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Sepsis remains a major medical challenge, for which, apart from improvements in 
supportive care, treatment has not relevantly changed over the last few decades. 
Vasodilation and vascular leakage play a pivotal role in the development of septic shock, 
with vascular leakage being caused by disrupted endothelial integrity. Adrenomedullin 
(ADM), a free circulating peptide involved in regulation of endothelial barrier function and 
vascular tone, is implicated in the pathophysiology of sepsis. ADM levels are increased 
during sepsis, and correlate with extent of vasodilation, as well as with disease severity 
and mortality. In vitro and preclinical in vivo data show that administration of ADM exerts 
anti-inflammatory, antimicrobial, and protective effects on endothelial barrier function 
during sepsis, but other work suggests that it may also decrease blood pressure, which 
could be detrimental for patients with septic shock. Work has been carried out to negate 
ADMs putative negative effects, while preserving or even potentiating its beneficial 
actions. Preclinical studies have demonstrated that the use of antibodies that bind to the 
N-terminus of ADM results in an overall increase of circulating ADM levels and improves 
sepsis outcome. Similar beneficial effects were obtained using coadministration of ADM 
and ADM-binding protein-1. It is hypothesized that the mechanism behind the beneficial 
effects of ADM binding involves prolongation of its half-life and a shift of ADM from the 
interstitium to the circulation. This in turn results in increased ADM activity in the blood 
compartment, where it exerts beneficial endothelial barrier-stabilizing effects, whereas its 
detrimental vasodilatory effects in the interstitium are reduced. Up till now, in vivo data 
on ADM-targeted treatments in humans are lacking; however, the first study in septic 
patients with an N-terminus antibody (Adrecizumab) is currently being conducted.
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iNTRODUCTiON

Sepsis remains a major health problem in the twenty-first century, with an increasing incidence 
and high mortality in intensive care units worldwide (1, 2). Sepsis is an inflammatory syndrome in 
which a dysregulated host response to infection results in life-threatening organ dysfunction (3). Its 
most severe form, septic shock, is defined by increased lactate levels and vasopressor requirement to 
maintain sufficient blood pressure and organ perfusion, despite adequate fluid resuscitation (3). The 
sepsis syndrome is characterized by a very complex, multilayered pathogenesis, that involves many 
harmful and protective pathways (4, 5). The vascular endothelium is a protective barrier involved 
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in the maintenance of vessel integrity that controls diffusion 
of molecules between the intravascular and interstitial space. 
Endothelial dysfunction is one of the major hallmarks of sepsis 
(6). The profound inflammatory response observed in sepsis 
plays a pivotal role in this phenomenon, which is accompanied 
by endothelial cell (EC) death and loss of barrier integrity (5, 7, 8). 
Underlying processes of loss of barrier integrity include increased 
actomyosin contraction (also known as “stress-fiber formation”) 
in response to phosphorylation of myosin light chains by myosin 
light chain kinase (MLCK) (9). Loss of barrier integrity leads 
to extravascular accumulation of fluids and molecules, causing 
edema, a decreased blood pressure and subsequent organ failure. 
A considerable percentage of mortality occurs in the early phase 
of sepsis, when multiorgan failure develops despite supportive 
therapies. Although the general knowledge of the pathophysiology 
of sepsis has improved, this has not translated to a single effective 
adjuvant therapy. The lack of clinical trials that show a therapeutic 
benefit may partially be explained by large patient heterogeneity, 
but also because of the complexity of the pathophysiology (8, 10). 
Thus, there is still an urgent and unmet need for new therapeutic 
options, and interventions that may improve the endothelial bar-
rier function and vascular tone are an attractive category (11).  
A key hormone involved in regulation of the endothelium barrier 
and vascular tone is adrenomedullin (ADM). In this review, we 
describe the general vascular properties of ADM and provide 
an overview of the current understanding of the role of ADM in 
sepsis and septic shock. Furthermore, we discuss the potential of 
ADM and ADM-targeted treatments for sepsis patients.

ADReNOMeDULLiN

Adrenomedullin was first discovered in human pheochromocy-
toma tissue in 1993 (12). Although ADMs initially discovered 
effects were vasodilation and blood pressure lowering effects 
(12–14), later work demonstrated that ADM exerts a multitude 
of biological actions, in both health and disease (15, 16). ADM 
is a 52 amino acid peptide belonging to the calcitonin gene-
related peptide family (17). In humans, the gene encoding ADM 
is located on chromosome 11 and consists of 4 exons and 3 
introns (18). The gene is transcribed into a pre-messenger RNA 
(mRNA) molecule, containing four exons and three introns. 
The removal of all introns results in the formation of a mature 
mRNA molecule (form A) which is eventually translated and 
processed into ADM as detailed below. However, if the third 
intron of this pre-mRNA molecule is not removed, this results in 
the formation of a longer mRNA molecule (form B). Due to the 
presence of a stop codon in this intron, a smaller prohormone is 
produced that does not result in the production of ADM (19). 
It remains unknown which factors regulate the splicing of this 
third intron and whether this is altered during sepsis. Translation 
of the form A mRNA molecule leads to a 185 amino acid long 
preprohormone (prepro-ADM) that undergoes a multistep cleav-
age process. First, a 21-residue N-terminal signaling peptide is 
cleaved of prepro-ADM, generating a 164 amino acid pro-ADM 
peptide. Next, pro-ADM is cleaved into pro-ADM N-terminal 20 
peptide (PAMP) (20–22), midregional pro-ADM (MR-proADM) 
(23), adrenotensin (24), and a glycine-extended 53-amino acid 

peptide, the latter of which is subsequently converted to the 52 
amino acid mature ADM by enzymatic amidation to an extent, 
which may vary depending on the pathology and other factors 
(25). Besides ADM, several of the other cleavage products are 
also vasoactive (i.e., PAMP exerts vasodilatory effects, whereas 
adrenotensin is vasoconstrictive). ADM is widely expressed in 
virtually all human tissues. The highest concentrations of the 
peptide were found in the adrenal medullae, cardiac atria, and 
lungs (26, 27), whereas the highest concentrations of ADM 
mRNA were measured in the lungs, cardiac atria, aorta, and 
mesenteric arteries (28). Many cells are capable of producing 
ADM, including ECs, vascular smooth muscle cells (VSMCs), 
monocytes, renal parenchymal cells, and macrophages (29–35). 
ADM exerts its effects by ligation of receptor complexes consisting 
of the calcitonin receptor-like receptor (CRLR) combined with 
a specific receptor activity-modifying protein (RAMP) (36, 37). 
The ADM1 and ADM2 receptors consist of the CRLR combined 
with RAMP2 and RAMP3, respectively, whereas the combination 
of CRLR and RAMP1 forms the CGRP (calcitonin gene-related 
protein) receptor. Most functional studies do not specify which 
receptor is specifically activated and are therefore referred to as 
“ADM receptors.” Analogous to the ubiquitous expression of the 
ADM peptide, ADM receptors have also been detected in vari-
ous tissues and organs, including blood vessels, skeletal muscles, 
heart, lungs, and nerve tissue (38–41). On a cellular level, ADM 
receptors are expressed on many different cell types, including 
ECs, VSMCs, cardiomyocytes, macrophages, and dendritic cells 
(33, 42–44). Interaction of ADM with its receptor occurs through 
its C-terminal moiety (45), and the N-terminal part of ADM is 
thought to be only of minor importance for its agonist function 
(46). Circulating ADM has a half-life of approximately 22 min 
(47) and is rapidly degraded from its N-terminus by proteases 
(48–50). Moreover, it has been reported that the three CRLR/
RAMP receptors are internalized upon stimulation together with 
ADM, and thus function as clearance receptors (51, 52). On a 
more organ-specific level, the lungs appear to be involved as a site 
of clearance (53, 54).

THe ROLe OF ADM iN THe ReGULATiON 
OF BLOOD PReSSURe

As mentioned before, the first discovered physiological effect 
of ADM was vasodilation, leading to hypotension and reduced 
peripheral resistance (12–14). Over the following years, many 
studies have confirmed these results. In vitro studies demon-
strated potent vasodilatory effects of ADM on isolated blood 
vessels (42, 55) and in isolated organs (56), and in  vivo stud-
ies showed that direct infusion of ADM resulted in decreased 
blood pressure and induced a compensatory increase of heart 
rate, endogenous noradrenaline, and renin concentrations in 
various mammalian species (including humans), which coin-
cided with increased cardiac output (CO) (14, 57–62). These 
vasodilatory effects of ADM are mediated through binding 
with its receptors present on vascular ECs and VSMCs (42). It 
is unknown, although, how both types of interaction contribute 
quantitatively under physiological and pathophysiological 
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FiGURe 1 | ADM causes vasodilation through endothelium-dependent and endothelium-independent pathways. In an endothelium-independent way, binding of 
ADM with its receptors on VSMCs increases intracellular cAMP. This leads to subsequent activation PKA, which inhibits smooth muscle cell contraction in several 
ways. First, PKA opens VSMC potassium channels, causing potassium efflux, leading to membrane potential hyperpolarization and closing of voltage gated calcium 
channels, reducing intracellular calcium content. Other effects of PKA include inhibition of sarcoplasmatic calcium channel and MLCK. The latter of which is essential 
for actomyosin contraction. Several endothelium-dependent pathways have been identified. This includes a COX/PGI2 pathway that activates the cAMP pathway in 
VSMCs. Other involved endothelium-dependent pathways are PI3k/Akt and PLC/IP3, which both activate eNOS which leads to subsequently activation of a cGMP/
cGMP-dependent kinase pathway in VSMCs. This pathway leads to activation of MLCP which “inactivates” the myosin light chain, and again lowers levels of 
calcium by inhibiting sarcoplasmatic calcium channels. Abbreviations: AC, adenylyl cyclase; AKT, protein kinase B; ATP, adenosine triphosphate; Ca2+, calcium; 
cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; COX-1, cyclooxygenase-1; eNOS; endothelial nitric oxide synthase; GTP, 
guanosine triphosphate; IP3, inositol triphosphate; MLCK, myosin light chain kinase; MLCP, myosin light chain phosphatase; NO, nitric oxide; PGI2, prostacyclin; 
PI3K, phosphoinositide 3-kinase; PIP2, phosphatidylinositol-4,5-bisphosphate; PKA, protein kinase A; PLC, phospholipase C; SR, sarcoplasmatic reticulum; VSMC, 
vascular smooth muscle cell; ADM, adrenomedullin.
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conditions to vasodilation. Several signaling pathways have 
been described through which ADM causes vasodilation, both 
endothelium dependent and endothelium independent (55), 
which are depicted in Figure 1. In an endothelium-independent 
way, binding of ADM with its receptors on VSMCs increases 
intracellular cyclic adenosine monophosphate (cAMP) (63, 
64), which subsequently activates protein kinase A (PKA, also 
known as cAMP-dependent kinase) (42). PKA inhibits smooth 
muscle cell contraction in several ways. For example, it induces 
the opening of vascular potassium channels, causing potassium 
efflux, leading to subsequent membrane potential hyperpolariza-
tion and closing of voltage gated calcium channels, ultimately 
reducing intracellular calcium content (42, 65–67). Of note, 
potassium channel activation is known to play an important 
role in the blunted norepinephrine responsiveness observed in 
sepsis (68), and potassium channel blockers have been shown 
to restore norepinephrine sensitivity in a human in vivo model 
of systemic inflammation (69). Other effects of PKA include 
inhibition of sarcoplasmatic calcium channels and MLCK. The 
endothelium-dependent mechanisms through which ADM 
induces vasodilation are the inositol-1,4,5-triphosphate system 

and the phosphatidylinositol-4,5-bisphosphate 3-kinase-protein 
kinase B (PI3K/Akt) pathways. Both of these pathways stimulate 
endothelial nitric oxide (NO) synthase (eNOS), leading to NO 
release. In turn, NO activates cyclic guanosine monophosphatase 
(cGMP) in VSMCs, resulting in activation of protein kinase G, 
ultimately leading to vasodilation by inhibition of sarcoplasmatic 
calcium channels and activation of myosin light chain phos-
phatase (69, 70) and vasodilation. Prostaglandins have also been 
linked to ADM-induced vasodilation, through the endothelium-
dependent cyclooxygenase-1 pathway (42, 71), although results 
are inconsistent (66), which may be due to differences between 
animals and the origin of the vessels studied. Finally, it has been 
suggested that ADM is involved in the central regulation of 
blood pressure, although these data are equivocal. The presence 
of ADM has been demonstrated in the hypothalamus (72), and 
some studies have reported that microinjections of ADM into 
the hypothalamic paraventricular nucleus elicited a rapid, short 
decrease in blood pressure (73, 74). Conversely, both infusion of 
ADM into the intracerebral fluid and microinjections of ADM 
in the rostral ventrolateral medulla have been shown to increase 
blood pressure in animal studies (75, 76).
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ADM ReGULATeS eNDOTHeLiAL 
BARRieR FUNCTiON

The vascular endothelium comprises the inner layer of all blood 
vessels. This single-cell vascular barrier separates the intravascu-
lar from the interstitial space and regulates diffusion of molecules 
and other substrates through paracellular and transcellular trans-
port (77, 78). Additional roles of the endothelium include regu-
lation of vessel tone, vascular wall permeability, inflammation, 
hemostasis, and angiogenesis (6, 78, 79). Inflammation leads to 
barrier compromise at the level of the endothelial cell–cell junc-
tion, causing the boundary between intravascular and interstitial 
spaces to become more porous, subsequently allowing for leakage 
of inflammatory mediators (e.g., cytokines and prostaglandins) 
to the interstitium and leukocyte infiltration into the tissues (6). 
This “leaky barrier” is part of the physiological response to infec-
tion, as it is required to combat pathogens in tissues. However, 
the excessive endothelial barrier disruption observed in sepsis 
also results in large amounts of fluid leaking from the blood into 
the tissues, where it accumulates and forms interstitial edema 
(5, 80). This is a major contributor to the development of shock. 
Underlying mechanisms of endothelial barrier compromise 
include rearrangement of the actin cytoskeleton, with cortical 
actin bundles promoting adherens junction (AJ) formation and 
EC junction tightening, whereas the formation of stress fibers 
and phosphorylation of the myosin light chain promotes junction 
dissociation (81).

Adrenomedullin is essential for endothelial barrier develop-
ment and barrier stability. In knockout models where crucial 
parts of the ADM–ADM receptor signaling pathway were 
deleted, development of lethal hydrops fetalis was noted, indi-
cating inadequate development of the endothelial barrier (82, 
83). Moreover, in conditional knockout models, in which either 
ADM production by ECs, or formation of the RAMP2 part of 
the ADM1 receptor was abolished, increased vascular perme-
ability and systemic edema formation was observed (84, 85). 
This coincided with altered expression of the small GTPases 
Rac1 (Ras-related C3 botulinum toxin substrate 1) and RhoA 
(Ras homolog gene family, member A), which are involved in 
the formation of cortical actin and stress fibers; concentration of 
the protective GTPase Rac1 were reduced whereas levels of the 
detrimental RhoA GTPase were increased (85).

Additional preclinical work has elucidated underlying 
intracellular signaling pathways involved in the endothelial 
barrier-stabilizing effects of ADM. In cultured human umbili-
cal vein endothelial cell cultures and porcine pulmonary artery 
endothelial cell monolayers, pretreatment with ADM reduced 
endothelial hyperpermeability elicited by hydrogen peroxide, 
thrombin, or hemolysin A by attenuating myosin light chain 
phosphorylation, stress-fiber formation and subsequent gap 
formation through a cAMP-dependent mechanism (86). 
Moreover, ADM pretreatment diminished H2O2-induced 
edema formation in isolated perfused rabbit lungs, which 
was accompanied by increased cAMP levels in the lung 
perfusate (86). Other preclinical work demonstrated similar 
effects; both treatment with ADM before and following an 
inflammatory insult reduced endothelial hyperpermeability 

in Staphylococcus aureus α-toxin-exposed isolated rat ileum, 
again by reducing endothelial myosin light chain phosphoryla-
tion and EC contraction (87). In cortactin-deficient HMEC-1 
(human microvascular EC) monolayers, which show increased 
permeability, ADM administration reversed myosin light 
chain phosphorylation and stress-fiber formation through 
ADM-induced Rap1 activation and Rock1 inhibition (88). In 
line, ADM rescued the increase in endothelial permeability in 
cortactin knockout mice (88). Similar effects were observed in 
lymphatic ECs, in which ADM stimulation caused a reorganiza-
tion of the tight junction protein ZO-1 (zonula occludens-1) 
and VE-cadherin in the plasma membrane, thereby tightening 
the membrane (89). Other experiments demonstrated barrier 
disrupting effects of ADM blockade through functional inhibi-
tion of the VE-cadherin/β-catenin complex (90). Underlying 
mechanisms included induction of Src-dependent VE-cadherin 
phosphorylation, which prevented binding of β-catenin to the 
cytoplasmic tail of VE-cadherin, inhibiting cell barrier function. 
Furthermore, β-catenin phosphorylation was induced, which 
targets β-catenin for ubiquitination and proteasomal degrada-
tion. Finally, possible involvement of the PI3K/Akt pathway was 
suggested (90). These data emphasize that the ADM system is 
essential for endothelial barrier stabilization.

Figure 2 summarizes the mechanisms through which ADM 
may stabilize the endothelial barrier. Note that the cAMP/PKA 
pathway once again plays an important role. Ligation of ADM 
with its receptors elicits a strong increase in intracellular cAMP in 
ECs, which is thought to be one of the most important signaling 
molecules involved in stabilization of the endothelial barrier (69, 
91). This results in subsequent activation of PKA and inhibition 
of Rho GTPase (i.e., RhoA; Ras homolog gene family, member 
A). Independent of PKA, cAMP leads to activation of Rap1 by 
the Rap1 guanine-exchange factor EPAC (81, 92). Rap1 is thought 
to enhance EC barrier function in multiple ways, including 
inhibition of RhoA which reduces actomyosin-induced tension 
on AJs (81). Moreover, Rap1 promotes junctional adhesiveness 
via Afadin, a promoter of junctional tightening by mediating 
attachment of AJs and the actin cytoskeleton (81). Finally, both 
PKA and Rap1 activate Rac1, which results in enforcement of 
AJs and strengthening of the cortical actin cytoskeleton (93) and 
inhibition of RhoA (93). Another relevant mechanism through 
which ADM exerts barrier-enhancing effects is by stabilizing the 
VE-cadherin/β-catenin complex at the cell–cell junctions, pos-
sibly mediated through the PI3K/Akt pathway.

MiSCeLLANeOUS eFFeCTS OF ADM 
ReLevANT FOR SePSiS

The above described data suggest potential utilization of 
the ADM system for the treatment of diseases with marked 
endothelial barrier dysfunction, of which septic shock is a prime 
example, although these beneficial properties might be offset 
by vasodilatory effects, an issue we will discuss later on in this 
review. Furthermore, next to effects on vascular tone and the 
endothelial barrier, ADM also has other properties relevant in 
the context of sepsis, including immunoregulatory, antimicrobial 
and cardioprotective effects.
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FiGURe 2 | Several pathways have been identified through which ADM exerts endothelial barrier-stabilizing effects. Ligation of ADM with its receptors elicits a 
strong increase in intracellular cAMP in endothelial cells (ECs), which subsequently activates PKA and, through activation of EPAC, Rap1. PKA and Rap1 inhibit 
RhoA/ROCK, which results in reduced myosin light chain phosphorylation, decreasing actomyosin contraction (i.e., the “pulling forces” exerted on the EC junctions). 
Rap1 also promotes junctional adhesiveness via Afadin, strengthening junctional tightening by mediating attachment of AJs and the actin cytoskeleton. PKA also 
increases cortical actin formation through Rac1, which promotes cell–cell stability and cell–matrix adhesion by its connection to tight and AJs. Moreover, Rac1 is 
also able to inhibit RhoA, decreasing myosin light chain phosphorylation and actomyosin contraction, similar to PKA and Rap1. Ligation of ADM with its receptor is 
also thought to prevent phosphorylation of VE-cadherin and β-catenin complexes (which would be detrimental for barrier function because phosphorylation of 
VE-cadherin prevents binding of β-catenin to the cytoplasmic tail of VE-cadherin, and because phosphorylation of β-catenin targets β-catenin for ubiquination and 
proteasomal degradation), through the PI3K/Akt pathway. Abbreviations: AC, adenylyl cyclase; ADM, adrenomedullin; AJ, adherens junction; ATP, adenosine 
triphosphate; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; EPAC, exchange factor directly activated by cAMP; MLCK, 
myosin light chain kinase; MLCP, myosin light chain phosphatase; PI3K/Akt, phosphatidylinositol-4,5-bisphosphate 3-kinase-protein kinase B; PKA, protein kinase 
A; Rac, Ras-related C3 botulinum toxin substrate 1; Rap1, Ras-related protein-1; ROCK, rho-associated protein kinase; TJ, tight junction; VE-cadherin, vascular 
endothelial-cadherin; ZO, zonula occludens.
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immunoregulatory effects
The immune system plays a pivotal role in the pathogenesis of 
sepsis (4, 8). Therefore, it is relevant to discuss the potential 
immunoregulatory effects of ADM. Several in  vitro studies 
have demonstrated that ADM exerts anti-inflammatory effects, 
and we have summarized the involved pathways in Figure 3. 
One of the first studies conducted on this matter, investigated 
the effects of ADM in lipopolysaccharide (LPS) stimulated rat 
alveolar macrophages. Interestingly, ADM significantly inhib-
ited cytokine-induced neutrophil chemoattractant (CINC/
CXCL-1) release, possibly through a cAMP-dependent mecha-
nism (94). Other experiments in Swiss 3T3 murine fibroblasts 
demonstrated that ADM inhibits interleukin-1 beta-induced 
tumor necrosis factor alpha (TNFα) secretion and confirmed 
the major role of the cAMP–PKA pathway: a cAMP-dependent 
protein kinase inhibitor was able to negate ADMs inhibitory 
effects (95). Similar effects of ADM were observed in microglia 
upon stimulation with LPS, inhibiting both TNFα and interleu-
kin (IL)-6 (96), as well as in LPS-stimulated murine RAW264.7 
macrophages and rat Kupffer cells (97). In vivo experiments have 

confirmed these in vitro studies. Coadministration of ADM and 
ADM-binding protein-1 (AMBP-1) (a protective peptide with 
putative ADM-enhancing effects) in a rat endotoxemia model 
attenuated the TNFα response through a mechanism that 
involves peroxisome proliferator-activated receptor-gamma 
(98). Interestingly, ADM has also been a subject of interest 
for the treatment of inflammatory bowel disease. Intracolonic 
administration of ADM resulted in a dose dependent and 
significant reduction of the size of the ulcerative lesions in a 
model of acetic acid-induced colitis, and reduced tissue IL-6 
levels (99). Subsequent studies have confirmed these results. 
For instance, lower levels of interferon-γ (IFN-γ) and TNFα 
were observed in rodent models of dextran sulfate sodium-
induced colitis (100, 101). A case series on seven ulcerative 
colitis patients that received intravenous infusion of ADM for 
8 h daily over a period of 2 weeks reported improved disease 
activity index scores, and substantial improvement of ulcers 
upon endoscopic examination (102). No serious adverse effects 
were observed, apart from minor effects on blood pressure and 
heart rate.
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FiGURe 3 | Intracellular mechanisms behind ADM-induced anti-inflammatory 
effects. Stimulation of the ADM receptors results in increased intracellular 
cAMP concentrations, which subsequently activate PKA. PKA prevents 
NF-κB from entering the nucleus, resulting in reduced transcription of 
pro-inflammatory genes. PKA-induced activation of CREB results in 
augmented anti-inflammatory transcription of anti-inflammatory cytokines. 
Abbreviations: AC, adenylyl cyclase; ADM, adrenomedullin; ATP, adenosine 
triphosphate; cAMP, cyclic adenosine monophosphate; CREB, cAMP 
response element-binding protein; NF-κB, nuclear factor kappa-light-chain-
enhancer of activated B cells; PKA, protein kinase A.
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Antimicrobial Properties
The epithelium represents the first protective barrier against 
pathogens. Many types of epithelial cells secrete ADM, and it 
can thus be found in many bodily fluids at much higher con-
centrations than in plasma (103, 104). ADM has chemical and 
structural similarities with other antimicrobial peptides (i.e., 
β-defensin-2), including peptide length, a net positive charge, 
a disulfide bond between residues 16 and 21 and an amidated 
tyrosine at the carboxyl terminus (105). This forms an amphip-
athic structure, which permits bacterial membrane intercalation 
(106). In vitro studies have demonstrated that both the ADM 
peptide and also smaller ADM fragments are able to inhibit 
bacterial growth (107).

Cardiac Protection
Adrenomedullin may also confer cardioprotective effects. 
Increased cardiac hypertrophy and fibrosis were observed after 
subjecting heterozygous ADM knockout mice to stress-induced 
cardiac hypertrophy compared with their wild-type counterparts 
(108, 109). Other work demonstrated ADM-induced reduction 
of doxorubicin-induced cardiac myocyte apoptosis via a cAMP-
dependent mechanism (110), which was later confirmed in vivo 
in a mice model (111). The first steps concerning ADM treatment 
in heart failure patients have been undertaken. In patients with 
stable congestive heart failure, a short-course ADM infusion 
resulted in a significant decrease of pulmonary capillary wedge 
pressure and pulmonary arterial pressure, as well as an increase 

of cardiac index (58). Moreover, ADM increased urinary volume 
and sodium excretion, while decreasing plasma aldosterone lev-
els. In a pilot study in patients with acute decompensated heart 
failure, combined therapy of ADM and human atrial natriuretic 
peptide also resulted in beneficial hemodynamic and hormonal 
changes, including decreased pulmonary arterial pressure, 
increased urine production and reduced aldosterone and brain 
natriuretic peptide plasma concentrations (112). Until now, no 
further studies have been conducted in patients with heart failure.

In contrast to the data presented earlier, ADM has also been 
named a “cardiac depressant factor,” because administration of 
an ADM-receptor antagonist resulted in increased myocyte 
contractility in isolated ventricular cardiac myocytes during the 
early phase rat endotoxemia, although no measurements of CO 
were performed (113, 114).

ADM iN SePSiS

Several processes that take place during sepsis stimulate ADM 
secretion, including hypoxia, increased circulating levels of LPS, 
and production of cytokines such as tumor necrosis factor, inter-
leukin-1, and IFN-γ (33, 115–118). Circulating ADM levels have 
been measured in various pathophysiological conditions, and 
interestingly, the highest concentrations were found in patients 
with septic shock (119–122). In sepsis patients, circulating ADM 
levels correlated with relaxation of vascular tone (123) as well as 
with disease severity and mortality (119–121, 124). These associa-
tions suggest that ADM may play a detrimental role in sepsis, and 
that ADM-targeted therapies could be of benefit. However, no 
causal relationships can be deducted from these observational 
studies, and it may also be possible that increases in ADM repre-
sent a (failing) compensatory response. In other words, in light of 
ADMs aforementioned beneficial effects on various pathophysi-
ological processes that take place during sepsis, increased ADM 
levels might also represent a strategy employed by the body to 
curtail organ damage during sepsis.

ADM AND ADM-TARGeTeD THeRAPY AS 
TReATMeNT STRATeGieS ReLevANT 
FOR SePSiS

Over the last decades, many have sought to investigate whether 
administration of ADM, modulation of its function, or antagoniz-
ing ADM may influence outcome in various preclinical models of 
sepsis as well as in models of systemic inflammation and organ 
injury. Below, we provide an overview of the available data on each 
of these treatment strategies. Please note that models of systemic 
inflammation and organ injury do not comprehensively mimic 
sepsis, but do capture distinct pathophysiological hallmarks of 
the disease and are therefore of relevance for this overview.

ADM Administration
An overview of preclinical studies that have investigated the 
effects of ADM administration is presented in Table 1. It needs 
to be emphasized that except for one, these studies were not 
performed using infection models, but in clinically less relevant 
models of systemic inflammation or organ injury.
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TABLe 1 | Overview of preclinical studies investigating ADM administration in different models related to sepsis.

intervention Model Results (compared with placebo) Reference

Bolus of ADM (pretreatment) H2O2-induced vascular leakage in isolated, 
mechanically ventilated rabbit lungs

↓ Vascular leakage Hippenstiel et al. (86)

Continuous infusion of incremental dosages of 
ADM (posttreatment)

Ovine endotoxemia (24 h of Salmonella 
typhosa LPS administration)

↓ Pulmonary vascular resistance
↑ Cardiac index and heart rate

Westphal et al. (128)

Continuous infusion of ADM (pre- and 
posttreatment groups)

Isolated rat ileum with Staphylococcus 
aureus α-toxin administration

↑ Endothelial barrier function in both pre-  
and posttreatment groups.

Brell et al. (87)

Continuous infusion of ADM (pre- and 
posttreatment groups)

Ovine endotoxemia (4 h of Salmonella 
typhosa LPS administration)

↑ Cardiac index
↓ Pulmonary arterial pressure
↑ Lactate clearance (for both pre- and  
posttreatment groups)

Ertmer et al. (125)

Continuous infusion of ADM (pretreatment) Intratracheal LPS-induced lung injury in rats ↓ Vascular leakage
↓ Histopathological abnormalities
↓ Protein, albumin, and inflammatory  
markers in BAL fluid

Itoh et al. (126)

Continuous infusion of ADM (posttreatment) S. aureus α-toxin model in resuscitated rats ↓ Vascular leakage
↑ 6-h blood pressure
↑ Cardiac index and 6-h survival

Temmesfeld-
Wollbrück et al. (127)

Continuous infusion of ADM (posttreatment) S. aureus α-toxin model in rats ↓ Gut epithelial hyperpermeability Temmesfeld-
Wollbrück et al. (129)

Continuous infusion of ADM (started 
pretreatment in 2 h experiments, and after 2 h 
of ventilation in the 6 h experiments)

Ventilator-induced lung injury model in mice, 
experiments with 2 and 6 h of ventilation

For both experiments
↓ Lung hypermeability, leukocyte accumulation,  
and MLCP expression
↑ Oxygenation, lactate, and creatinine clearance

Müller et al. (130)

Bolus of intrapleural ADM (posttreatment) Carrageenan-induced pleurisy model in mice ↓ Pro-inflammatory cytokines
↓ Oxidative and nitroxidative lung tissue injury

Talero et al. (132)

Continuous infusion of ADM (pretreatment) Aortic ischemia–reperfusion in rats ↓ Kidney injury (various morphological and  
biochemical parameters)

Oyar et al. (134)

Bolus of ADM (pretreatment) Contrast-induced nephropathy in rats ↓ Kidney injury and inflammation Inal et al. (133)

Continuous infusion of ADM (pretreatment) Pneumococcal pneumonia in mechanically 
ventilated mice

↓ Lung injury
↓ Lung hyperpermeability
↓ Indirect liver and gut injury

Müller-Redetzky et al. 
(131)

ADM, adrenomedullin; BAL, bronchoalveolar lavage; H2O2, hydrogen peroxide; LPS, lipopolysaccharide; MLCP, myosin light chain phosphatase.
Only studies using models of sepsis or models that capture some of the prominent hallmarks of sepsis have been included.
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Adrenomedullin administration resulted in improved hemo-
dynamics, reduced vascular leakage and organ damage, and 
improved outcome in different models of endotoxemia (125–129). 
Furthermore, beneficial effects of ADM were reported on vari-
ous outcome measurements in models of lung injury, including 
attenuated endothelial hyperpermeability, liver injury, less histo-
pathological changes, and reduced pro-inflammatory cytokine 
levels (130–132). Moreover, ADM showed protective effects on 
organ injury in several models of acute kidney injury (133, 134). 
Although the potential beneficial effects of ADM infusion have 
been extensively investigated in the abovementioned models of 
endotoxemia, lung- and renal injury, data obtained in models that 
are more relevant to sepsis (for example, in resuscitated cecal liga-
tion and puncture [CLP] models in larger animals) are lacking.

There may be some drawbacks to ADM administration. 
Because of the short half-life of ADM (22  min) (47), infusion 
would have to be continuous over longer periods of time, as was 
done previously in ulcerative colitis patients (102). Moreover, as 
alluded to before, ADM has potent vasodilatory effects, which 
may raise concerns for ADM-induced hypotension. Finally, 

ADM may be difficult to handle in clinical practice, because of its 
adhesiveness, arguably sticking to artificial surfaces (135).

Coadministration of ADM and 
Complement Factor H
Complement factor H is thought to be capable of binding to ADM 
(and therefore also known as AMBP-1 in this context), and chap-
erone ADM in the circulation (136). However, note that this has 
been subject to some debate in literature. The observed in vitro 
binding could theoretically be due to unspecific (ionic) interac-
tion. Interference of complement factor H with ADM could not 
be demonstrated in other recent work, in which up to almost 
400,000-fold molar excess of complement factor H did not influ-
ence ADM recovery (137). Furthermore, in  vivo plasma levels 
of complement factor H are approximately 109-fold higher than 
ADM levels. Therefore, it could be hypothesized that exogenous 
administered complement factor H would not add significantly 
to endogenous levels.

The ADM binding site of AMBP-1 has not yet been discov-
ered, although it is thought that AMBP-1 may modulate ADM 
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TABLe 2 | Overview of preclinical studies investigating ADM with coadministration of AMBP-1 in different models related to sepsis.

intervention Model Results (compared with placebo) Reference

ADM and AMBP-1 (posttreatment) Cecal ligation and puncture (CLP) induced  
sepsis in rats

↑ CO, DO2, and lactate clearance
↑ Hepatic blood flow ↓ Plasma ALT, AST
↓ Hemodilution ↑ 10-day survival

Yang et al. (139)

ADM and AMBP-1 for 45 min (posttreatment) Hemorrhagic shock rats (MAP 40 mmHg for 
90 min), then resuscitated

↓ Plasma AST, ALT, TNF, and HMGB-1
↑ IL-10
↑ Lactate and creatinine clearance
↑ 12-day survival

Cui et al. (140)

ADM and AMBP-1 (posttreatment) Hemorrhagic shock rats (MAP 40 mmHg for 
90 min), then resuscitated

↑ CO and organ blood flow (liver, kidney,  
and small intestine)
↓ Cardiac TNF-α

Wu et al. (142)

ADM and AMBP-1 at start of reperfusion Intestinal ischemia–reperfusion in rats ↓ Plasma TNF-α, IL-1β, IL-6, and IL-10
↓ Plasma AST and ALAT
↓ Histopathological changes small intestine
↑ Lactate and creatinine clearance
↑ 10-day survival

Carrizo et al. (144)

ADM and AMBP-1 (pretreatment) Endotoxemic rats ↓ TNF-α ↑ IL-10
↑ Lactate clearance

Miksa et al. (98)

ADM and AMBP-1 (pretreatment) CLP-induced sepsis in rats ↑ eNOS signaling
↓ Endothelial dysfunction

Zhou et al. (156)

ADM and AMBP-1 at start of reperfusion Intestinal ischemia–reperfusion-induced lung  
injury in rats

↓ Lung edema
↓ Lung TNFα and IL-6
↓ Histopathological changes

Dwivedi et al. (143)

ADM and AMBP-1 (posttreatment) Hemorrhagic rats (MAP 40 mmHg for 90 min),  
then resuscitated

↓ Plasma AST and ALT
↑ Lactate and creatinine clearance
↓ Plasma TNF-α and IL-6
↑ 12-day survival

Wu et al. (141)

ADM and AMBP-1 at start of reperfusion Renal ischemia–reperfusion in rats ↓ Renal edema
↓ Tissue injury
↓ Plasma and tissue pro-inflammatory cytokines

Shah et al. (157)

ADM and AMBP-1 (posttreatment) Bile duct ligation/CLP model of induced  
sepsis in rats

↓ Systemic markers of tissue injury
↓ Inflammatory response
↑ 7-day survival

Yang et al. (146)

ADM, adrenomedullin; ALT, alanine aminotransferase; AMBP-1, ADM-binding protein-1; AST, aspartate aminotransferase; BAL, bronchoalveolar lavage; CLP, cecal ligation and 
puncture; CO, cardiac output; DO2, delivery of oxygen rate; H2O2, hydrogen peroxide; HMGB-1, high mobility group box protein-1; IL, interleukin; LPS, lipopolysaccharide; TNF, 
tumor necrosis factor; TNFα, tumor necrosis factor alpha; IL-1β, interleukin-1 beta.
Only studies using models of sepsis or models that capture some of the prominent hallmarks of sepsis have been included.
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endotoxemia (98), and septic shock (145, 146). To what extent 
complement factor H influences the described ADM-mediated 
effects remains unclear as the majority of preclinical studies on 
ADM with AMBP-1 coadministration did not compare ADM/
AMBP-1 with ADM alone. Please refer to Table 2 for an overview 
of this work.

Antibodies against and/or Receptor 
Antagonists of ADM
To date, three studies have investigated the effects of ADM 
antagonists on hemodynamic parameters in preclinical models 
of endotoxemia and sepsis, using either a neutralizing anti-ADM 
antibody (147) or the ADM receptor antagonist ADM (22–52) 
(113, 148). Both these treatments prevented the occurrence of 
a “hyperdynamic” hemodynamic response (characterized by 
decreased blood pressure and peripheral vascular resistance, and 
an increased CO) during the first hours after induction of sepsis 
or systemic inflammation (147, 148). This is in line with previous 

activity and degradation. A functional assay revealed a twofold 
increased cAMP response after coincubation of cells with ADM 
and AMBP-1 compared with incubation with ADM alone (138). 
Other work has demonstrated that AMBP-1 protects ADM from 
proteolytic degradation (49), thereby presumably increasing its 
half-life. Because of these possible potentiating effects, several 
studies have investigated the therapeutic potential of coadmin-
istration of ADM and AMBP-1 in various preclinical animal 
models. Initially, the effects of coadministration of ADM and 
AMBP-1 were assessed in a model of CLP-induced sepsis in rats, 
where pretreatment with the combination of ADM and AMBP-1, 
but not of each compound individually, resulted in positive effects 
on hemodynamic parameters, augmenting oxygen delivery, CO, 
and lactate clearance (139). Furthermore, improved 10-day 
survival was observed in animals undergoing CLP surgery. Note 
that in these survival experiments, treatment was started 5 h after 
CLP surgery. Other studies have also demonstrated beneficial 
effects coadministration of ADM and AMBP-1 in models of 
hemorrhagic shock (140–142), ischemia/reperfusion (143, 144), 
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TABLe 3 | Overview of preclinical studies with ADM antibodies and/or antagonists in different models related to sepsis.

intervention Model Results Reference

Anti-ADM antibody (posttreatment) CLP-induced sepsis in rats Anti-ADM antibodies prevented occurrence of  
hyperdynamic response during first 5 h after CLP

Wang et al. (147)

ADM receptor antagonist ADM (22–52) (pretreatment) Escherichia coli LPS in rats ↑ Blood pressure (during first 6 h) Mazzocchi et al. (148)

ADM antagonist ADM (22–52) (posttreatment) E. coli LPS in rats ↑ Survival myocyte contractility
No effect on 7-day survival

Hyvelin et al. (113)

N-terminus murine antibody against N-terminus of ADM 
(pretreatment)

CLP-induced sepsis in mice ↑ Survival Struck et al. (149)

N-terminus murine antibody against N-terminus of ADM 
(pretreatment)

Resuscitated CLP-induced 
sepsis in mice

↓ Noradrenaline infusion rates
↑ Urine production
↑ Creatinine clearance and ↓ NGAL
↓ iNOS and peroxynitrate formation
↓ Systemic inflammation
↓ Tissue apoptosis

Wagner et al. (150)

N-terminus humanized antibody against N-terminus of 
ADM (pretreatment)

E. coli LPS in rats
CLP-induced sepsis in mice

↓ Vascular leakage in LPS rats
↓ Renal vascular leakage, ↓ VEGF, and ↑  
angiopoietin-1 levels in CLP mice
↑ Survival in CLP mice

Geven et al. (151)

ADM, adrenomedullin; CLP, cecal ligation and puncture; LPS, lipopolysaccharide; VEGF, vascular endothelial growth factor; eNOS; endothelial nitric oxide synthase.
Only studies using models of sepsis or models that capture some of the prominent hallmarks of sepsis have been included.
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data demonstrating vasodilatory effects of ADM, accompanied 
by a reduction of peripheral vascular resistance and increase of 
CO. Furthermore, ADM (22–52) administration after initiation 
of endotoxemia resulted in improved myocyte contractility, but 
did not improve 7-day survival (113).

Further efforts have been put into the development of various 
high-affinity monoclonal anti-ADM antibodies, each targeting 
different regions of the ADM peptide, resulting in full or partial 
inhibition of ADM signaling. The efficacy of these antibodies 
was investigated in a survival study in CLP-induced sepsis in 
mice (149). A non-neutralizing antibody targeted against the 
N-terminus of ADM, which only partially inhibits ADM signal-
ing, conferred survival benefit, whereas a completely inhibiting 
antibody targeted against the C-terminal, did not. Subsequent 
experiments were conducted in a model of resuscitated CLP-
induced murine sepsis, in which pretreatment with the non-neu-
tralizing antibody resulted in decreased catecholamine infusion 
rates, kidney dysfunction, iNOS, but not eNOS expression, and 
ultimately improved survival (150). Due to these positive results, 
a humanized version of the antibody, named Adrecizumab, has 
been developed for further clinical development. Beneficial 
effects of Adrecizumab on vascular barrier function and survival 
were recently demonstrated in preclinical models of systemic 
inflammation and sepsis (151). In this study, pretreatment with 
Adrecizumab attenuated renal vascular leakage in endotoxemic 
rats as well as in mice with CLP-induced sepsis, which coin-
cided with increased renal expression of the protective peptide 
Ang-1 and reduced expression of the detrimental peptide vas-
cular endothelial growth factor (151). Also, pretreatment with 
Adrecizumab improved 7-day survival in CLP-induced sepsis in 
mice from 10 to 50% for single and from 0 to 40% for repeated 
dose administration (151). Moreover, in a phase I study, excel-
lent safety and tolerability was demonstrated: no serious adverse 
events were observed, no signal of adverse events occurring 
more frequently in Adrecizumab-treated subjects was detected, 

and no relevant changes in other safety parameters were found 
(152). Of particular interest is the proposed mechanism of action 
of Adrecizumab. Both animal and human data reveal a potent, 
dose-dependent increase of circulating ADM following adminis-
tration of this antibody. Based on pharmacokinetic data and the 
lack of an increase in MR-proADM (an inactive peptide fragment 
derived from the same prohormone as ADM), the higher circulat-
ing ADM levels cannot be explained by an increased production 
(152). A mechanistic explanation for this increase could be that 
the excess of antibody in the circulation may drain ADM from 
the interstitium to the circulation, since ADM is small enough 
to cross the endothelial barrier, whereas the antibody is not. In 
addition, binding of the antibody to ADM leads to a prolonga-
tion of ADM’s half-life (153). Even though Adrecizumab partially 
inhibits ADM signaling, a large increase of circulating ADM 
results in an overall “net” increase of ADM activity in the blood 
compartment, where it exerts beneficial effects on ECs (predomi-
nantly barrier stabilization), whereas ADMs detrimental effects 
on VSMCs (vasodilation) in the interstitium are reduced (153). 
This hypothesis is in line with previous studies demonstrating 
overall beneficial effects of agonists of the ADM system, whereas 
complete inhibition of ADM was shown not to improve outcome. 
A detailed description of the proposed mechanisms of action of 
Adrecizumab is provided elsewhere (153). Please refer to Table 3 
for an overview of studies that investigated ADM-antagonists 
and/or modulating antibodies. Currently, a phase II study with 
Adrecizumab is ongoing in septic patients (http://clinicaltrials.
gov identifier: NCT03085758).

PeGylation of ADM
PEGylation is the process by which polyethylene glycol (PEG) 
chains are attached to protein and peptide drugs (154). PEGylation 
of polypeptide drugs often results in improved pharmacokinetic 
and pharmacodynamic properties, as it offers protection from 
proteolytic enzymes, increases water solubility, reduces renal 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://clinicaltrials.gov
http://clinicaltrials.gov


10

Geven et al. Adrenomedullin: a Sepsis Treatment Target

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 292

ReFeReNCeS

1. Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P,  
et  al. Assessment of global incidence and mortality of hospital-treated 
sepsis. Current estimates and limitations. Am J Respir Crit Care Med (2016) 
193(3):259–72. doi:10.1164/rccm.201504-0781OC 

2. Vincent JL, Marshall JC, Namendys-Silva SA, Francois B, Martin- 
Loeches I, Lipman J, et al. Assessment of the worldwide burden of critical 
illness: the intensive care over nations (ICON) audit. Lancet Respir Med 
(2014) 2(5):380–6. doi:10.1016/s2213-2600(14)70061-x 

3. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M,  
et  al. The Third International Consensus definitions for sepsis and septic 
shock (sepsis-3). JAMA (2016) 315(8):801–10. doi:10.1001/jama.2016.0287 

4. Abraham E, Singer M. Mechanisms of sepsis-induced organ dysfunction. Crit 
Care Med (2007) 35(10):2408–16. doi:10.1097/01.CCM.0000282072.56245.91 

5. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med (2013) 
369(9):840–51. doi:10.1056/NEJMra1208623 

6. Ince C, Mayeux PR, Nguyen T, Gomez H, Kellum JA, Ospina-Tascon GA, 
et  al. The endothelium in sepsis. Shock (2016) 45(3):259–70. doi:10.1097/
shk.0000000000000473 

7. Stevens T, Garcia JG, Shasby DM, Bhattacharya J, Malik AB. Mechanisms 
regulating endothelial cell barrier function. Am J Physiol Lung Cell Mol 
Physiol (2000) 279(3):419–22. doi:10.1152/ajplung.2000.279.3.L419 

8. Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. 
BMJ (2016) 353:i1585. doi:10.1136/bmj.i1585 

9. Rigor RR, Shen Q, Pivetti CD, Wu MH, Yuan SY. Myosin light chain 
kinase signaling in endothelial barrier dysfunction. Med Res Rev (2013) 
33(5):911–33. doi:10.1002/med.21270 

10. Fink MP, Warren HS. Strategies to improve drug development for sepsis. Nat 
Rev Drug Discov (2014) 13(10):741–58. doi:10.1038/nrd4368 

11. Lee WL, Slutsky AS. Sepsis and endothelial permeability. N Engl J Med (2010) 
363(7):689–91. doi:10.1056/NEJMcibr1007320 

12. Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, 
et  al. Adrenomedullin: a novel hypotensive peptide isolated from human 
pheochromocytoma. Biochem Biophys Res Commun (1993) 192(2):553–60. 
doi:10.1006/bbrc.1993.1451 

13. Nuki C, Kawasaki H, Kitamura K, Takenaga M, Kangawa K, Eto T, et  al. 
Vasodilator effect of adrenomedullin and calcitonin gene-related peptide 
receptors in rat mesenteric vascular beds. Biochem Biophys Res Commun 
(1993) 196(1):245–51. doi:10.1006/bbrc.1993.2241 

14. Ishiyama Y, Kitamura K, Ichiki Y, Nakamura S, Kida O, Kangawa K, 
et  al. Hemodynamic effects of a novel hypotensive peptide, human 
adrenomedullin, in rats. Eur J Pharmacol (1993) 241(2–3):271–3. 
doi:10.1016/0014-2999(93)90214-3 

15. Kato J, Kitamura K. Bench-to-bedside pharmacology of adrenomedullin. Eur 
J Pharmacol (2015) 764:140–8. doi:10.1016/j.ejphar.2015.06.061 

16. Beltowski J, Jamroz A. Adrenomedullin – what do we know 10 years since its 
discovery? Pol J Pharmacol (2004) 56(1):5–27. 

17. Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W, et al. 
International Union of Pharmacology. XXXII. The mammalian calcitonin 
gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. 
Pharmacol Rev (2002) 54(2):233–46. doi:10.1124/pr.54.2.233 

18. Ishimitsu T, Kojima M, Kangawa K, Hino J, Matsuoka H, Kitamura K, et al. 
Genomic structure of human adrenomedullin gene. Biochem Biophys Res 
Commun (1994) 203(1):631–9. doi:10.1006/bbrc.1994.2229 

19. Martinez A, Hodge DL, Garayoa M, Young HA, Cuttitta F. Alternative splic-
ing of the proadrenomedullin gene results in differential expression of gene 
products. J Mol Endocrinol (2001) 27(1):31–41. doi:10.1677/jme.0.0270031 

20. Washimine H, Kitamura K, Ichiki Y, Yamamoto Y, Kangawa K, Matsuo H,  
et al. Immunoreactive proadrenomedullin N-terminal 20 peptide in human 
tissue, plasma and urine. Biochem Biophys Res Commun (1994) 202(2):1081–
7. doi:10.1006/bbrc.1994.2039 

21. Kitamura K, Kangawa K, Ishiyama Y, Washimine H, Ichiki Y, Kawamoto M,  
et  al. Identification and hypotensive activity of proadrenomedullin 
N-terminal 20 peptide (PAMP). FEBS Lett (1994) 351(1):35–7. doi:10.1016/ 
0014-5793(94)00810-8 

22. Nagatomo Y, Kitamura K, Kangawa K, Fujimoto Y, Eto T. Proadrenomedullin 
N-terminal 20 peptide is rapidly cleaved by neutral endopeptidase. 
Biochem Biophys Res Commun (1996) 223(3):539–43. doi:10.1006/bbrc. 
1996.0930 

23. Struck J, Tao C, Morgenthaler NG, Bergmann A. Identification of an adre-
nomedullin precursor fragment in plasma of sepsis patients. Peptides (2004) 
25(8):1369–72. doi:10.1016/j.peptides.2004.06.019 

24. Gumusel B, Chang JK, Hyman A, Lippton H. Adrenotensin: an ADM gene 
product with the opposite effects of ADM. Life Sci (1995) 57(8):l87–90. 
doi:10.1016/0024-3205(95)02012-8 

25. Kitamura K, Kato J, Kawamoto M, Tanaka M, Chino N, Kangawa K, et al. 
The intermediate form of glycine-extended adrenomedullin is the major 
circulating molecular form in human plasma. Biochem Biophys Res Commun 
(1998) 244(2):551–5. doi:10.1006/bbrc.1998.8310 

clearance, and limits toxicity (154). Human ADM was previously 
molecularly modified by conjugating ADMs N-terminal with 
PEG, in an attempt to reduce potentially unfavorable effects of 
ADM (hypotension, activated sympathetic nerve activity, and 
increased renin secretion) (155). Compared with native ADM, 
PEGylated ADM had a slightly lower half maximal effective 
concentration (EC50) in a functional assay, while the maximum 
possible effect (Emax) values remained similar. Moreover, in rats, 
PEGylated ADM resulted in a longer half-life and a significantly 
less blood lowering effect compared with native ADM (155). A 
subsequent study in a mouse DSS-induced colitis model revealed 
an attenuation of the total inflammation score. Unfortunately, no 
studies have been performed in animal sepsis models.

CONCLUSiON

Adrenomedullin is an important peptide hormone involved 
in sepsis. Its effects include vasodilation, stabilization of the 
endothelial barrier, and immunoregulation. Administration 
of ADM in animal models of inflammation, organ injury, and 
infection resulted in improved outcome. Attempts have been 

made to negate the potential hypotensive effects of ADM to 
further enhance its beneficial effects. Coadministration of ADM 
with ADM binding peptide-1, administration of ADM bound to 
PEG, and administration of partially inhibiting ADM antibodies 
(which in fact increase the net circulating ADM levels without 
causing hypotension) showed promising results. However, it is 
difficult to translate these results to septic patients, because these 
preclinical studies have often been performed in small animals 
using clinically less relevant models of systemic inflammation 
or induced organ injury. Moreover, in a significant proportion 
of studies no resuscitation or antibiotics were applied, and the 
intervention was initiated before the induction of disease. Finally, 
many treatments have not been compared head-to-head. Given 
the current lack of adjuvant therapies in sepsis, future research on 
this promising peptide in more relevant animal models of sepsis 
and ultimately humans is therefore highly warranted.
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