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Objective: To explore the linear association between inner retinal layers

thickness and macular capillary density compared to variations of global

cognition evaluated by psychometric measures in a cohort of Mediterranean

subjects aged 65+ years.

Materials and methods: We performed a cross-sectional analysis of 574

participants aged 65 years+ drawn from a population-based Southern Italian

study. All subjects underwent neurological evaluations, including global

cognitive screening, the Mini-Mental State Examination (MMSE) and frontal

assessment battery (FAB), together with an ophthalmic examination including

optical coherence tomography (OCT) and OCT-Angiography. We assessed

the average thickness of the ganglion cell complex (GCC) and the retinal

nerve fiber layer (RNFL), the foveal avascular zone area, and vascular density

(VD) of superficial (SVD) and deep (DVD) capillary plexi at the foveal and

parafoveal area. Linear regression was applied to assess associations of ocular

measurements with MMSE and FAB scores.

Results: In the linear regression model, foveal DVD (beta = 0.01, 95%

CI:0.004–0.052), whole DVD (beta = 0.04, 95% CI:0.02–0.08), and whole SVD

(beta = 0.04, 95% CI:0.02–0.07) showed a positive association with MMSE.

In addition, foveal SVD (beta = 0.01, 95% CI:0.003–0.05) and whole SVD

(beta = 0.03, 95% CI:0.004–0.08) were positively associated with the FAB
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score. We found no further significant association between the MMSE score or

the FAB score and the average thickness of the GCC and RNFL, and FAZ area.

Conclusion: A direct linear association between the VD of the macular

capillary plexi with global and frontal cognitive functions was observed in

elderly subjects.

KEYWORDS

retina, imaging, older (diseased) population, cognitive function, vessel density

Introduction

As the world population ages, mild cognitive impairment
(MCI) and dementia are taking on an ever growing social
importance. Cognitive impairment is the most evident sign of
all dementias including Alzheimer’s disease (AD), known to
account for between 60 and 80% of all cases (Hebert et al., 2013).
According to current knowledge, in the USA alone, 5.8 million
people are affected by cognitive impairment and this figure is
expected to rise to 13.8 million by 2050 ( Hebert et al., 2013).

Aging and cardiovascular conditions have been suggested
to drive chronic cerebral hypoperfusion (CCH) leading to
neurodegenerative processes (Scheffer et al., 2021). Indeed,
cerebral vascular and microvascular remodeling has been
described in patients with cognitive impairment (Buée et al.,
1994, 1997; Farkas and Luiten, 2001; O’Brien et al., 2003;
Thompson and Hakim, 2009).

In recent decades, much of the research has been focused
on recognizing biomarkers enabling diagnosis of the disease in
the early stages (Shaw et al., 2007; Becker et al., 2008; Holtzman
et al., 2011; Sperling et al., 2014). Indeed, neuropathological
changes in the central nervous system are known to occur many
years before the clinical onset of severe or MCI (Shaw et al., 2007;
Becker et al., 2008; Holtzman et al., 2011; Sperling et al., 2014).

Embryologically, anatomically, and physiologically, the
retina is an extension of the central nervous system and
hence offers a privileged observational viewpoint (Byerly and
Blackshaw, 2009; London et al., 2013; Trost et al., 2016; Vecino
et al., 2016).

In this context, optical coherence tomography (OCT)
scans previously confirmed thinning of the neuroretinal
layers, including the ganglion cell complex (GCC) and,
in particular, the retinal nerve fiber layer (RNFL), in AD
(Chan et al., 2019) and MCI patients (Mejia-Vergara et al.,
2020) as compared to age-matched control subjects. Also
retinal microvascular changes, visualized non-invasively using
fundoscopy or photographs of the retina, have been associated
with cognitive decline and brain changes related to aging
and vascular disease (Wong et al., 2002; Baker et al., 2007;
Ding et al., 2008; Heringa et al., 2013). Optical coherence

tomography angiography (OCT-A) is an innovative extension
of OCT technology. It provides non-invasive depth-resolved
visualization of the retinal microvasculature, using phase or
amplitude decorrelation to identify the motion contrast of blood
flow (Spaide et al., 2015; Kashani et al., 2017). It has been
successfully used in several studies to explore the predictive
power of retinal vessel features for neurodegenerative diseases
(Bulut et al., 2018; O’Bryhim et al., 2018; Zhang et al., 2019),
revealing a reduction of vascular density (VD) at the macula in
patients with MCI and AD (Bulut et al., 2018; Jiang et al., 2018;
Yoon et al., 2019).

Together with personal history, physical examination
and laboratory tests, psychometric measures, such as the
Mini-Mental State Examination (MMSE), Alzheimer’s disease
assessment scale- (ADAS-Cog), clinical dementia rating (CDR)
score, and frontal assessment battery (FAB), are used nowadays
to test a range of everyday cognitive abilities that can reveal
cognitive impairment.

In AD but not in MCI patients, multiple linear regression
models showed a strong association between overall RNFL
thickness and the MMSE score (Ascaso et al., 2014). Moreover,
Shen et al. (2013) observed that RNFL thinning could have a
predictive role in cognitive decline.

The aim of this study was to explore the linear association
between inner retinal layers thinning and macular capillary
density reductions and variations of global cognition measures,
including the MMSE and FAB, in a cross-sectional study of
Mediterranean subjects aged 65 + years.

Materials and methods

Participants were recruited from the Salus in Apulia Study,
a population-based study on aging conducted on subjects aged
over 65 years, resident in Castellana Grotte, a town located near
Bari, Puglia in the South-east of Italy. The final sample frame
was the Castellana Grotte electoral list on 31 December 2014,
including 19,675 subjects, 4,008 aged 65 years or older. The
Salus in Apulia Study has focused on the impact of nutrition,
frailty, and age-related sensory impairments as predictors of
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common neurodegenerative and psychiatric diseases in older
age. Detailed methodology of the original study is reported
elsewhere (Tortelli et al., 2017). We collaborated with general
practitioners who invited older subjects, previously selected with
the support of the city census office, to participate in the study.
Subjects enrolled in the SALUS study underwent several multi-
specialist visits, including neurological and neuropsychological
assessments and a complete ophthalmological evaluation. In
particular, in this study we analyzed data on subjects who
underwent OCT and OCT-A examinations. Prior approval of
the study was obtained from the Institutional Review Board
of the “National Institute of Gastroenterology “S. De Bellis”
(Approval Code: 68/CE De Bellis; Approval Date: 9 April 2019).
Written informed consent was obtained from all the participants
in this study, all community-dwelling older adults.

The present study adhered to the “Standards for Reporting
Diagnostic Accuracy Studies” (STARD) guidelines,1 the
“Strengthening the Reporting of Observational Studies in
Epidemiology” (STROBE) guidelines,2 and was conducted in
accordance with the 1975 Declaration of Helsinki.

Ophthalmological assessment

Each participant underwent best-corrected visual acuity
(BCVA) determination of each eye. BCVA was recorded as
Snellen visual acuity and converted to the logarithm of minimal
angle of resolution (LogMar) units for statistical analysis.
Patients underwent slit-lamp biomicroscopy and intraocular
pressure (IOP) measurement using a Goldmann-type
applanation tonometer (Perkins MK2 Handheld Tonometer,
Clement-Clarke Haag-Streit, Essex, UK). We performed
funduscopy and then OCT and OCT-A using AngioVue OCT-
Angiography (Optovue RTVue XR 100 AVANTI, Optovue, Inc.,
Fremont, CA, United States). The OCT-A machine captures
two consecutive B-scans (M-B frame), each containing 304
A-scans with an A-scan rate of 70,000 scans per second,
using a light source with a bandwidth of 45 nm centered on
840 nm. Split-spectrum amplitude-decorrelation angiography
(SSADA) then extracts blood flow information by quantifying
the decorrelation value, which represents differences in signal
intensity between consecutive B-scans of the same location
on the retina. OCT-A also analyzes the retinal structure, so
multiple retinal layers can be identified and the vasculature in
the corresponding layers can be segmented. OCT segmentation
was performed using the AngioVue module with Optovue
RTVue AVANTI software (version 2015.100.0.35, Optovue, Inc.,
Fremont, CA, United States). The mode was set at Angio Retina
(3 mm× 3 mm) and Angio Disc (4.5 mm × 4.5 mm). RTvue
software includes Optovue Motion Correction Technology

1 http://www.stard-statement.org/

2 https://www.strobe-statement.org/

(MCT) and 3D Projection Artifact Technology. The software
provides the signal strength index (SSI), which represents the
scan’s reflectance signal strength, and a quality index (Q-score),
which represents the overall quality of the image, taking into
account factors like SSI and motion artifacts (Kashani et al.,
2017). In the present study, we only included images with a
Q-score of 6 or above, an SSI above 70, and without motion or
shadow artifacts. The examinations were performed blinded by
trained ophthalmologists.

The vessel density (VD,%), defined as the percentage area
occupied by the vessels in the corresponding region, was
automatically measured by the built-in OCT device software.

The OCT angiograms centered on the fovea were
automatically segmented to define the superficial plexus,
from 3 µm below the internal limiting membrane to 15 µm
below the inner plexiform layer (IPL), and the deep plexus, from
15 to 70 µm below the inner plexi-form layer. The VD at each
macular plexus, and superficial VD (SVD) and deep VD (DVD),
were calculated for the whole 3-mm circle area centered on the
fovea (whole retina), for the area between the outer 3-mm circle
and the inner 1-mm circle (parafoveal quadrant), and for the
area inside the central 1-mm circle (foveal quadrant) (Figure 1).

Measurement of the foveal avascular zone (FAZ, mm2)
at the deep capillary plexus (image in Supplementary
Figure 1) was performed as described in detail elsewhere
( Shahlaee et al., 2016).

The average thickness (µm) of the GCC, composed of
the thickness of the RNFL, ganglion cell layer (GCL), and
IPL, at the macular area, and, separately, of the RNFL, were
measured at the same time using the same OCT system (image
in Supplementary Figure 2).

Ocular exclusion criteria for all study participants included
an IOP > 22 mmHg, a history of glaucoma, optic neuropathies,
demyelinating disorders, retinal diseases including macular
degeneration, diabetic or hypertensive retinopathy, epiretinal
membrane, retinal detachment, an obvious media opacity
reducing visual acuity below 1 LogMar and interfering with
the OCT and OCT-A analysis, a refractive error of 6 diopters
or more, an intraocular surgery performed in the previous
6 months or ocular trauma.

Data export was performed using the GreatAGEstudy App
(Phronema srl, Bari, Italy), a software designed specifically
to support the ancillary study of the Salus in Apulia Study,
denominated the GreatAGE study.

Cognitive assessment

A licensed neurologist performed a standard neurological
examination exploring perception, deambulation, cranial
nerves, motor function (muscle tone, upright posture, and
tropism), pathological gestures, sensory function, cerebellar and
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FIGURE 1

Optical coherence tomography (OCT) angiographic images of the macular region and corresponding structural OCT scans. The macular vessel
density measurement included measurements of the superficial (A) and deep vascular (B) plexi in an area measuring 3 mm× 3mm. The macular
area was divided into a foveal and a parafoveal area between two concentric circles with a 1 and 3 mm diameter, respectively (A,B). The colored
lines (red and green) in horizontal OCT B-scans show segmentation lines defining the different depths in the retinal tissue. The superficial
capillary plexus is segmented from approximately 3 µm below the inner limiting membrane to 15 µm below the inner plexiform layer (IPL) (C).
The deep capillary plexus is segmented from 15 µm below the IPL to 70 µm below the IPL (D).

sphincter functions, deep tendon reflexes, and signs of diffuse
cerebral distress.

Cognitive mental status was assessed with the MMSE,
which consists of eleven questions, focused only on the global
cognitive aspects of mental functions (Measso et al., 1993). The
FAB is a brief, simple tool used to assess executive function
( Dubois et al., 2000).

Statistical analysis

Continuous variables were expressed as mean ± standard
deviation (SD) and categorical variables as proportion (%).
Statistical significance was set at p-value < 0.05, with 95%
confidence intervals (CI). The characteristics of the population
in terms of distributions and frequencies, means with standard
deviations (SD) and medians were calculated. Linear regression
models were applied to assess associations, using SVD and
DVD at foveal, parafoveal and whole retina levels, of increased
thicknesses (expressed as percentages) of the ganglionar cellular
complex (GCC) and retinal nerve fiber layers (RNFL) as
independent variables, with MMSE and FAB scores. We
built three hierarchical nested models: an unadjusted model,

a partially adjusted model (adjusted for age, gender, and
education) and a fully-adjusted model [adjusted for age, gender
and education Diabetes, Hypertension, SSI (lower) and visual
acuity]. To reduce selection bias and simplify the reading of
results we used a complete randomization algorithm for the eye
selection, assigning the corresponding value (left or right eye) to
the new variable thus created.

Statistical analyses were performed with RStudio software,
Version 1.2.1335 using additional packages: tidyverse, kable.

Results

From 2016 to 2019, 892 of the 1,929 participants in the Salus
in Apulia Study underwent an ophthalmological examination
including OCT and OCT-A scans. Of these, 318 subjects were
excluded due to incomplete clinical evaluations, media opacity
severely reducing visual acuity, macular diseases, glaucoma,
hypertensive retinopathy, and erroneous scans including scans
with segmentation failure. Overall, 574 older individuals (63%
women) were eligible for the analysis presented in this study.
Mean age of the whole sample was 73.82 ± 6.17 years. The
average number of years of education was 6.94 ± 3.83 years.
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Mean MMSE and FAB scores were 26.16 ± 4.31 and
12.98 ± 3.82, respectively. All other sociodemographic and
ophthalmological variables are reported in Table 1. Data of the
whole Salus in Apulia sample are shown in Supplementary
Table 1.

In the linear regression partially adjusted model,
corrected for age, gender, and education (Table 2), foveal
DVD (beta = 0.069, CI 95% 0.001–0.139) and whole DVD
(beta = 0.064, CI 95% 0.001–0.127) showed a positive association
with MMSE. Foveal SVD (beta = 0.081, CI 95% 0.019–0.142)
and whole SVD (beta = 0.066, CI 95% 0.009–0.124) were also
positively associated with the cognitive score. In the fully-
adjusted model, the association remained significant only for
foveal DVD (beta = 0.01, CI 95% 0.004–0.052), whole DVD
(beta = 0.04, CI 95% 0.02–0.08), and whole SVD (beta = 0.04,
CI 95% 0.02–0.07).

In addition, foveal SVD (beta = 0.01, CI 95% 0.003–0.05)
and whole SVD (beta = 0.03, CI 95% 0.004–0.08) were positively
associated with global cognitive function as assessed by the FAB
(Table 3).

We found no further significant association between the
MMSE score or between the FAB score and the average thickness
of the GCC and RNFL, and FAZ area.

TABLE 1 Description of sociodemographic and variables of the
whole sample. N:574.

Mean ± SD Median (min to max)

Age (years) 73.82 ± 6.17 73 (65 to 95)

BMI (Kg/m2) 27.83 ± 4.65 27.48 (18.36 to 47.65)

Gender

Male 216 (37.60)

Female 358 (63.40)

Education (years) 6.94 ± 3.83 5 (0 to 18)

Hypertension 478 (83.4)

Diabetes 48 (8.4)

MMSE score 26.16 ± 4.31 28 (1 to 30)

FAB score 12.98 ± 3.82 14 (0 to 18)

BCVA RE (LogMAR) 0.13 ± 0.32 0.04 (0 to 1)

BCVA LE (LogMAR) 0.13 ± 0.3 0 (0 to 1)

IOP RE (mmHg) 14.45 ± 2.21 14 (10 to 20)

IOP LE (mmHg) 14.48 ± 2.22 15 (8 to 20)

GCC (µm) 96.01 ± 13.94 94.5 (44.75 to 237.85)

RNFL (µm) 95.77 ± 11.11 97 (62 to 128)

FAZ (mm2) 0.3 ± 0.26 0.28 (0.02 to 4.7)

Foveal SVD (%) 29.8 ± 6.84 29.33 (10.62 to 62.42)

Para foveal SVD (%) 51.94 ± 4.79 53.02 (31.28 to 60.26)

Whole retina SVD (%) 49.84 ± 4.36 50.7 (32.52 to 58.27)

Foveal DVD (%) 27.69 ± 7.66 26.84 (6.27 to 74.88)

Para foveal DVD (%) 57.11 ± 5.36 58.35 (28.18 to 66.13)

Whole retina DVD (%) 54.21 ± 5.01 55.29 (28.75 to 62.5)

All data are shown as mean ± sd, median (min to max) for continuous variables and as
n (%) for proportions.

Discussion

In this large study of OCT-A findings in a Mediterranean
population from Castellana Grotte aged over 65 years, we
observed a direct linear association between the VD of the
retinal capillary plexi, and global and frontal cognitive functions,
measured with MMSE and FAB, respectively. A lower cognitive
test score corresponded to a lower VD, particularly at the
foveal site. The mechanism behind the retinal capillary density
reduction in patients with cognitive impairment is not known.
A reduction in the brain capillary density, both age-related (Bell
and Ball, 1981; Vecino et al., 2016) and AD-related (Bell and
Ball, 1981; Fischer et al., 1990; Buée et al., 1997; Vecino et al.,
2016), has been demonstrated in several studies.

The anti-angiogenic activity of perivascular β-amyloid
plaques accumulation has been proposed as a cause of
capillary density reduction in patients with AD (Paris
et al., 2004a,b). In particular, decreased angiogenesis, due
to sequestration of vascular-endothelial growth factor
(VEGF) in β-amyloid plaques and competitive binding of
β-amyloid to VEGF receptor 2, has been proposed as the
possible mechanism underlying cerebral VD reductions
( Yang et al., 2004).

In addition, an age-related reduction in angiogenesis
capacity was reported (Black et al., 1989; Rivard et al.,
1999). With aging, the expression of hypoxia-inducible factor-
1 (HIF-1) is reduced (Rivard et al., 2000; Chavez and
LaManna, 2003). HIF-1 is the transcription factor leading to
the synthesis of VEGF in hypoxia conditions (Saint-Geniez
and D’Amore, 2004). The reduction in HIF-1 is associated
with a reduction in VEGF and neuronal loss (Rapino et al.,
2005). With aging in AD, therefore, vascular recovery from
hypoxia is impaired.

Furthermore, direct β-amyloid endothelial damage, causing
small vessels destruction, has also been noted (Li et al.,
2020). Koronyo-Hamaoui et al. (2011) identified postmortem β-
amyloid plaques in the retina of AD patients. In a histological
study of patients with AD, β-amyloid plaques were found,
associated with retinal blood vessels and located in the
perivascular area (Koronyo et al., 2017). Although in the
classical hypothesis β-amyloid plaques and neurofibrillary
tangles are recognized as the main pathogenic mechanism,
different studies have attributed an increasing importance to
the various vascular alterations present in patients with AD and
cognitive impairment (Cheung et al., 2014; Feke et al., 2015;
Sweeney et al., 2019).

Chronic cerebral hypoperfusion induces a reduction of
nutrients supply to the brain, causing direct damage not only
to parenchymal cells but also to the vascular constituents
of the blood-brain-barrier (BBB) (Sweeney et al., 2019).
BBB dysfunction mediates the indirect neurotoxic effect
by promoting oxidative stress, inflammation paracellular
permeability, and dysregulation of nitric oxide, a key regulator
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TABLE 2 Linear regression model on Mini-Mental State Examination (MMSE) as dependent variable and regressors.

Unadjusted models *Partially adjusted models **Fully adjusted models

Coefficients CI 95% P-value Coefficients CI 95% P-value Coefficients CI 95% P-value

Foveal DVD 0.122 0.042–0.203 <0.01 0.069 0.001–0.139 0.05 0.01 0.004–0.052 0.05

Parafoveal DVD −0.008 −0.06–0.044 0.76 0.007 −0.036–0.051 0.74 −0.02 −0.03–0.14 0.67

Whole DVD 0.11 0.036–0.183 <0.01 0.064 0.001–0.127 0.04 0.04 0.02–0.08 0.02

Foveal SVD 0.154 0.084–0.224 <0.01 0.081 0.019–0.142 0.01 0.02 −0.05–0.09 0.55

Parafoveal SVD −0.015 −0.061–0.032 0.53 −0.005 −0.044–0.034 0.79 −0.04 −0.16–0.07 0.44

Whole SVD 0.12 0.062–0.193 <0.01 0.066 0.009–0.124 0.02 0.04 0.02–0.07 0.02

GCC −0.005 −0.03–0.02 0.71 −0.002 −0.023–0.019 0.82 0.01 −0.02–0.04 0.99

RNFL 0.012 −0.021–0.044 0.48 −0.002 −0.029–0.025 0.87 −0.01 −0.04–0.04 0.91

*Corrected for age, gender, and education.
**Corrected for partially adjusted models regressors plus Diabetes, Hypertension, signal strength index (SSI) (lower) and visual acuity. Underlined and bold values indicate statistically
significant data.

TABLE 3 Linear regression models on Frontal Assessment Battery (FAB) as dependent variable and regressor.

Unadjusted models *Partially adjusted models **Fully adjusted models

Coefficients CI 95% P-value Coefficients CI 95% P-value Coefficients CI 95% P-value

Foveal DVD 0.08 0.008–0.152 0.02 0.035 −0.022–0.092 0.22 −0.04 −0.10–0.02 0.20

Parafoveal DVD −0.02 −0.066–0.026 0.38 −0.008 −0.043–0.028 0.67 −0.03 −0.15–0.08 0.50

Whole DVD 0.073 0.007–0.138 0.03 0.036 −0.016–0.088 0.17 −0.06 −0.19–0.05 0.30

Foveal SVD 0.137 0.075–0.199 <0.01 0.071 0.021–0.121 <0.01 0.01 0.003–0.05 0.03

Parafoveal SVD −0.021 −0.062–0.02 0.32 −0.013 −0.045–0.019 0.42 −0.02 −0.13–0.09 0.71

Whole SVD 0.113 0.054–0.171 <0.01 0.06 0.013–0.106 0.01 0.03 0.004–0.08 0.04

GCC −0.005 −0.027–0.018 0.67 −0.001 −0.018–0.016 0.90 −0.01 −0.05–0.02 0.36

RNFL 0.009 −0.021–0.038 0.55 −0.002 −0.025–0.021 0.84 −0.03 −0.07–0.01 0.75

*Corrected for age, gender, and education.
**Corrected for partially adjusted models regressors plus Diabetes, Hypertension, signal strength index (SSI) (lower), and visual acuity. Underlined and bold values indicate statistically
significant data.

of regional blood flow (Sweeney et al., 2019). All these
events trigger a vicious circle in which cerebral perfusion
is reduced and the neurodegenerative process is accelerated.
Reciprocal interactions between vascular dysfunction and
neurodegeneration could further contribute to the development
of the disease (Sweeney et al., 2019). Thus, the previously
observed (Bulut et al., 2018; Yoon et al., 2019; Chua et al.,
2020; Criscuolo et al., 2020; Wu et al., 2020; Hui et al., 2021;
Zhang et al., 2021) close link between microvascular alterations
and cognitive impairment, also confirmed by our results, shows
that retinal VD may be an ocular biomarker of age-related
neurocognitive disease.

Conversely, we did not find any association between GCC
and RNFL thickness and MMSE and FAB scores. Several studies
have revealed thinning of RNFL in MCI and AD patients
as compared to controls (Berisha et al., 2007; Paquet et al.,
2007; Kesler et al., 2011), and a linear association between
RNFL volume reduction and neocortical Aβ accumulation, after
controlling for normal aging ( Santos et al., 2018).

However, it should be considered that RNFL thickness in
healthy old adults is extremely heterogeneous (Poinoosawmy

et al., 1997; Parikh et al., 2007). While some studies
were unable to find differences in retinal layers thickness
between MCI patients and controls (Cheung et al., 2015;
Feke et al., 2015; Pillai et al., 2016; Golzan et al., 2017;
Kwon et al., 2017), others found equal values of RNFL
thickness between MCI patients and healthy subjects (Oktem
et al., 2015; Ferrari et al., 2017). Furthermore, thinning
of the RNFL is also present in other types of dementia,
such as frontotemporal dementia (Ferrari et al., 2017),
dementia with Lewy bodies, dementia associated with
Parkinson’s disease (Moreno-Ramos et al., 2013) and with
cerebral autosomal dominant arteriopathy with subcortical
infarcts and leuco-encephalopathy (CADASIL) (Parisi
et al., 2007), challenging the specificity of OCT findings in
cognitive impairment.

The strength of this study lies in the large number of subjects
analyzed. We also adjusted for age, gender, and education during
analysis, and had excluded confounding factors such as diabetes,
ocular disease, and media opacity reducing visual acuity so
much to interfere with OCT image acquisition and analysis.
Furthermore, the measurements of one eye were randomly
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adopted for each subject as a good practice for statistical analysis
( Armstrong, 2013).

A limitation of the study is that we did not evaluate the axial
length of the eyes analyzed with OCT-A. Extreme axial length
can cause an alteration in the retinal VD calculation (Yang et al.,
2016). However, the large study population and the exclusion
of patients with extreme refractive defects should have reduced
this possible bias.

A methodology limit of the present study is the cross-
sectional nature of the data, preventing assessment of the
direction of the association, and introducing a high risk of
reverse causality bias. An important methodological point
is that clearly, we could not adjust for differences in prior
cognitive ability when analyzing the association between retinal
parameters and cognitive ability later in life. Childhood
cognitive ability accounts for a large proportion of variance in
cognitive ability in old age (Deary et al., 2004). Differences in
prior cognitive ability are associated with health, morbidity and
mortality outcomes, including those related to cerebrovascular
disease (Gottfredson and Deary, 2004; Deary et al., 2010).
Hence, the cross-sectional association between retinal vascular
measures and cognitive ability reported in this study could
inevitably be confounded by prior cognitive ability. Lastly,
with did not correct the models for cardiovascular and
cerebrovascular diseases due to the lack of these data.

In conclusion, the present findings confirmed the
association between impaired cognitive test scores and
retinal VD in older subjects, suggesting that this may be
a potential ocular biomarker of age related-neurocognitive
disease and confirming the OCT-A as a non-invasive tool
to identify this biomarker in preclinical stages of cognitive
impairment. Further larger studies, in longitudinal cohorts or
with a randomized clinical trial design, are needed to test the
effectiveness of applying retinal capillary density as a novel
biomarker to predict the incidence and progression of cognitive
impairment, also at population level.
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