are
classified as Membrane and cell surface proteins and
peptides. For this collection we predicted the membrane
regions using TMHMM. Each of those queries were
searched against the complete set and ranked according
to the p-value on the basis of the (FQPS) statistics. The
p-value threshold under which we regard a hit as signifi-
cant controls the so called receiver operating character-
istic (ROC), i.e. the relationship between sensitivity vs.
specificity. A transmembrane protein that appears below
an p-value threshold is referred as a true positive obser-
vation. Accordingly, proteins of all other SCOP classes
below that value are false positives. The ROC space can
be explored by changing the p-value threshold. A small
threshold produces less false positives but we may miss
some hits. A larger value leads to more false positives.
The ROC is usually illustrated by plotting the true posi-
tive rate (TPR = true positives/positives), or the sensitiv-
ity, against the false positive rate (FPR = false positives/
negatives), 1- specificity. The result for the search char-
acteristics for (FQPS) is shown in Figure 6. We did the
same experiment for a BLAST search. In this case all
observations are located in left bottom corner in the
ROC space. This can be explained by the fact that we
have only considered the highest ranked results below
the E-value threshold of 10 and many positives were
beyond that value. This can also be seen in the inset of
Figure 6 where we show the average number of mem-
brane proteins found so far as a function of the rank in
the result set. The line of slope 1 for (FQPS) at the
begin of the result list means that virtually all hits are
found in the correct SCOP class. In contrast, BLAST
ranks transmembrane proteins at a high positions only
randomly. Hence, the (FQPS) clearly outperforms the
(RQGS) statistics.
The ROC curve in Figure 6 show the usefulness of the

(FQPS) statistics for retrieval performance, but the
extreme small p-values where the the modification fac-
tor l2 plays a role are not essential for this purpose.
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Figure 6 Retrieval performance for the (FQPS) statstics. ROC
curves (true positive rate vs. false positive rate) when searching TM
proteins from the ASTRAL reference set against the complete
ASTRAL set. Different symbols indicate different p-value thresholds
being used. Inset: sensitivity for (FQPS) compared with BLAST
search. The plot shows the averaged number of observed helical
proteins as a function of the rank in the result set.

Table 3 Change of ranking when using the modified Gumbel distribution

FQPS l2 = 0 FQPS l2 ≠ 0

Query rank Subject LS p-value rank Subject LS p-value

P08100 433 Q90456 287 1.1 × 10 -21 445 Q8N6U8 529 7.2 × 10 -29

LQ = 348 476 Q8N6U8 529 2.1 × 10 -21 483 Q90456 287 2.1 × 10 -28

P50052 79 P32250 308 1.1 × 10 -37 64 P34975 380 1.2 × 10 -57

LQ = 363 100 P34975 380 1.8 × 10 -37 111 P32250 308 1.3 × 10 -56

Q18179 772 P18901 446 2.2 × 10 -21 790 P79291 228 9.2 × 10 -27

LQ = 455 837 P79291 228 1.1 × 10 -20 794 P18901 446 9.8 × 10 -27

P35348 825 Q8HYN8 297 9.8 × 10 -24 826 O70432 167 5.2 × 10 -30

LQ = 466 937 O70432 167 1.3 × 10 -21 847 Q8HYN8 297 1.9 × 10 -29

Examples of blast hits for the four proteins used for FQPS. The original result sets have been re-ranked according the the FQPS statistics. Left column: Gumbel
assumption (l2 = 0). Right column: Modified Gumbel distribution (l2 ≠ 0).
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The modified Gumbel statistics however affect a possi-
ble ranking of database search results, especially for
sequences of different lengths. To illustrate this, we
used BLAST to retrieve homologs of our four example
proteins from the current Swissprot database. The
scores were recomputed via the position specific Smith-
Waterman algorithm for (FQPS). We computed the cor-
responding p-values from our simulation data and
ranked the result set by the p-value based on

1. the Gumbel distribution (l2 = 0) and
2. the accurate distribution (l2 > 0).

For subject sequence lengths that are not directly gov-
erned by our simulation directly we used interpolated fit

parameters. In Table 3 we illustrate that the there are
subjects whose relative order in the result set is
switched when using the more accurate (FQPS) score
distribution in contrast to the BLAST E-value. This
result might be important for applications of protein
classification where the specific ranking of high scoring
proteins is particularly important. However, on a global
level the order of the hits persists, signaled by Kendall’s
rank correlation [43]. When comparing the order
obtained between the cases l2 = 0 and l2 ≠ 0 we mea-

sured a rank correlation ̂ = 0.986 for the query
P08100. A τ of exactly 1 means identical, 0 unrelated,
and, -1 exactly the reverse ranking. The rank correlation
between the original BLAST ranking and the one based
on the accurate p-values is ̂ = 0.737.
To investigate the impact of dissimilar query and sub-

ject lengths LQ and LS on the parameters of the modi-
fied Gumbel distribution, we vary LS and consider the
parameters l and l2 as functions of the ratio LS/LQ (see
Figure 7). The large gap between the values of l for the
two different models reflects the qualitative difference of
the shape in the high probability regime. We see that in
the (RQGS) model, l is virtually independent of the
query and the sequence length. However, in the model
(FQPS), l varies with each individual query, as expected.
For l2 one has to distinguish between LS <LQ and LS
>LQ. In the first case, l2 decreases, which is not surpris-
ing, since the correction term describes a finite-size
effect and should vanish for increasing sequence lengths.
Once the subject length exceeds the query length, the

search space is still growing, but the finite length of the
query enforces subject size independent edge effects.
For the (HMM), we approximate the score distribu-

tion within each class (number of helices = n). The
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Figure 7 Fit parameters for (RQGS) and (FQPS) models. Dependence of the modified Gumbel parameters on the subject/query length ratio
LS/LQ. The vertical line corresponds to Figure 5, where LS = LQ. (a): l describes the bulk of the distribution (see Figure 5a) left). For LS >LQ, l
varies only slightly in the subject length. (b): The parameter l2 characterizes the curvature of the pmf in the tail (see Figure 5b). Large differences
between (RQGS) and (FQPS) show up in the case where LS >LQ. l2 becomes subject-length independent for LS >LQ.
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shape of the distributions clearly agrees with the curva-
ture for (RQGS) and (FQPS), and the modified Gumbel
distribution could be fitted (see Figure 8) when the
number of helices was not too small. This is indicated
by a large reduced c2 value for distributions with a
small number of helices. Also a visual inspection of the
fit to the data supports this argument.
The rare-event tail shows clear differences between the

different sub-classes of the model over several orders of
magnitude. In Figure 9 the dependency of the fit para-
meters on the respective subclass of the model (Figure 9a
and Figure 9b) as well as the dependency on the ratio LS/
LQ (Figure 9c and Figure 9d) is shown. Note that for dis-
tributions that are not well described via Eq. (15), we
only fitted the data in the high probability region. Those
data points are left out in the plot for l2 in Figure 9b and
are connected by dotted lines in Figure 9a.
In analogy to (RQGS) and (FQPS), the curvature

remains constant when LS >LQ. Regarding the dependence
on the number of helices, the curvature decays with

increasing number of transmembrane regions and then
approaches an approximate constant value. Numerical
values are provided in the Appendix for reference.

Discussion and conclusions
We have presented a simple universal numerical method
to accurately sample the far right tail of the score distri-
bution of various sequence comparison algorithms. It
appears to be the first method that is applicable to all
classical local alignment statistics, query-specific and
position-dependent score statistics, HMM calibration,
statistics of normalized alignments, and many more. To
sample the distribution using computer simulations, we
use Markov-chain Monte Carlo simulations, in particu-
lar the Wang-Landau approach is connection with the
Metropolis-Haistings algorithm. Apriori, the Wang-
Landau approach does not require any assumption on
the shape of the distribution (for example the para-
meters of the Gumbel distribution). The parameters can
be estimated a posteriori by fitting the simulated
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Figure 9 Fit parameters for different alignment models. Fit parameters for score distributions P (S|# of helices) for the (HMM) with a fixed
query length LQ = 348 and various subject lengths LS. Both shape parameters l and l2 decrease with increasing number of helices. The
dependency on the subject length is stronger for l2 than for l. For LS >LQ the dependency of l2 on the subject length is only of marginal
order. The bars show the distribution of the number of transmembrane helices obtained by direct simulations of the (HMM). (c),(d): The LS/LQ
dependency of l and l2 extracted from the same data as (a),(b). The lines are guide to the eyes only. Dashed lines show the corresponding
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distribution to an appropriate parametric form like Eq.
(15). Here, we observed that for the (FQPS) model, the
Gumbel distribution should be replaced by a more nega-
tively curved one.
The method has a disadvantage: Because of the high

number of samples required for non-parametric estima-
tion of the distribution, it can presently not be used in
on-line database search web services, such as a BLAST

server. For example, generating the 16,777,216 samples
for Figure 5 (LQ = LS = 348) took approximately 16 hours
on an Intel Pentium 4 with 3.4GHz.
This is not as bad as it seems, though: Both the imple-

mentation and the design of the Markov chain have
much room for improvement, e.g. we can choose differ-
ent neighborhoods N(x) and optimize the weights in the
generalized ensemble [44,45].

Table 4 Fit parameters for (FQPS) and (RQGS)

FQPS corresponding RQGS

LQ LS l 104 l2 K l 104 l2 K

P08100 50 0.3016 ± 0.40% 7.5741 ± 0.77% 0.0654 ± 3.34%

348 100 0.1747 ± 0.19% 3.2202 ± 0.32% 0.0132 ± 1.49% 0.2829 ± 0.17% 3.6884 ± 0.36% 0.0463 ± 4.09%

200 0.1617 ± 0.09% 1.7968 ± 0.18% 0.0100 ± 1.31% 0.2685 ± 0.15% 1.8498 ± 0.40% 0.0315 ± 2.77%

300 0.1478 ± 0.14% 1.3962 ± 0.21% 0.0059 ± 2.20% 0.2664 ± 0.14% 1.1900 ± 0.47% 0.0292 ± 3.49%

320 0.1466 ± 0.15% 1.3775 ± 0.28% 0.0056 ± 2.33% 0.2674 ± 0.11% 1.1059 ± 0.51% 0.0295 ± 2.05%

348 0.1432 ± 0.22% 1.4131 ± 0.33% 0.0051 ± 2.69% 0.2681 ± 0.10% 0.9909 ± 0.43% 0.0307 ± 2.18%

360 0.1426 ± 0.17% 1.4322 ± 0.22% 0.0047 ± 3.17% 0.2678 ± 0.10% 0.9883 ± 0.42% 0.0302 ± 2.49%

400 0.1418 ± 0.10% 1.4201 ± 0.17% 0.0047 ± 1.43% 0.2648 ± 0.12% 1.0238 ± 0.50% 0.0248 ± 3.89%

500 0.1399 ± 0.26% 1.4517 ± 0.35% 0.0043 ± 3.94% 0.2638 ± 0.17% 1.0248 ± 0.65% 0.0255 ± 5.65%

600 0.1405 ± 0.16% 1.4392 ± 0.20% 0.0047 ± 2.87% 0.2650 ± 0.14% 0.9917 ± 0.74% 0.0245 ± 3.85%

P50052 50 0.3024 ± 0.85% 7.4294 ± 1.70% 0.0657 ± 6.19%

363 100 0.1795 ± 0.16% 3.1869 ± 0.26% 0.0132 ± 1.42% 0.2818 ± 0.25% 3.6993 ± 0.55% 0.0458 ± 3.44%

200 0.1660 ± 0.18% 1.8701 ± 0.30% 0.0096 ± 1.98% 0.2698 ± 0.21% 1.8027 ± 0.58% 0.0341 ± 4.60%

300 0.1550 ± 0.22% 1.3995 ± 0.36% 0.0066 ± 2.97% 0.2643 ± 0.14% 1.2232 ± 0.42% 0.0273 ± 3.55%

330 0.1512 ± 0.12% 1.4130 ± 0.23% 0.0057 ± 1.30% 0.2654 ± 0.18% 1.0822 ± 0.68% 0.0274 ± 5.32%

363 0.1509 ± 0.18% 1.3881 ± 0.27% 0.0057 ± 3.53% 0.2687 ± 0.24% 0.9676 ± 1.00% 0.0332 ± 7.75%

380 0.1489 ± 0.12% 1.4138 ± 0.19% 0.0051 ± 1.17% 0.2651 ± 0.30% 0.9806 ± 1.28% 0.0270 ± 11.76%

400 0.1474 ± 0.20% 1.4335 ± 0.32% 0.0048 ± 3.27% 0.2634 ± 0.15% 0.9773 ± 0.75% 0.0271 ± 11.41%

500 0.1471 ± 0.08% 1.4350 ± 0.16% 0.0049 ± 1.13% 0.2613 ± 0.21% 0.9998 ± 1.05% 0.0226 ± 7.60%

600 0.1457 ± 0.28% 1.4640 ± 0.54% 0.0046 ± 3.24% 0.2662 ± 0.15% 0.9498 ± 0.79% 0.0250 ± 7.76%

Q18179 50 0.3008 ± 0.70% 7.6673 ± 1.23% 0.0625 ± 5.34%

455 100 0.1798 ± 0.33% 3.7190 ± 0.59% 0.0103 ± 2.84% 0.2845 ± 0.16% 3.5814 ± 0.35% 0.0485 ± 2.86%

200 0.1723 ± 0.16% 1.9839 ± 0.32% 0.0087 ± 1.50% 0.2685 ± 0.14% 1.8391 ± 0.49% 0.0302 ± 3.81%

300 0.1609 ± 0.25% 1.4302 ± 0.40% 0.0059 ± 4.49% 0.2632 ± 0.16% 1.2382 ± 0.53% 0.0262 ± 4.69%

420 0.1569 ± 0.27% 1.3665 ± 0.52% 0.0050 ± 2.90% 0.2636 ± 0.17% 0.8441 ± 0.59% 0.0222 ± 9.17%

450 0.1590 ± 0.25% 1.3225 ± 0.61% 0.0052 ± 2.86% 0.2611 ± 0.13% 0.8203 ± 0.43% 0.0209 ± 4.93%

455 0.1548 ± 0.26% 1.4038 ± 0.52% 0.0049 ± 2.76% 0.2655 ± 0.12% 0.7670 ± 0.49% 0.0246 ± 8.35%

480 0.1557 ± 0.38% 1.3664 ± 0.67% 0.0051 ± 7.10% 0.2610 ± 0.10% 0.7929 ± 0.41% 0.0197 ± 6.70%

500 0.1521 ± 0.45% 1.4145 ± 0.77% 0.0044 ± 5.30% 0.2615 ± 0.17% 0.7783 ± 0.62% 0.0204 5.09%

600 0.1540 ± 0.25% 1.3886 ± 0.43% 0.0043 ± 3.72% 0.2596 ± 0.14% 0.7706 ± 0.60% 0.0174 ± 5.71%

P35348 50 0.3046 ± 0.61% 7.3443 ± 1.17% 0.0668 ± 4.85%

466 100 0.1809 ± 0.18% 3.1996 ± 0.28% 0.0135 ± 2.06% 0.2839 ± 0.22% 3.6314 ± 0.49% 0.0465 ± 2.49%

200 0.1625 ± 0.12% 1.8687 ± 0.18% 0.0079 ± 1.63% 0.2696 ± 0.15% 1.8030 ± 0.48% 0.0315 ± 3.97%

300 0.1643 ± 0.10% 1.2089 ± 0.15% 0.0086 ± 2.23% 0.2620 ± 0.13% 1.2472 ± 0.47% 0.0241 ± 5.52%

400 0.1510 ± 0.24% 1.2641 ± 0.39% 0.0051 ± 2.76%

450 0.1521 ± 0.33% 1.2357 ± 0.55% 0.0050 ± 5.39% 0.2647 ± 0.16% 0.7874 ± 0.67% 0.0246 ± 3.93%

466 0.1485 ± 0.17% 1.2982 ± 0.35% 0.0046 ± 2.93%

480 0.1517 ± 0.23% 1.2359 ± 0.34% 0.0056 ± 5.27% 0.2609 ± 0.25% 0.7981 ± 1.25% 0.0207 ± 9.36%

500 0.1492 ± 0.22% 1.2845 ± 0.35% 0.0048 ± 3.64% 0.2668 ± 0.09% 0.7124 ± 0.49% 0.0265 ± 6.00%

600 0.1509 ± 0.28% 1.2383 ± 0.40% 0.0050 ± 3.86%

Fit parameters l, l2 and K of the modified Gumbel distribution for (FQPS) and (RQGS).
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Table 5 Fit parameters for the HMM

HMM n = 0 HMM n = 1

LQ LS l 104 l2 103K l 104 l2 103K

348 150 0.2890 ± 0.85% 49.4722 ± 7.27% 0.2310 ± 9.32% 21.4600 ± 66.56%

200 0.2894 ± 2.84% 50.0796 ± 24.47% 0.2274 ± 1.74% 20.1017 ± 13.25%

300 0.2895 ± 2.69% 53.3472 ± 24.00% 0.2240 ± 4.86% 17.8934 ± 37.22%

348 0.2988 ± 3.24% 72.2356 ± 30.15% 0.2234 ± 2.39% 16.8704 ± 18.79%

360 0.2895 ± 1.79% 51.9056 ± 16.04% 0.2220 ± 2.14% 16.3757 ±16.52%

400 0.2859 ± 3.49% 48.4496 ± 31.10% 0.2232 ± 2.40% 17.5141 ± 18.94%

500 0.2912 ± 6.63% 54.0687 ± 61.22% 0.2182 ± 2.39% 14.7371 ± 19.10%

600 0.2901 ± 3.38% 51.9412 ± 31.74% 0.2180 ± 2.59% 14.2439 ± 20.86%

HMM n = 2 HMM n = 3

LQ LS l 104 l2 K l 104 l2 K

348 150 0.1968 ± 0.70% 2.9247 ± 1.37% 12.0400 ± 6.48% 0.1767 ± 0.44% 2.6797 ± 1.01% 7.4435 ± 3.72%

200 0.1947 ± 2.12% 9.8704 ± 14.29% 0.1795 ± 0.46% 2.3586 ± 0.92% 8.5733 ± 3.87%

300 0.1937 ± 3.60% 9.9597 ± 25.32% 0.1863 ± 0.41% 2.0008 ± 0.94% 11.7859 ± 5.63%

348 0.1888 ± 3.19% 8.1338 ± 22.42% 0.1876 ± 0.32% 1.9328 ± 0.89% 12.1223 ± 3.83%

360 0.1926 ± 3.17% 9.7957 ± 22.82% 0.1853 ± 0.27% 1.9530 ± 0.65% 10.8640 ± 2.65%

400 0.1934 ± 1.05% 9.9321 ± 8.22% 0.1757 ± 1.64% 7.1756 ± 11.58%

500 0.1919 ± 1.61% 9.3630 ± 12.32% 0.1783 ± 0.98% 7.7945 ± 7.18%

600 0.1912 ± 1.70% 9.3303 ± 13.25% 0.1768 ± 1.01% 7.4165 ± 8.19%

HMM n = 4 HMM n = 5

LQ LS l 104 l2 103K l 104 l2 103K

348 150 0.1732 ± 0.47% 2.2119 ± 1.14% 7.4991 ± 6.08% 0.1710 ± 0.38% 2.0698 ± 0.92% 8.1950 ± 3.70%

200 0.1686 ± 0.28% 2.1187 ± 0.72% 6.4162 ± 3.14% 0.1657 ± 0.39% 1.8231 ± 1.14% 6.9148 ± 3.82%

300 0.1682 ± 0.36% 1.9635 ± 0.79% 6.5436 ± 4.22% 0.1599 ± 0.37% 1.7836 ± 0.79% 5.4451 ± 3.85%

348 0.1685 ± 0.35% 1.9408 ± 0.74% 7.3851 ± 3.34% 0.1580 ± 0.28% 1.7930 ± 0.68% 5.3049 ± 2.61%

360 0.1678 ± 0.42% 1.9421 ± 0.92% 6.5775 ± 4.07% 0.1605 ± 0.23% 1.7481 ± 0.50% 5.7512 ± 2.89%

400 0.1662 ± 0.18% 1.9782 ± 0.40% 6.4164 ± 2.32% 0.1587 ± 0.28% 1.7828 ± 0.73% 5.4513 ± 2.57%

500 0.1693 ± 0.24% 1.9047 ± 0.51% 7.0735 ± 2.11% 0.1587 ± 0.16% 1.7957 ± 0.40% 5.4770 ± 2.31%

600 0.1693 ± 0.17% 1.8994 ± 0.39% 7.1112 ± 2.06% 0.1575 ± 0.29% 1.8330 ± 0.58% 5.2125 ± 2.68%

HMM n = 6 HMM n = 7

LQ LS l 104 l2 103K 104 l2 103K

348 150 0.1663 ± 0.49% 2.1403 ± 1.04% 7.9392 ± 5.83% 0.1646 ± 0.30% 2.1396 ± 0.65% 8.7088 ± 4.21%

200 0.1614 ± 0.25% 1.7767 ± 0.65% 6.7568 ± 2.30% 0.1574 ± 0.41% 1.7687 ± 1.17% 6.5219 ± 3.81%

300 0.1551 ± 0.28% 1.5986 ± 0.80% 5.2551 ± 3.18% 0.1514 ± 0.26% 1.4638 ± 0.62% 5.0238 ± 4.34%

348 0.1531 ± 0.20% 1.5993 ± 0.55% 4.9132 ± 2.71% 0.1482 ± 0.33% 1.4755 ± 0.77% 4.4535 ± 4.13%

360 0.1536 ± 0.34% 1.6036 ± 1.02% 4.9160 ± 3.41% 0.1490 ± 0.39% 1.4479 ± 0.93% 4.6858 ± 3.28%

400 0.1537 ± 0.27% 1.5713 ± 0.62% 4.9524 ± 3.05% 0.1494 ± 0.24% 1.4328 ± 0.70% 4.6867 ± 2.08%

500 0.1519 ± 0.23% 1.6229 ± 0.67% 4.6812 ± 2.14% 0.1472 ± 0.29% 1.4706 ± 0.63% 4.2881 ± 2.50%

600 0.1489 ± 0.15% 1.7148 ± 0.33% 4.2283 ± 2.16% 0.1460 ± 0.18% 1.5193 ± 0.49% 4.2679 ± 1.74%

HMM n = 8 HMM n = 9

LQ LS l 104 l2 103K l 104 l2 103K

348 150 0.1595 ± 0.47% 2.2162 ± 1.01% 7.5355 ± 4.01% 0.1603 ± 0.23% 2.1517 ± 0.48% 8.0273 ± 2.17%

200 0.1534 ± 0.55% 1.8019 ± 1.46% 5.9224 ± 5.25% 0.1508 ± 0.14% 1.7854 ± 0.28% 6.3535 ± 1.89%

300 0.1473 ± 0.47% 1.3916 ± 1.24% 4.8483 ± 4.01% 0.1413 ± 0.12% 1.4118 ± 0.35% 4.2141 ± 1.43%

348 0.1458 ± 0.32% 1.3409 ± 0.85% 4.6141 ± 3.69% 0.1398 ± 0.10% 1.3281 ± 0.33% 3.9661 ± 1.44%

360 0.1469 ± 0.34% 1.2868 ± 0.90% 4.9271 ± 2.73% 0.1400 ± 0.16% 1.2888 ± 0.43% 4.0126 ± 1.79%

400 0.1440 ± 0.34% 1.3591 ± 1.05% 4.0064 ± 3.48% 0.1382 ± 0.25% 1.2954 ± 0.67% 3.7257 ± 2.14%

500 0.1433 ± 0.29% 1.3382 ± 0.85% 3.9952 ± 2.70% 0.1352 ± 0.14% 1.3472 ± 0.42% 3.1780 ± 1.68%

600 0.1416 ± 0.33% 1.3760 ± 0.94% 3.7782 ± 3.14% 0.1359 ± 0.13% 1.3399 ± 0.38% 3.3536 ± 1.49%
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While this still prohibits interactive use, we see a lot
of potential for our method to provide an improved ver-
sion of the hmmcalibrate tool [22] and to explore
the statistics of normalized sequence alignment [7].
During the preparation of this manuscript we came

aware of a new related importance sampling method
which is suitable for efficient p-value computations for
alignment statistics [46]. It makes use of simultaneous
backward sampling of alignments and sequences. So far
this method was applied to i.i.d. sequences but it should
be possible to extend it to more complex model as well.
We have tested it for the (FQPS) model as well. For the
joint distribution of score and number of helices one
would have to sample simultaneous the alignments,
sequences and the hidden state sequence of the
TMHMM.

Appendix: modified Gumbel parameters
Table 4 and Table 5 show numerical values for the
parameters l, l2 and K of the modified Gumbel distri-
bution Eq. (15). These are visualized in Figure 7 and 9
in the body of the paper.
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