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1  | INTRODUC TION

Species distribution models (SDMs) are widely used in ecology to 
predict the geographical ranges of individual species (Allouche, 
Steinitz, Rotem, Rosenfeld, & Kadmon, 2008; Booth, Nix, Busby, & 
Hutchinson, 2014; Elith et al., 2006; Guisan & Thuiller, 2005; Pearson 
et al., 2014; Peterson, Soberón, & Pearson, 2011), and multiple SDMs 
can be interpreted together to estimate the composition of an eco-
logical community at a particular location (Cassini, 2011; Kissling et 

al., 2012; Thuiller, Pollock, Gueguen, & Münkemüller, 2015). SDMs 
are also used to aid in the conservation of rare species that occur at 
relatively few locations compared to other species in the commu-
nity (Chen & Peterson, 2002; Marcer, Sáez, Molowny-Horas, Pons, & 
Pino, 2013; Rivera, López-Quílez, & Blangiardo, 2018). Because rare 
species often have specialized habitat preferences (Spitale, 2012) 
and are harder to detect (Hannon, Cotterill, & Schmiegelow, 2003), 
protecting areas where rare species are known to occur or, more re-
alistically, are expected to occur is critical for preserving the Earth's 
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Abstract
Designing an effective conservation strategy requires understanding where rare 
species are located. Because rare species can be difficult to find, ecologists often 
identify other species called conservation surrogates that can help inform the dis-
tribution of rare species. Species distribution models typically rely on environmental 
data when predicting the occurrence of species, neglecting the effect of species' 
co-occurrences and biotic interactions. Here, we present a new approach that uses 
Bayesian networks to improve predictions by modeling environmental co-responses 
among species. For species from a European peat bog community, our approach con-
sistently performs better than single-species models and better than conventional 
multi-species approaches that include the presence of nontarget species as addi-
tional independent variables in regression models. Our approach performs particu-
larly well with rare species and when calibration data are limited. Furthermore, we 
identify a group of “predictor species” that are relatively common, insensitive to the 
presence of other species, and can be used to improve occurrence predictions of rare 
species. Predictor species are distinct from other categories of conservation surro-
gates such as umbrella or indicator species, which motivates focused data collection 
of predictor species to enhance conservation practices.
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biodiversity (Lawler, White, Sifneos, & Master, 2003). However, pro-
tecting the wrong areas due to model inaccuracy is a costly mistake 
that does little to promote the survival of rare and threatened spe-
cies (Akçakaya et al., 2017).

The growing desire and potential for SDMs to make predictions 
at smaller spatial scales has led to an integration of ideas from mac-
roecology and community ecology (Eaton et al., 2018; Staniczenko, 
Sivasubramaniam, Suttle, & Pearson, 2017). Ecologists initially made 
predictions using environment-only SDMs that included only abiotic 
variables like temperature and rainfall (Pearson & Dawson, 2003), 
but soon recognized that incorporating dependencies among species 
was necessary to explain empirical distribution patterns (Araújo & 
Luoto, 2007; Fordham et al., 2013; Ockendon et al., 2014; Schmitz, 
Post, Burns, & Johnston, 2003; Soberón, 2007; Ward et al., 2015). 
Recent work has explored a variety of approaches to modeling such 
dependencies in SDMs (Fernandes et al., 2013; Giannini, Chapman, 
Saralva, Santos, & Blesmeijer, 2013; Hollings, Robinson, Andel, Jewell, 
& Burgman, 2017; Lany, Zarnetske, Gouhier, & Menge, 2017; Meier et 
al., 2010; Pellissier et al., 2010, 2013; le Roux, Pellissier, Wisz, & Luoto, 
2014; Trainor & Schmitz, 2014; Trainor, Schmitz, Ivan, & Shenk, 2014), 
and a simple yet successful strategy involves modeling the occurrence 
of a target species using the presence or absence of additional, non-
target species as independent variables in generalized linear models 
(GLMs) (Giannini et al., 2013; Godsoe & Harmon, 2012) and maxi-
mum entropy models (Araújo, Marcondes-Machado, & Costa, 2014). 
However, this strategy has not always improved results; for exam-
ple, predictions for rare species from a plant community in Britain 
were less accurate with multi-species models than with single-spe-
cies versions of two machine-learning methods (Chapman & Purse, 
2011). A recent study compared different random forest models (a 
machine-learning-based method) and concluded that single-species 
models yielded more accurate predictions than multi-species models 
for binary response data (Henderson, Ohmann, Gregory, Roberts, & 
Zald, 2014). A more comprehensive approach to modeling shared en-
vironmental co-responses involves joint species distribution models 
(Ovaskainen, Hottola, & Siitonen, 2010; Pollock et al., 2014), but cal-
ibrating these models requires extensive species co-occurrence data 
that can be time-consuming and labor-intensive to collect.

Bayesian networks (BNs) offer a balanced approach to modeling 
how the presence of a species is affected by the presence or absence 
of other species (Eaton et al., 2018). While other species distribution 
models rely on categorizing or weighing each different type of in-
terspecific relationship (Anderson, 2017), BNs offer a mathematical 
framework that can be much simpler: Interspecific relationships are 
represented as conditional dependencies between species, with the 
presence of one species potentially increasing or decreasing the oc-
currence probability of another species. As with other multi-species 
SDMs, our approach attempts to improve predictions of an individual 
species' geographical distribution by accounting for the species' fun-
damental niche (the area where it could hypothetically occur given 
only environmental conditions (Soberón & Arroyo-Peña, 2017)) and 
its realized niche (the actual area where it can be found, given inter-
specific interactions (Soberón & Arroyo-Peña, 2017)). With an SDM 

involving BNs, the BN component is used to adjust “prior” probabili-
ties of species occurrence generated by environment-only models to 
produce “posterior” probabilities that also reflect the effect of biotic 
interactions and other interspecific relationships among species.

Here, our goal is to improve assessments of species occurrence 
at specific locations, especially for rare species, by including infor-
mation on species' environmental co-responses in SDM-like predic-
tive models. We compare the performance of three types of model: 
(a) environment-only GLMs (“eGLM”); (b) multi-species GLMs that 
include the presence or absence of nonfocal (i.e., nontarget) species 
as additional independent variables (“sGLM”); and (c) a new approach 
that combines probabilities from the eGLM with a BN that represents 
strong environmental co-responses among species (“eGLM + BN”). 
We compare these three models to an approach based on joint spe-
cies distribution modeling that provides an upper bound to model 
accuracy because it requires much more input data for calibration.

We test models using data from a European peat bog community 
(Robroek et al., 2017). Based on a BN for the peat bog community, 
we identify a group of “predictor species” that are useful for improv-
ing predictions of rare species occurrence. We suggest that predictor 
species could function as conservation surrogates, that is, species that 
are used to facilitate the management or protection of another species 
(Caro & O'Doherty, 1999). To this end, predictor species complement 
existing categories of conservation surrogates (Andelman & Fagan, 
2000) such as umbrella species (typically found at many locations 
(Fleishman, Blair, & Murphy, 2001)) and indicator species (typically 
found at locations with high species richness (Azeria et al., 2009)).

2  | MATERIAL AND METHODS

2.1 | Data

We tested our approach using data on a peat bog community of 54 
plant species at 56 locations across Europe (Robroek et al., 2017). 
Data were collected during the summer months of multiple years, 
and all but the least common species (those occurring at less than 
five of the 56 locations) were included in the data set (Robroek et al., 
2017). Some groups (such as lichens) were not identified to the spe-
cies level because of time constraints and identification difficulties 
(Robroek et al., 2017). Of nine available environmental variables, we 
included four in generalized linear models: mean annual tempera-
ture; mean annual precipitation; latitude; and temperature seasonal-
ity (measured as the difference between the warmest and coolest 
month in a given year). These four variables had the highest average 
correlations with species occurrence and were not highly correlated 
with each other (see Appendix S1 for more details on our choice of 
variables). Because our goal was to develop models for predicting 
the occurrence of individual species at specific locations, we con-
verted species abundance at each location to a binary measure of 
presence or absence (i.e., any species with abundance over 0 was 
considered to be present), which we used as a dependent variable 
for calibrating and testing models.
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Despite the relatively small number of locations, the peat bog data 
set has three properties that make it especially valuable for our anal-
ysis. First, the peat bog data set includes confirmed presences and 
absences for each species at each location, unlike many larger data 
sets that usually only include confirmed presences. As we are using 
logistic regression models, it is preferable to use confirmed absences 
to calibrate models rather than the assumption that the lack of an ob-
served presence can be considered an absence. Second, the species 
from the peat bog community are not only closely related genetically 
(implying that environmental co-responses are likely) but also live and 
interact in a physically close manner (implying that they may develop 
biotic interactions that affect their larger scale distributions)—taken 
together, these two features provide strong motivation for modeling 
the effect of interspecific relationships on geographical distributions. 
Third, the 56 locations are geographically dispersed enough to pro-
vide significant differences in environmental conditions among loca-
tions; so even though the absolute number of locations is relatively 
low, there is still sufficient variance to allow models to discriminate 
between the environmental preferences of species (Wisz et al., 2008).

2.2 | Modeling occurrence predictions using only 
environmental variables (eGLM)

We used generalized linear models (Das & Dey, 2006; Vasconcelos, 
Le Pape, Costa, & Cabral, 2013) to make environment-only predic-
tions for the species in the peat bog community. The eGLM only in-
cluded environmental data in its set of independent variables, with 
the presence or absence of a focal species at a specific location as 
the dependent variable:

where Yij is the presence or absence of species i at location j; and Tj is 
mean annual temperature, Pj is mean annual precipitation, VT

j
 is tem-

perature seasonality, and Lj is latitude, at location j (see Table S1 and 
Table S2 for more on the choice of these variables). We used a logit 
link function between independent and dependent variables. Adding 
quadratic and interaction terms to the eGLM did not improve model 
performance (see Appendix S1).

2.3 | Estimating environmental co-responses 
among species

To develop models that incorporated the occurrence of nonfocal 
species, we constructed a correlation matrix describing the strength 
of all possible interspecific relationships in the peat bog community. 
First, we computed the Pearson correlation between the presence 
or absence of each pair of species across the 56 locations. The re-
sult was a symmetric 54-by-54 species correlation matrix with ones 
on the leading diagonal. We then set these ones to zero and speci-
fied a threshold value to convert all off-diagonal entries to 0, 1, or 

−1, depending on whether the absolute value of the correlation ex-
ceeded the threshold value of 0.35. We used a threshold value of 
0.35 because it represented a point of inflection in the number of 
nonzero entries in the transformed correlation matrix (Figure S1). 
The transformed correlation matrix had a total of 184 nonzero en-
tries (130 positive and 54 negative), and only seven of the 54 spe-
cies did not have a nonzero entry with any other species in the 
community.

2.4 | Modeling environmental co-responses among 
species as independent variables (sGLM)

The sGLM included the occurrence of nonfocal species as additional 
independent variables:

where the final summation term only includes species that have been 
shown to strongly influence the occurrence of species i according to 
the correlation matrix (note that each nonfocal species i′ has a unique 
GLM slope coefficient)—this ensures that the sGLM describes the same 
environmental co-responses as the eGLM + BN, described below. For 
species without any modeled co-response terms, the eGLM, sGLM, 
and eGLM + BN all give identical results.

2.5 | Modeling environmental co-responses among 
species using a Bayesian network (eGLM + BN)

A BN represents environmental co-responses as conditional depend-
encies between the occurrence probabilities of individual species in 
a community (Staniczenko et al., 2017). Compared to some multi-
species models that include the occurrence of nonfocal species as 
additional independent variables (e.g., sGLM), the BN is applied as a 
separate, second step after environment-only models. We based the 
BN for the peat bog community on the above correlation matrix of 
environmental co-responses among species. In this application, oc-
currence probabilities from the eGLM, so-called “prior” probabilities, 
are combined with the BN to obtain “posterior” probabilities that 
reflect environmental co-responses among species.

The BN must be a directed acyclic graph, meaning that (a) directed 
edges representing conditional dependencies point from one species to 
another and (b) there is no way of returning to a species by following a 
sequence of directed edges originating from that species (Staniczenko 
et al., 2017). To satisfy these criteria, we implemented a hierarchy for 
the 54 species such that directed edges point from species higher up 
in the hierarchy to those lower down. We used a hierarchy based on 
species abundance (aggregated across the 56 locations), with directed 
edges pointing from more abundant to less abundant species. Starting 
with the transformed correlation matrix, we removed any nonzero en-
tries associated with edges that pointed from a less abundant to more 

(1)Yij∼Tj+Pj+VT
j
+Lj

(2)Yij∼Tj+Pj+VT
j
+Lj+

∑

i�≠i

Yi� j
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abundant species. The result was a BN with 65 positive and 27 negative 
conditional dependencies involving 47 of the 54 species (Figure S2). We 
used the Boolean “OR” rule to determine how prior probabilities from 
the eGLM are converted to posterior probabilities when a species has 
multiple conditional dependencies in the BN (Staniczenko et al., 2017) 
(see Figure 1 for a worked example).

2.6 | Evaluating model performance

We evaluated the effect of data availability on model performance 
by using a fraction of the empirical data in a training partition to 
calibrate models and the remaining data in a test partition to meas-
ure predictive accuracy. We considered three proportions of training 
and test partition sizes: 25% (14 of 56) training and 75% test, 50% 
(28 of 56) training and 50% test, and 75% (42 of 56) training and 
25% test. We ran 1,000 randomizations of data for each proportion. 
We measured the predictive accuracy of each model using the area 
under receiver operating characteristic curve (AUC) method, which 
measures the ability of an SDM to discriminate between known 
species presences and absences (Jiménez-Valverde, 2012). We also 
considered the true skill statistic (Allouche, Tsoar, & Kadmon, 2006) 
(TSS). We considered AUC and TSS due to their relative popularity, 
but other measures of model performance are available (Fernandes, 
Scherrer, & Guisan, 2019; Lobo, Jimenez-Valverde, & Real, 2007; 
Peterson, Papes, & Soberon, 2014). We found that TSS resulted in 
such high variability between randomizations (Figure S3) that we 
could not distinguish the performance of the different models as 
easily as with AUC.

To obtain an upper bound to model performance, we modified 
a joint species distribution model (Ovaskainen et al., 2010) (JSDM) 
that attempts to quantify a potential relationship between every pair 
of species in a community. Our JSDM-inspired approach represents 
the probability of occurrence of a species as a random variable in a 
jointly distributed set of normal random variables; that is, co-occur-
rence relationships between species are described by correlations 
between random variables. Each component of this multivariate 
distribution—one univariate normal random variable representing 
one species—is centered at the original eGLM estimate for a species; 
that is, with no correlations between random variables this approach 
reduces to a set of independent eGLMs. At the multivariate level, 
these correlations are organized into a symmetric correlation matrix 
containing values between −1 and 1. We used a 54-by-54 species 
correlation matrix to quantify the strength of potential co-responses 
between species. Very few species are totally uncorrelated, so the 
distribution of each component depends on the value of the other 
components. From a statistical standpoint, this means that we can 
draw from conditional probability theory to obtain a revised distribu-
tion for each species given the known values of the others (Bischoff 
& Feiger, 1991). In other words, the probability that a species is pres-
ent at a particular location requires knowing the occurrences of all 
other species at that location. While the original JSDM (Ovaskainen 
et al., 2010) used the correlation matrix to predict an entire set of 

components at once (essentially simulating for all species at once 
from a single random multivariate distribution), we generated occur-
rence predictions for one species at a time by combining its original 
estimate from the eGLM with its correlations with all other species 
in the community.

The amount of information contained in the JSDM-inspired ap-
proach means it is expected to produce very good predictions. But 
the large amounts of data required for parametrization compared 
to the eGLM, sGLM, and eGLM + BN means its output should be 
considered a practically unattainable upper bound. While the JSDM 
requires data on every species in the community, the sGLM and 
eGLM + BN only require data on species for which notable environ-
mental co-responses are thought to exist. Of course, the eGLM does 
not require data on any other species to make predictions on the 
occurrence of a target species. In short, the JSDM-inspired model 
treats a community as a being fully connected, while the eGLM + BN 
and the sGLM attempt to identify the most parsimonious set of in-
terspecific relationships, saving on the expense of data collection 
and computational time. The data requirements of each model are 
summarized in Table S3.

2.7 | Identifying co-responsive species whose 
occurrence patterns are strongly influenced by 
other species

We identified a group of species whose occurrence predictions were 
greatly improved by the addition of the BN. We measured the over-
all benefit the BN added to environment-only models using ΔAUC, 
which we defined as the difference in AUC scores between the eGLM 
and the eGLM + BN for an individual species when data were sepa-
rated into 50% training and 50% test partition sizes. We ran 10 sets 
of 100 randomizations, considering species with ΔAUC above 0.08 
in at least nine of the 10 sets to be “co-responsive species” (Table 
S4). We used boosted regression tree analysis (Elith, Leathwick, & 
Hastie, 2008; de Ville, 2013) to investigate the shared properties of 
co-responsive species. Boosted regression tree analysis assigned a 
“relative importance” to six species-specific properties according to 
each property's ability to explain ΔAUC values among co-respon-
sive species (see Appendix S1); relative importance values across 
all properties sum to one. We boosted 1,000 trees to measure the 
relative importance of the six properties, using a sample size of 54 
(the number of species in the community) as the input data. The six 
species-specific properties we considered were as follows: the num-
ber of incoming BN edges, the proportion of locations where species 
occurred (“rarity”), the average abundance at locations where each 
species occurred, the average eGLM AUC score, whether a species 
was a vascular plant or a moss belonging to the Sphagnum genus, 
and topological importance. Topological importance is a summary 
statistic used in graph theory to evaluate the contribution of each 
node (in this case, each species) to the overall connectedness of the 
graph; it has been used to determine keystone species in ecological 
communities (Jordán, Liu, & Davis, 2006).
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2.8 | Identifying predictor species that improve 
occurrence predictions of other species

We identified a group of “predictor species” that had a strong ef-
fect on the occurrence probabilities of co-responsive species. We 
defined predictor species as having at least one of the two proper-
ties: (a) outgoing BN edges directly connected to two or more co-
responsive species or (b) an outgoing BN edge directly connected to 
a predictor species as defined by (a), that is, these predictor species 
are one step removed from influencing two or more co-responsive 
species.

We compared this set of predictor species to umbrella (Fleishman 
et al., 2001) and indicator (Azeria et al., 2009) species to gauge the 
extent of overlap between the three groups in the peat bog com-
munity. Umbrella species are defined as those that coexist with a 
large number of other species, suggesting that they may be able 
to act as conservation surrogates to rare species (Lambert, 2011; 
Roberge & Angelstam, 2003). Here, we defined umbrella species as 
species that occurred at 42 (75%) or more of the 56 locations. This 
cutoff produced a group of only five species that can be considered 
as being exceptionally adaptable and widespread. Indicator species 
are defined as those that only occur in the presence of lots of other 
species (Podani & Csanyi, 2010). Here, we defined indicator species 
as species that, on average, co-occurred at locations with at least 20 
other species from the peat bog community. We chose 20 species 
as a cutoff because only 15 locations (26.8%) were inhabited by this 
many species.

We measured the collective ability of predictor species to improve 
model performance by computing AUC scores for the eGLM + BN with 
a partial BN containing only edges among co-responsive and predictor 
species. As with the original BN, we ran 1,000 samples with training 
partition sizes of 25%, 50%, and 75%. We then compared ΔAUC val-
ues between partial and full BNs for each co-responsive species.

3  | RESULTS

3.1 | Predicting species occurrence at specific 
locations

We found that modeling environmental co-responses using the two 
multi-species models consistently improved predictions of species 
occurrence relative to the eGLM. The eGLM + BN performed better 
than the sGLM when fewer data were used for model training, but 
the sGLM performed better when more data were used for model 
training (Figure 2). When using TSS to evaluate model performance, 
trends were similar but the difference between the models was less 
pronounced (Figure S3). Because of this result, we used AUC as our 
primary measure of model performance.

The eGLM  +  BN improved predictions (ΔAUC  >  0) for almost 
every species in the peat bog community (Table S6). We focused fur-
ther analysis on this model to better understand its increased pre-
diction accuracy with limited amounts of calibration data compared 
to the eGLM and sGLM (Figure 2). Aside from the 14 species without 

F I G U R E  1   Example workflow for calculating occurrence probabilities using a Bayesian network that represents environmental co-
responses among a community of four species. (a) “Prior” occurrence probabilities for four species at a hypothetical location are first 
obtained from an eGLM, which takes into account only environmental conditions at a specific location. (b) Correlations between the 
occurrence of each pair of species at all sampled locations (hypothetical; not shown here) are used to identify strong positive (e.g., A and C) 
and negative (e.g., B and C) environmental co-responses among species. (c) A hierarchy of species (A above B, B above C, C above D) is used 
to determine the direction of each influence, described by the graphical component of the Bayesian network. (d) The second component 
of the Bayesian network is a conditional probability table for C that specifies how the occurrence of A and B at a location affects the 
occurrence probability of C, and, below, the calculation of the “posterior” occurrence probability for C at the example location, which now 
takes into account environmental co-responses as well as abiotic conditions. Notice that the probability for C with the eGLM + BN is higher 
than with the eGLM because the probability of A (positive co-response with C) being present at the location is higher than the probability of 
B (negative co-response with C). For species with 1 incoming BN edge, there are only 2 distinct conditional probabilities.
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any incoming BN edges (by definition the BN does not modify pre-
dictions for these species), ΔAUC values were positive for all but six 
species; the remaining 40 species had an average ΔAUC value of 
0.040 ± 0.041 (mean ± SD), and only five of these species had ΔAUC 
values below 0.01.

3.2 | Characterizing co-responsive species

Of the 54 species from the peat bog community, we identified six 
species with ΔAUC values consistently above 0.08, indicating that 
the eGLM + BN was particularly effective at improving predictions 

for these species. We used boosted regression tree analysis (Elith 
et al., 2008) to investigate the shared properties of these co-re-
sponsive species. We found that rarity had the highest relative 
importance value of the six species-specific properties we consid-
ered (Table 1). This result suggests that co-responsive species are 
characterized as being rare—indeed, they occurred at an average 
of only 11.6% (six of 56) of the locations, compared to the com-
munity-wide average of 34.1% (19 of 56). We explored whether 
this finding may have arisen due to our use of an abundance-
based hierarchy to specify the direction of BN edges, but further 
analysis showed that this choice of hierarchy was not responsible 
for the result that co-responsive species are typically rare spe-
cies (see Appendix S1). Five of the six co-responsive species were 
particularly rare (occurring at less than 15% of the locations). The 
next most important property was the eGLM AUC average for the 
species, suggesting that the BN is especially beneficial when en-
vironmental variables on their own provide relatively poor predic-
tions of species' occurrences. The six co-responsive species had 
an average eGLM AUC of 0.665 ± 0.068, compared to the overall 
average of 0.710 ± 0.105.

3.3 | Characterizing predictor species

We identified eight predictor species that had a strong effect on the 
occurrence probabilities of co-responsive species. Two of the pre-
dictor species had multiple outgoing BN edges pointing directly to 
co-responsive species, while the other six indirectly influenced co-
responsive species through BN edges with the first type of predictor 

F I G U R E  2   Performance of the eGLM, sGLM, and eGLM + BN measured by AUC at three training partition sizes. The sGLM and 
eGLM + BN both outperform the eGLM at all partition sizes (1,000 random partitions of the 56 locations for each combination of training 
partition size and model used). With 25% training data, the eGLM + BN yielded an average AUC score of 0.698, compared to the sGLM 
average of 0.675 and the eGLM average of 0.668. With 50% training data, the eGLM + BN yielded an average AUC score of 0.741, compared 
to the sGLM average of 0.730 and the eGLM average of 0.711. With 75% training data, the eGLM + BN yielded an average AUC score of 
0.772, compared to the sGLM average of 0.775 and the eGLM average of 0.754. As expected, AUC scores for all models increased in line 
with the amount of data used for model training. With an unrealistic amount of data available for prediction, we observed AUC scores of 
0.848 ± 0.042, 0.844 ± 0.032, and 0.817 ± 0.030 at 75%, 50%, and 25% training, respectively (mean ± SD).
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TA B L E  1   Relative importance of six properties associated with 
species according to boosted regression tree analysis

Property
Relative 
importance (%)

Rarity 34.9

Average eGLM AUC score with 50% training 
data

24.2

Average abundance 18.5

Number of incoming BN edges 15.8

Topological importance 6.1

Sphagnum moss or vascular plant 0.5

Note: Relative importance values sum to 1 and are based on the 
proportion of decision trees (our boosted regression tree model 
involves the boosting of 1,000 decision trees to model how ΔAUC 
varies in response to changes in the six predictor variables below) that 
include each predictor variable.
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species. (One of the co-responsive species, Vaccinium vitis-idea, ac-
tually met the criteria for a predictor species by having two outgo-
ing BN edges pointing toward other co-responsive species, but we 
chose to consider it only as a co-responsive species in subsequent 
analysis). Predictor species generally had high eGLM AUC scores 
and low ΔAUC values. The average eGLM AUC score for predic-
tor species was 0.754 ± 0.123 with 50% training data, higher than 
the overall average of 0.710 ± 0.105. Predictor species had an aver-
age ΔAUC value of 0.009 ± 0.016, lower than the overall average 
of 0.029 ± 0.040 and much lower than the co-responsive species, 
which had an average of 0.114 ± 0.020. Taken together, these re-
sults suggest that predictor species are relatively insensitive to the 
presence or absence of other species and their occurrences are well 
predicted by abiotic conditions alone. Predictor species were more 
common than usual but not especially widespread; on average, each 
predictor species occurred at 45.1% (25 of 56) locations.

Predictor species appear to be a distinct group from umbrella 
and indicator species (Figure 3), making them a useful new category 
of conservation surrogate. In addition to the eight predictor species 
we identified, we found five umbrella species and seven indicator 
species in the peat bog community. Only one species from each 
group was also classified as a predictor species in our community, 
indicating that they are almost entirely distinct categories of conser-
vation surrogate.

3.4 | Analyzing a partial Bayesian network of co-
responsive and predictor species

We investigated the performance of a BN containing only edges 
among co-responsive and predictor species (Figure 4). The partial BN 
was highly connected with multiple pathways of influence between 
species. For example, Sphagnum fallax (a predictor species) had only 
one edge pointing directly to a co-responsive species, yet it indirectly 
influenced five of the six co-responsive species. The partial BN gener-
ally yielded better AUC scores than the original BN at all three training 
partition sizes (Table S5), despite the partial BN retaining only 19 (12 
positive and seven negative) of the 92 edges in the original BN (in-
cluding only nine of 17 edges pointing directly to co-responsive spe-
cies). Compared to the original BN, which produced ΔAUC values of 
0.117 ± 0.065 (mean ± SD) for the co-responsive species, the partial 
BN produced ΔAUC values of 0.147 ± 0.068 (Table S5). Compared to 
the original BN, the reduced nature of the partial BN made species 
occurrence probabilities much easier to compute, while also lowering 
variability and noise caused by unnecessary BN edges.

4  | DISCUSSION

We have shown that modeling environmental co-responses among 
species from a European peat bog community improved the predic-
tions of rare species occurrence. Based on a BN for the community, 
we identified two groups of species: co-responsive species that are 

typically rare and whose occurrence depends on the presence or ab-
sence of other species in the community, and predictor species that 
are more common and can be used to improve predictions of rare 
species occurrence. We analyzed a partial BN of only co-responsive 
and predictor species and found that this highly connected subnet-
work accounts for almost all of the performance of the original BN. 
This finding suggests that only a small fraction of species and inter-
specific relationships, particularly those involving predictor species, 
need to be sampled to improve predictions for multiple rare species 
in an ecological community.

4.1 | Comparison of models

Notably, AUC scores for the eGLM  +  BN with 25% training data 
were similar to AUC scores for the eGLM with 50% training data 
(this trend was also apparent when comparing the eGLM + BN with 
50% training data to the eGLM with 75% training data). This result 
suggests that using a BN to predict species occurrences can dra-
matically reduce the amount of data collection required to calibrate 
models (although verifying the generality of this result would require 
testing our approach with a larger data set with more locations). If 
information on environmental co-responses among species is avail-
able or can be estimated, then the eGLM + BN represents a viable 
method for improving the accuracy of species occurrence and com-
munity composition predictions, while adding minimal effort to the 
standard approach of environment-only models.

The sGLM can also be used to reduce data collection, but it lacks 
some advantages of the eGLM + BN. The difference between the 
sGLM and eGLM + BN is most prominent with rare species, whose 
environment-only model parameters may be especially unreliable 
due to the difficulty in finding locations at which they are known to 
be present. The sGLM is likely more sensitive to this unreliability be-
cause the effects of other species on the focal species are modeled 
as additional variables in a GLM, meaning that the benefits afforded 
by this extra information may remain overwhelmed by the baseline 
poor performance resulting from the environmental variables. By 
contrast, the eGLM + BN separates the modeling into an environ-
ment component (the eGLM part) and an interspecific component 
(the BN part)—for rare species and limited data, the information in 
the BN component can dominate the unreliable environment com-
ponent, leading to comparatively better predictions.

Although the improved predictions produced by the 
eGLM  +  BN and sGLM both result from modeling interspecific 
relationships, each model may be better suited to describing dif-
ferent types of interspecific relationship. Some pairs of species 
may simply occur in a similar set of locations due to shared habitat 
preferences (or in a mutually exclusive manner due to different 
habitat preferences) in ways that are not described by the particu-
lar environmental variables included in the eGLM. In other words, 
we could attribute some predictive improvement resulting from 
multi-species models to more selective, hard-to-identify habitat 
preferences that are shared between species. The sGLM, which 
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models the presences of other species in a similar way to environ-
mental variables, should perform better when the set of nonfocal 
species used in the model are known to have shared habitat pref-
erences. Conversely, some co-occurrence relationships may be a 
result of biotic interactions, such as mutualism, competition, or 
commensalism. Because the effects of biotic interactions are less 
tied to environmental variables than shared habitat preferences, 
the eGLM + BN should perform better in these cases.

The exceptional performance of the JSDM-inspired approach was 
unsurprising given the amount of information that can be incorporated 
in this model. However, to achieve this level of performance, a lot of 
empirical data is required to parameterize a complete and fully quan-
tified correlation matrix. By contrast, the sGLM only requires knowl-
edge of which species affect the presence of a focal species, while the 
eGLM + BN only requires knowledge on the presence of important 
interspecific relationships and the sign—positive or negative—of their 
effects (see Table S3 for a summary of data requirements for each 

model). Although using a Bayesian network with our simple assump-
tions about conditional dependencies can sometimes lead to unreal-
istic conditional probabilities (i.e., a probability of occurrence of 1 or 0 
given the presence or absence of another species), such assumptions 
are unavoidable in a model that seeks to use as little data as possible. 
In addition to the potential for the eGLM + BN to incorporate greater 
biological realism (which would hopefully reduce the frequency of 
these extreme predictions), discussed below, we argue that some lack 
of realism is permissible from a practical standpoint because it results 
in improved predictions compared to the eGLM. In many ways, it is 
remarkable that the eGLM + BN and sGLM get as close as they do 
to the performance of the JSDM-inspired approach. Overall, we con-
sider the models in this study as offering a range of options to inform 
conservation decision-making.

4.2 | Interpreting environmental co-responses 
among species

Sphagnum mosses are essential to the makeup of peat bog habitats 
because of the role species in this genus have as ecosystem engi-
neers (van Breemen, 1995). These mosses alter the composition of 
the soil in which they grow to reduce competition with other plants 
and increase their intake of nutrients and sunlight. This ability to 
modify the soil content of peat bogs makes Sphagnum mosses prime 
candidates for predictor species. Indeed, even though Sphagnum 
mosses made up only 37.0% of species from the peat bog commu-
nity, six of the eight predictor species we identified were Sphagnum 
mosses, including Sphagnum fuscum, which is a dominant competitor 
of vascular plants (Svensson, 1995).

Although boosted regression tree analysis did not identify a 
strong relationship between Sphagnum classification and ΔAUC, 
Sphagnum mosses had an average ΔAUC of 0.048 ± 0.040 com-
pared to the non-Sphagnum average of 0.035  ±  0.039, and two 
of the six co-responsive species we identified were Sphagnum 
mosses. These less common Sphagnum mosses often have very 
selective microhabitat preferences (Johnson et al., 2014), and to 

F I G U R E  3   Venn diagram summarizing the overlap between 
umbrella, indicator, and predictor species. Notice that each group 
has a similar number of species but very few species belong to 
more than one group.

F I G U R E  4   Graphical component of 
the partial Bayesian network that only 
includes strong interspecific relationships 
between predictor species (ovals) and 
co-responsive species (rectangles). Solid 
lines represent positive co-responses, 
and dashed lines represent negative co-
responses. Sphagnum mosses are shaded 
gray.
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satisfy these preferences, they modify their habitats. But because 
many other plants cannot grow in the anoxic, low-nutrient soil fa-
vored by Sphagnum mosses, the presence of certain vascular plant 
species can be used as a signal for the absence of rare Sphagnum 
mosses.

Different Sphagnum species can also be very competitive, espe-
cially given the close proximity in which they live, suggesting that 
one Sphagnum species would be likely to have an effect on the pres-
ence or absence of another (Robroek, Limpens, Breeuwer, Crushell, 
& Schouten, 2007). Because Sphagnum mosses dominate and can 
even change the conditions of their ecosystem, the composition of 
Sphagnum species in peat bog communities can have a significant 
effect on the bog habitats where they live. In addition, different 
Sphagnum species prefer to occupy different hydrological gradients 
in bog habitats, so finding pairs of species that commonly occur to-
gether could suggest an environmental co-response related to this 
hydrological gradient (Robroek et al., 2007).

4.3 | Limitations of the data set for testing 
our approach

The peat bog data set used in this study comprises data for 54 
plant species at 56 peat bog locations, which is below the typi-
cal size used to train and test multi-species distribution models. 
Conventional data sets usually involve significantly more sites 
than species, around ten times as many locations as there are 
species (Wisz et al., 2008), and lacking such amounts of data can 
sometimes result in low model performance, especially for mod-
els based on logistic regression (Stockwell & Peterson, 2002). In 
addition, AUC and TSS are both sensitive to random partitioning 
with relatively few locations (Lobo et al., 2007; Somodi, Lepesi, & 
Botta-Dukát, 2017), something we observed with TSS, in particu-
lar. Nevertheless, at the outset we outlined the three properties 
that made the peat bog data set especially valuable for our analysis 
and we intend to use our initial results to modify our approach for 
larger, albeit less well-resolved data sets.

We simplified the available species abundance data to a 
measure of binary presence or absence to confirm that the 
eGLM  +  BN was effective with this more widely available for-
mat of species occurrence data. As with maximum entropy-based 
models (Filz, Schmitt, & Engler, 2013), adapting the eGLM + BN 
to work with abundance data, while not as straightforward 
(Hongmei, Zheng, & Zhiwei, 2005), could provide more insight 
into its relative performance, as well as improving its versatility 
and predictive power.

4.4 | Adapting our approach to other ecological 
communities and for conservation

For other ecological communities, improving occurrence predic-
tions using our approach would start by selecting a target species 

or set of species of interest. The next step is to determine which 
interspecific relationships involving the target species are worth 
modeling. We suggest two possible options: modeling environ-
mental co-responses and modeling biotic interactions. As we did 
here, positive and negative relationships among species could 
be measured or estimated to identify a set of candidate species 
whose occurrences are strongly correlated with the target spe-
cies. Alternatively, a set of candidate species could be developed 
based on which species have biotic interactions (e.g., competitive, 
facilitative) with the target species (Staniczenko et al., 2017). The 
set of candidate species from either option could then be refined 
by prioritizing species that fit the criteria for predictor species 
(i.e., species that are relatively common and insensitive to the 
presence of other species in the community) for inclusion in a BN. 
Environment-only models for these predictor and target species 
could then be combined with the streamlined BN to generate ac-
curate predictions for the target species.

Umbrella species are characterized by their occurrence in a 
wide range of habitats (Azeria et al., 2009) and are used as con-
servation surrogates because their distributions often overlap 
with other species of interest (Ozaki et al., 2006). However, um-
brella species are often so widespread that relying on them to 
identify occurrences of rare species would lead to many false 
positives (Das & Dey, 2006). Indicator species are characterized 
by their occurrence in areas with high species richness (Andelman 
& Fagan, 2000) and are used as conservation surrogates because 
their presence highlights locations with suitable conditions for 
a wide variety of species (Siddig, Ellison, Ochs, Villar-Leeman, & 
Lau, 2016). However, their presence is not guaranteed to inform 
the presence of rare species, which may have very different hab-
itat preferences from more common species in the community 
(Spitale, 2012). Umbrella and indicator species offer a broad over-
view of ecosystem health and functioning to conservation prac-
titioners (Halme, Mönkkönen, Kotiaho, Ylisirniö, & Markkanen, 
2009; Thorne, Cameron, & Quinn, 2006). As with all conservation 
surrogates, some initial analysis is necessary to identify these 
groups in a new ecological community (Araújo et al., 2014), but 
once identified, each group offers distinct benefits for particular 
aims. Predictor species, which are defined by their relationship to 
rare species, offer a more detailed and finely resolved perspective 
that can complement umbrella and indicator species as part of a 
comprehensive conservation strategy. We hope that in the near 
future conservationists could use a model like the eGLM  +  BN 
to predict more accurately the geographical distributions of rare 
species and therefore protect more effectively Earth's declining 
biodiversity.
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