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INTRODUCTION

Understanding the effects of mutation on protein bind-

ing affinity is important in protein design, especially in the

area of protein therapeutics. In silico predictions of the

mutation effects may help guide the experiment and reduce

the cost of bringing therapeutics to market. While a num-

ber of different methods are available for this purpose,1–4

most of them do not take into account of the pH-depend-

ency of protein ionization and are applicable only to struc-

tures in a predetermined protonation state. Several experi-

mental studies have demonstrated that a change of solution

pH within a relatively narrow range could have a significant

effect on the binding affinity5,6 of protein complexes. The

pH-dependent binding profile of a protein often plays an

important role in the biological function of the protein.

For example, immunoglobulin G (IgG) strongly binds to

neonatal Fc receptor (FcRn) in endosome at pH 6.0, and

dissociates effectively from FcRn in serum at pH 7.4. This

pH-selective binding is the key to enable the transport of

maternal antibodies to the offspring across the placenta in

humans or across the epithelial-cell layers in rodents.

Recently, it has been established experimentally, that this

pH-dependent binding profile of IgG to FcRn is related to

the half-life of IgG in serum.7 Engineered monoclonal anti-

bodies (mAbs) with moderately increased binding at both

low pH and at pH 7.4 have shown increased serum half-

life.8 On the other hand, strongly increasing the binding of

IgG to FcRn across all pH range does not improve its half-

life and the binding of IgG to FcRn at pH 7.4 may even

accelerate the clearance of IgG.7 This demonstrates the im-

portance of optimizing the pH-dependent binding behav-

ior of protein and calls for theoretical methods which can

predict mutation energies at different solution pH. In addi-
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ABSTRACT

Understanding the effects of mutation on pH-dependent protein binding affinity is important in protein design, especially

in the area of protein therapeutics. We propose a novel method for fast in silico mutagenesis of protein–protein complexes

to calculate the effect of mutation as a function of pH. The free energy differences between the wild type and mutants are

evaluated from a molecular mechanics model, combined with calculations of the equilibria of proton binding. The predicted

pH-dependent energy profiles demonstrate excellent agreement with experimentally measured pH-dependency of the effect

of mutations on the dissociation constants for the complex of turkey ovomucoid third domain (OMTKY3) and proteinase B.

The virtual scanning mutagenesis identifies all hotspots responsible for pH-dependent binding of immunoglobulin G (IgG)

to neonatal Fc receptor (FcRn) and the results support the current understanding of the salvage mechanism of the antibody

by FcRn based on pH-selective binding. The method can be used to select mutations that change the pH-dependent binding

profiles of proteins and guide the time consuming and expensive protein engineering experiments. As an application of this

method, we propose a computational strategy to search for mutations that can alter the pH-dependent binding behavior of

IgG to FcRn with the aim of improving the half-life of therapeutic antibodies in the target organism.
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tion to interaction with FcRn, pH-dependent binding of

antibody to its target antigen also has effect on its serum

half-life. Most antibodies bind to one target antigen

throughout their lifetime due to the target mediated lyso-

somal degradation. However, a recent example9 shows that

optimizing the pH-selective binding of an antibody to

interleukin-6 receptor (IL-6R) allowed the antibody to be

recycled in the host system. An engineered antibody, tocili-

zumab, which retains the binding to IL-6R in plasma (pH

7.4), but dissociates quickly from IL-6R in acidic endo-

some, reduces the lysosomal degradation of the antibody

and allows the antibody to be recycled back to the plasma

and bind to another IL-6R molecule. Another similar

example10 is the pH selective binding of an engineered

antibody to Proprotein Convertase Substilisin Kexin type 9

(PCSK9) which can more effectively reduce the concentra-

tion of low density lipoprotein (LDL-cholesterol) in serum.

Depending on the purpose of the antibody, its pH-depend-

ent FcRn binding profile can be optimized differently. Most

therapeutic antibodies which target specific antigen should

be optimized to prolong the half-life so that they can be

administered at lower dose and frequency. On the other

hand, conjugates of mAb and small molecule inhibitors

used to target specific cancer cells could be engineered to

have reduced affinity to FcRn in endosome so the drug

molecules can be released in cancer cells more efficiently.

All of the recent experimental advances and limitations

motivated us to develop a new method which can predict

the pH-dependent effects of mutations. Our hope is that

the computational results can be used to provide guid-

ance to lab experiments when designing new proteins.

Here, we report a novel, structure-based computational

protocol for fast virtual mutagenesis of protein com-

plexes. Rather than treating the protein at a fixed proto-

nation state and calculating the mutation energy as a sin-

gle value across different solution pH, our method takes

into account the protonation state of titratible residues

and reports the mutation energy as a function of pH.

The electrostatic contribution of the mutation energy is

derived from the fractional protonation of titratible resi-

dues by integrating over the proton binding isotherms.11

The same approach was applied by others in the previous

studies to model pH-dependent protein stability,12 pro-

tein-DNA,13 protein–protein binding affinity,14 and

cooperativity of ion binding.15 To our knowledge, this is

the first study in which a pH-dependent model has been

applied to calculate the effects of mutation on binding

affinity. The method is implemented in the recent version

of Discovery Studio.16

MATERIALS AND METHODS

General theory

The changes in binding affinity as a result of a muta-

tion, DMGmut; are calculated as the difference between

the binding free energies, MGbind, of the mutant and

wild type.

DMGbind ¼ MGðmutantÞ � MGðwild typeÞ ð1Þ

where MGbind ¼ MGcmplx � MGunbnd. Note that nega-

tive values of DMGmut correspond to a stabilizing effect

of the mutation and vice versa. Following a number of

recently published structure-based models,3,4,13 the

energies of the complex and unbound states, MGcmplx

and MGunbnd, are approximated by a sum of a few

interaction energy terms.

MGðpHÞ ¼ aEvdw þ bMGelðpHÞ þ cMGentr;sc ð2Þ

where a, b, and c are empirical weighting parameters,

Evdw is the van der Waals energy, MGentr;sc is the entropy

term for the cost of reduced side-chain flexibility, and

MGelðpHÞ is the pH-dependent electrostatic interactions

where the protein ionization characteristics are calculated

using the same method as in our previous work.17

The free energy of binding between two molecular

partners A and B is related to the equilibrium association

constant Ka as MGbind ¼ �RT ln Ka for the reaction AB

5 A 1 B.

In most of existing physics-based approaches (e.g.,

MM/FDPB1 or LIE2 methods) the binding free energy

terms necessary to calculate DMGmut are evaluated using

three separate calculations:

MGbind ¼ MGðABÞ � MGðAÞ � MGðBÞ ð3Þ

where the energy terms for the unbound partners A and

B are calculated separately because of technical con-

straints from the linear dimension of the FDPB grid or

from the water box (LIE).

Taking advantage of the pair-wise Generalized Born

approximation18 in CHARMM GBIM method,19,20 the

calculations are reduced to two sets:

MGbind ¼ MGðABÞ � MGðA . . .BÞ ð4Þ

where the unbound state A . . .B is modeled simply by

separating the binding partners by a large distance (e.g.,

500 Å).

To illustrate the general difficulties in calculating the

binding free energy of a protein complex, let us assume,

as an approximation, that the possible structures of bind-

ing partners in bound and unbound states are repre-

sented by sets of discrete conformations Rj. Since the

changes in electrostatic interactions could be a key con-

tributor to binding free energy, and in turn, they depend

on the ionization of acidic and basic groups, the titrata-

ble residues are represented by the possible states of pro-

tonation, Xi.21 The free energy terms of bound and

unbound states could be derived from the corresponding

partition sums of all microstates:
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MG ¼ �RT ln
XNP
i¼1

XNC
j¼1

exp½�GðXi;RjÞ�
RT

� �
: ð5Þ

where NP 5 2Ns is the number of possible protonation

states of Ns titratable groups, and NC is the number of

all possible conformations. Because the total number of

all possible states arising from the multiple conforma-

tions and protonation states is huge, various approxima-

tions are made in the computational approaches that

completely or partially omit the treatment of the multiple

titration states or the protein conformational flexibility.

Based on the level of approximation in the treatment of

the combinatorial problem, we classify all methods,

which are used or could be used in modeling the effects

of the mutations, into four general classes:

1. NP 5 1, NC 5 1: This approximation uses a single pro-

tonation state and a single conformation as input for

the energy calculations. Some well known programs

such as Robbeta3 and FoldEF22 belong to this class,

which calculate the binding free energy as a combina-

tion of forcefield energies and additional empirical

energy terms. An earlier Discovery Studio16 protocol

also belongs to this class and it will be described below.

2. NP 5 1, NC > 1: The second approximation also

neglects the treatment of multiple states of protona-

tion, but model proteins as flexible structures. It is

used in the most rigorous and computationally expen-

sive approaches such as free energy perturbations or

methods that use ensemble averages over MD trajecto-

ries such as MM/PBSA,1 LIE,2 or conformational

sampling algorithms (CC/PBSA4).

3. NP » 1, NC 5 1: As with the first class, this level of

approximation neglects the conformational flexibility,

but takes into account the equilibria of proton bind-

ing. Our method presented here belongs to this class.

4. NP » 1, NC � 1: This approach considers both the

multiple protonation states as well as the conforma-

tional flexibility of the protein. It should be the ulti-

mate goal of future development.

Regarding the third and the fourth approaches, we were

unable to find any computational methods in the literature

that rigorously reports the pH dependent mutation energy

terms. Instead, to improve the predictions when the stand-

ard ionization model fails, some authors2,4 model the ti-

tratable residues in their neutral charge state and add a

simplified correction term of 1.36|pKa-pH| kcal/mol to

DMGmut. However, this approach completely ignores the

cooperativity of the proton binding that in many cases is

critical for the titration properties of complex systems with

multiple ionization sites, as proteins are. It is not applica-

ble for all pH values and needs other calculations or

assumptions to estimate the ionization properties in the

bound and unbound states. In the attempt to fill this gap,

we developed a new computational protocol that auto-

matically calculates DMGmut as a function of pH,

described below as model MPH. For this purpose, we com-

bined two existing computational components in Discov-

ery Studio. The first component is for fast calculation of

DMGmut that has been developed in the ‘‘traditional’’

approximation using a single protonation state (model

M0). The second component was developed earlier to pre-

dict the proton binding equilibria at given pH and used by

another Discovery Studio protocol ‘‘Calculate Protein Ion-

ization and Residue pK.’’17

Energy calculations

Model M0

The free energy terms are approximated with the sum of

a van der Waals term, Evdw and an electrostatic term, MGel

that represents the polar contribution of both the intramo-

lecular and protein solvent interactions as described below.

Two additional energy terms are added, a solvent depend-

ent, MGsa term for the non-polar contribution of solvation

energy, and an empirical entropy term to account for the

changes in the side-chain flexibility:

MG ¼ aEvdw þ bMGel þ cMGentr;sc þ dMGsa ð6Þ

Similar to several existing methods,2–4 the empirical

weighting coefficients a, b, c, and d are introduced to

improve the fit with experimental data. All energy terms are

calculated using CHARMm23 and the method is developed

as program modules written in CHARMm scripting lan-

guage. Evdw, MGel, and MGsa are standard CHARMm

energy terms calculated using the Momany and Rone

forcefield.24 The GBIM CHARMm module20 is used to

calculate the electrostatic term, which extends the func-

tionality of the method to membrane proteins. The total

electrostatic contribution, MGel, is calculated as:

MGel ¼ 332
X
i

X
j>i

qiqj

emrij

� 166
1

em
� 1

eslv

� �X
i

X
j

qiqjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
i;j þ aiaj exp

�r2
i;j

4aiaj

� �r ð7Þ

where qi are the atomic charges, ai are the effective Born

radii, and em and eslv are the dielectric constants of the

molecule and the solvent, respectively. The contribution of

side-chain entropy SSC is approximated as:

MGentr;sc ¼ �TSSC ¼
X

i
f ðsaiÞri ð8Þ

where sai is the percentage side-chain solvent accessibility

of residue i in the folded state, ri is the average entropic

cost to bury a residue in a folded structure, and the summation

is taken over all amino-acid residues. The ri values can be

taken from one of the available empirical entropy scales25,26

and the results in this study are obtained using the data from

Ref. 26. Instead of a linear dependence25 on sai we suggest a

V.Z. Spassov and L. Yan

706 PROTEINS



sigmoid function f(sa)i that ranges between 0 for entirely

exposed to 1 for entirely buried residues:

f ðsaiÞ ¼ 1 � 1

1 þ ebð0:5�saiÞ
ð9Þ

Model MPH

The main difference between the M0 model and the

new, pH-dependent model is that the electrostatic term

MGel and MG are calculated as a function of pH respec-

tively, while the other terms are calculated in exactly the

same way, as in M0:

MGðpHÞ ¼ aEvdw þ bMGelðpHÞ þ cMGentr;sc þ dMGsa

ð10Þ

To evaluate the pH dependentMGel (pH) term we

implemented a method, based on the integration over

the binding isotherms.11 Similar approaches have been

used to model pH-dependence of protein stabil-

ity,12,27,28 the protein-DNA interactions,29 protein-

ligand interactions,17 and cooperativity of ion binding.15

However, no computational tool has been reported to

calculate the full scale of pH-dependent energy differen-

ces resulted from the mutations of amino-acid residues.

In the MPH model, the electrostatic contribution is

calculated as:

MG ðpHÞ ¼ MGelð1Þ � lnð10ÞRT

Z 1

pH

QðpHÞdpH ð11Þ

where Q(pH) can be either the average number of bound

protons or the total charge. The electrostatic free energy

is conveniently referenced to the energy of completely

deprotonated state MGelð1Þ.12 The model of deproto-

nated state used to calculate MGelð1Þ is constructed by

assigning the corresponding partial charges to the atoms

of all titratable groups. Q(pH) is derived from the frac-

tional protonation of titratable residues:

QðpHÞ ¼
XNs

i
uiðpHÞ ð12Þ

The calculations of yi(pH) as well as all other pH

related properties of wild type and mutant structures are

carried out as described in a previous Discovery Studio

method to calculate protein ionization.17 It is based on

GBIM CHARMm calculations combined with the IMC

iterative mobile clustering approach30 to treat the com-

binatorial problem of multiple protonation states.

Another difference from M0 method is that the

CHARMm GBIM module is used only to calculate the

effective Born radii, and the electrostatic energy terms

used in the calculations of MGelð1Þ and yi(pH) are car-

ried out by a separate C11 program that extends the

method by including the effect of ionic strength I.31

In addition to mutation energy terms, the MPH-based

protocol also reports the predicted pKa values, the frac-

tional protonation of titratable residues for the wild type

and mutants in both the bound and unbound states, the

mutation energy at the specified pH, and the correspond-

ing titration curves and the pH-dependent electrostatic

contribution to the binding free energy.

Modeling of the mutant structures

Both M0 and MPH methods use a module written as a

CHARMm script to generate and optimize the structures

of the mutants. The construction of the mutant structure

includes a sampling algorithm that is similar to ChiRo-

tor32 that searches for optimal conformation of the side-

chain of the mutated residue at the fixed backbone.

Implementation details

The method is implemented for both CHARMm and

CHARMm Polar H (hydrogens) forcefields.24 The results

shown in this study were obtained using CHARMm Polar H.

The methods use a number of CHARMm scripts,

C11, and Perl program modules wrapped in a single

Accelrys Pipeline Pilot protocol ‘‘Calculate Mutation

Energy (Binding).’’ The input list of the mutations is

generated automatically from the list of selected residues

and amino acid types of the substitutions. The relation-

ship between CPU time for a single mutation and the

size of the proteins is almost linear. For a medium size

protein of about 200 residues, it takes about 30 sec per

mutation using M0 approximation and 1.5 min using

MPH. In addition, a coarse grain parallelization imple-

mented in the protocol allows automatically and easy dis-

tribution of the individual mutations to a large number

of available processors and servers.

The use of the Generalized Born solvation model in

combination with IMC approach makes the calculations

fast and applicable to very large systems (e.g., more than

1000 sites of titration), and unlike many grid-based

methods, is independent on the size of interacting mole-

cules. Also, the computational protocol is applicable to

membrane environments, and besides protein–protein

complexes, it can be used to study the effect of mutation

on the binding of ions and other compounds such as or-

ganic ligands or DNA/RNA molecules.

Homology model of human Fc and FcRn

Given that the sequences of the Fc domain of human

IgG are very similar, we choose the subtype 1 as input to

the homology model. For FcRn, human sequence from pdb

structure 3m17 is used which includes the beta-2-micro-

globulin domain. The sequence alignment of Fc-FcRn

complex between murine (pdb code 1i1a) and human was

generated using multiple sequence alignment method in

Discovery Studio 3.5. The sequence identities between the

pH-Selective Mutagenesis
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murine and the human for Fc and FcRn domains are 64

and 70% respectively. Twenty homology models are created

using MODELER33 implemented in Discovery Studio and

the model with the smallest violation to the homology

restraints are selected. Further analysis of the models

reveals that some of the interface residues have highly con-

served side-chain conformation and others highly variable.

The residues with conserved side-chains mostly have iden-

tical residue type between murine and human and those

with the highly variable side-chain have different residues

between the two organisms. For those that are highly vari-

able, additional refinements are carried out using the

CHARMm based side-chain optimization method, ChiRo-

tor.32 The resulting model is then used for all the mutation

energy calculations.

RESULTS

Parameterization of the method and alanine
scanning tests

The weighting coefficients a, b, and c were determined

based on matching the mutation data from one protein

(1a22 in Supporting Information Table S1) and verified

on a set of experimental data for 380 mutations to ala-

nine. Briefly, the alanine scanning results (Supporting In-

formation Table SII) showed a state of the art accuracy

with 0.77 kcal/mol unsigned error and a correlation coef-

ficient R 5 0.72. For a previous, pH-independent variant

of the model, the best correlation with experimental

DMGmut were found at a 5 b 5 0.5 and c 5 0.8. For

pH-dependent model represented by Eq. (2), the best pa-

rameter values were found at a 5 0.5, b 5 1 and c 5

0.8. It is notable that after adopting a physically more

consistent electrostatic model, there was no need to scale

the electrostatic energy and b is set to 1.

In our previous work on protein ionization,17 the most

accurate pK predictions were achieved at values of intramo-

lecular dielectric em constant equal to 10711. In this study,

we are using the same electrostatic model. To keep the cal-

culations of all electrostatic energy terms consistent with

the calculations of the ionization properties, the dielectric

constants in Eq.(7) were set to em 5 10 and eslv 5 80,

except for the mutations of the P1 residue of serine protein-

ase inhibitor. This residue is buried deep inside the protein

complex, therefore a slightly decreased value of em.5 8 was

used to account for the less polarazible surrounding.

A more detailed analysis of alanine scanning experi-

ments and the general accuracy of the method will be

presented elsewhere and this study will focus on cases

where the effect of pH on the binding can be important.

Serine protease

One of the most extensively studied systems on the

effect of mutation on binding affinity is the canonical

inhibitors of serine proteases where the primary specific-

ity determining residue (P1) has been mutated to almost

all standard amino acid types. In addition, a few muta-

tions of the P1 residue of turkey ovomucoid third do-

main (OMTKY3) that binds to proteinase B have been

measured experimentally in a wide pH interval.6 This

served as a test case for us to assess how good our

method can predict the pH-dependent mutation energy.

As seen in Figure 1, the calculated binding constant

ratios Leu/Gln, His/Gln, and Glu/Gln agree very well

with the corresponding experimental results with regard

to the pH-dependent behaviors, which leads us to believe

that the computational protocol for pH-dependent muta-

genesis is relevant and motivated us to investigate fur-

ther. The results from the experimental and in silico data

shown in Figure 1 demonstrate that the effect of certain

mutations can depend on pH in a nontrivial way and

even a single amino-acid substitution could result in sig-

nificant changes of up to 3–4 orders of magnitude in

binding affinity when changing the solution pH.

pH-selective binding of IgG to neonatal
receptor

The interaction of immunoglobulin G (IgG) with neo-

natal receptor (FcRn) is a striking example of a natural

design of proteins with pH-selective binding, which is crit-

ical for the biological function7 of IgG. The ability of IgG

(via Fc domain) to strongly bind to FcRn at low pH

(<6.5) and to be effectively released at physiological pH

(7.4) is the key to its long half-life in serum and offers the

opportunity to engineer antibodies with longer or shorter

half-lives depending on the goal of the application. Figure

2 shows the pH-dependent electrostatic contribution to

the binding energy of the Fc-FcRn complex calculated

using Eq. (3) compared to pH binding profiles of 19 pro-

tein complexes from Supporting Information Table SI.

While binding energy curves for most of the proteins

are on plateau or show a slight increase from pH 6 to

pH 8, the Fc-FcRn complex demonstrates a steep increase

in full agreement with its physiological behavior.7 The

calculated binding free energy increases 2.2 kcal/mol

from pH 6 to pH 7.5, which is in line with the experi-

mental34 Kd ratios, corresponding to 2–3 kcal/mol bind-

ing free energy difference, or 50–100 times stronger bind-

ing at pH 6. Only two other complexes out of the 19

show a similar, but less steep slope. One is also an IgG

(1fcc), in complex with protein G and the result is con-

sistent with known experimental35 data that shows a pH

dependent binding of protein G with monoclonal anti-

bodies.

Hotspots for IgG and FcRn binding and pH-
selectivity

After we established that the method can generate pH-

dependent binding profiles reliably, we took further anal-
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ysis to identify the residues on the binding interface

which are responsible for binding affinity as well as for

pH-selectivity. The input for our calculation was the X-

ray structure (pdb code: 1i1a)36 of the Fc-FcRn complex

from murine. First, an alanine scanning of all residues

from Fc-FcRn binding interface was carried out and

DMGmut were calculated from pH 2 to pH 12. The

interface residues are defined as the residues with intera-

tomic distances within 8.0 Å between Fc and FcRn. The

full pH profiles of binding energy differences are shown

in Supporting Information Figure S2. Figure 3 shows the

DMGmut values at pH 6 and 7.5 corresponding to the

two physiological environments of interest.

With a relatively short calculation (about 3 h using a

single CPU medium power desktop PC), all major play-

ers responsible for the binding, as well as for pH selectiv-

ity, are automatically revealed and the results are in full

agreement with the findings from multiple experimental

studies reviewed in Ref. 7. The acidic residues Glu117,

Glu132, and Asp137 from FcRn heavy chain and their

IgG interacting partners His310, His435, and His436 are

among the residues mostly responsible for the stabiliza-

tion of the complex, and for the reduced binding affinity

at pH 7.5. The pH-dependent binding behavior can be

seen from the reduced destabilizing effect of alanine sub-

stitution at pH 7.5. The alanine scanning also shows a

Figure 1
Binding of OMTKY3 inhibitor to proteinase B. A:DMGmut (pH) calcu-

lated for the substitutions of P1 residue Leu18 by several amino-acid types. The

input data was the atomic coordinates of the OMTKY3 and protease B complex

(pdb code: 3sgb). B: pH-dependence of logR, derived from the calculated muta-

tion energies shown in Fig. 1A. R is the ratio of the binding constants Ka(Glu18)/

Ka(Gln18) (red line), Ka(His18)/Ka(Gln18) (blue line), and Ka(Leu18)/Ka(Gln18)

(green line). The triangles, circles, and squares represent the experimental logR

values, obtained in the study of pH dependency of OMTKY3 binding to protein-

ase B.6 Note that the logR values for Glu18/Gln18 and Leu18/Gln18 are derived

directly from DMGmut(pH), while the Ka(His18)/Ka(Gln18) curve is shifted down

to compensate for a ~1.5 kcal/mol nonelectrostatic over-stabilization of His18

mutant.

Figure 2
The binding energy as a function of pH calculated for Fc-FcRn complex

(red circles), compared to the calculated binding curves for 19 protein

complexes from Supporting Information Table S1.

pH-Selective Mutagenesis

PROTEINS 709



strong stabilizing and expectedly pH-independent contri-

bution to binding from the hydrophobic residues of

FcRn Trp133 and Fc Ile253. The magnitude of the calcu-

lated destabilizing effect of 2.3 kcal/mol for His310Ala

and 2.7 kcal/mol for Ile253Ala at pH 6 are in good agree-

ment with the experimental data34 of roughly 3 kcal/mol

when mutating those residues to alanine. The results

shown in Figure 3 demonstrate that a simple in silico ala-

nine scanning can reveal the hotspots for pH-selectivity

and for general binding affinity, which would have other-

wise required more costly and time consuming experi-

mental work. A few more mutations of the FcRn inter-

face residues are in good agreement with the experimen-

tal data37 and the results can be found in Table I.

The structure of the human Fc-FcRn complex is not

available experimentally; however, the sequence identity

of human Fc to murine, and the corresponding human

FcRn to murine FcRn are both over 60%. We used the

murine structure as template to generate homology

model of human Fc-FcRn complex. The alanine scanning

results of the homology model (Supporting Information

Fig. S8) reveals the hotspots of binding as well as pH-se-

lectivity in full agreement with experimental observa-

tions. Similar to the results from murine complex, the

hotspots for binding affinity on human Fc interface are

Ile253, His310, and His435 with the latter two exhibiting

pH-selectivity. His436 in murine IgG is mutated to

Tyr436 in human which remains as a hotspot for binding

due to the similar aromatic side-chain, however, the pH-

selectivity is lost.

Table I
The Effect of Mutations of Murine FcRn, Compared to Experimental

DDGmut Values

DDGmut [kcal/mol]

Mutation Calculated Experimental37

b Ile1Ala 1.2 >2
b Gln2Ala 20.9 20.5
Trp133Ala 4.1 >4.0
Asp137Asn 2.2 >4.0
Asp117Ser 4.6 >4.0
Glu132Gln 3.6
Glu135Gln 3.6
Glu132Gln and Glu135Gln >4.0

Figure 3
The free energy of mutation, DMGmut, at pH 6.0 (red bars) and pH 7.5 (blue bars) extracted from the results of alanine scanning of murine Fc-FcRn interface res-

idues. The IDs A and B correspond to FcRn heavy chain and FcRn microglobulin parts. C corresponds to IgG Fc fragment that is in contact with FcRn.
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In silico design of pH-selective binding of IgG to
FcRn

While the results of alanine scanning identify the resi-

dues with major contribution to the binding energy and

pH-selectivity, it is insufficient for the prediction of

mutations that can improve the pH-dependent binding

behavior. Therefore, in an attempt to find prospective

IgG mutations that could prolong the antibody half-life,

we used a more comprehensive search strategy by mutat-

ing the murine IgG interface residues to several amino-

acid types with different ionization properties. The Sup-

porting Information Figures S3–S7 show the results of

mutating IgG interface residues to the titratible residues

His, Lys and Glu and hydrophobic Leu and Phe. As

expected, mutations with the strongest pH-dependency

between pH 6 and 7.4 came from the results of histidine

scanning (Fig. 4). Two separate single mutations,

Thr254His and Asn434His, show considerably stronger

binding at pH 6, but moderately improved binding at

higher pH. Three other mutations, Thr252His and

Arg311His, Thr254Glu (Supporting Information Fig. S4)

also show pH-selective profile and has reduced binding

affinity at pH 7.4 with no significant effect at pH 6. The

latter three mutations may not improve the half-life of

IgG in serum directly; however, combining them with

stabilizing mutations which are pH-insensitive can poten-

tially lead to improvement of the serum half-life.

There have been very few successful attempts to

increase the half-life of murine antibody in serum and

one of them is a triple mutation on murine Fc domain,

Thr252Leu, Thr254Ser, Thr256Phe.38 The authors find

that this mutation stabilizes the complex by ~ 0.8 kcal/

mol at pH 6 relative to the wild type. Interestingly,

according to our calculations, the net cumulative effect

of the three single mutations Thr252Leu, Thr254Ser, and

Thr256Phe (LSF) at pH 6 is also stabilizing by about 1.2

kcal/mol DMGmut are 20.5 and 21.3 kcal/mol for

Thr252Leu and Thr256Phe as seen in Supporting Infor-

mation Figures S6-S7 and 0.6 kcal/mol for Thr254Ser.

Moreover, the calculations provide a reasonable explana-

tion for the neutral effect observed experimentally of

another triple mutation Thr252Val, Thr254Ser, and

Thr256His (VSH). Considering the Thr252Val has similar

effect as Thr252Leu, less stable effect of the VSH muta-

tion vs. LSF can be explained by characteristics of histi-

dine. Here, the electrostatic repulsion and desolvation

penalty of charged His256 at low pH offset the van der

Waals stabilization (Fig. 4) effect which leads to a neutral

effect of Thr256His mutation at pH 6.

On the other hand, given the importance of half-life of

therapeutic antibody in human system, several experi-

mental attempts have been made to identify mutations

that will improve the binding of Fc to FcRn and prolong

the serum half-life of human IgG. Some level of success

has been achieved and so far the best result is observed

in the triple mutation M252Y/S254T/T256E (YTE) of an

engineered monoclonal antibody MEDI5248 which

improved the half-life of the human IgG in serum by 4

folds. The net cumulative effect of the three single muta-

tions is 20.7 kcal/mol at pH 6 by our calculation which

is stabilizing, but weaker, compared to experimentally

observed 10-fold increasing in binding affinity, corre-

sponding roughly to 21.4 kcal/mol in mutation energy.

Both our calculation and experiment agree that the YTE

triple mutation is not pH sensitive and the mutant keeps

the same pH-dependent binding profile as the wild type.

Almost all of the mutations experimentally studied so

far are not pH-sensitive. In another words, the mutations

increase/decrease binding of Fc to FcRn to the same

extent under pH 6 and 7.4. As a result, this imposes a

Figure 4
The free energy of mutation, DMGmut, at pH 6.0 (red bars) and pH 7.5 (blue bars) extracted from the results of histidine scanning of murine Fc residues from

FcRn interface (Supporting Information Fig. S3).
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top limit of how much we can improve the half-life of

antibody in serum since strong binding at pH 7.4 will

lead to fast clearance of antibody. Here based on our

analysis, we propose a slightly different general strategy

for the design of IgG or other proteins with improved af-

finity at a specific pH and retained or reduced affinity at

another pH.

I. Perform a set of amino-acid scanning experiments to

find one or more mutations with the desired pH

shape of DMGmut (pH) within the pH interval of in-

terest (here pH 6–7.5). In our study, the histidine

scanning identified two pH-selective mutations

Thr254His and Asn434His from murine Fc that show

a significant improvement of the binding at pH 6 and

moderate increase in binding at pH 7.4. Because

Thr254His appears to be more selective, its structure

has been retained for a further search.

II. Find a second, pH-insensitive compensatory mutation

that will shift the DGbind curve up or down so that

the binding affinity is close to desired value at pH

7.4. It can be done in many different ways. But here,

using the information from the alanine scanning, we

substituted Ile253 in the structure of Thr254His mu-

tant with several types of amino-acid residues (Fig.

5). The comparison of the binding energy profile of

the double mutant Thr254His – Ile253Asn has a pH

shape that comes very close to meeting the goals of

the design. However, one of the other mutations,

Thr254His – Ile253Val could also be considered

because it shows �10 times stronger binding affinity

at low pH at the price of a small increase at pH 7.5.

Similar analysis was performed for human Fc-FcRn

complex based on the homology model. Interestingly, the

same Thr254His mutation is also stabilizing, but less pH-

sensitive (see Supporting Information Fig. S9). Another

mutation, Gln311His, is stabilizing with some pH-de-

pendency in the desired direction. However, Glu scan-

ning results (Supporting Information Fig. S10) suggest

other variants with stronger pH dependency. One of

them is the His435Glu which reduces the binding affinity

more at pH 7.5 than at pH 6.

The double mutant, shown in Figure 6, is His435Glu

combined with the stabilizing mutation Thr254His. The

net effect, expressed in DMGmut (pH) of Thr254His –

His435Glu mutant is neutral at low pH with a sharp

increase in binding energy between pH 6 and 7.5. Fol-

lowing the same approach, as for murine proteins, to

shift the binding curve down, we added a third, pH-in-

dependent, but stabilizing mutation, Met252Phe, sug-

gested from Phe scanning calculations. The triple muta-

tion with the improved pH-selective profile (Fig. 6) is a

potential candidate to test experimentally for improving

the human antibody half-life in serum.

DISCUSSION

Modifying the proteins to have different binding

properties with their interacting partners is the main

task in protein engineering. The computational method

we presented here can predict not only the mutations of

a protein to improve its binding affinity with a specific

partner, but also the mutations that change pH-depend-

ent binding behavior. This method is general enough to

be applied to any type of protein and in this study we

are applying it to improve the half-life of monoclonal

Figure 5
Free energy of binding of murine Fc to FcRn calculated as a function of

pH for variants of mutant structures of the Fc fragment. Note that the

wild type curve represents only the electrostatic contribution, while the

binding energies for the mutants include the van der Waals and entropy

energy differences between the mutant and the wild type.

Figure 6
Free energy of binding of human Fc to FcRn calculated as a function of

pH for variants of mutant structures of the human Fc fragment.
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antibody IgG based on its pH-dependent binding to

FcRn.

First, to validate the method, we demonstrated that we

can reproduce with a state-of-art accuracy the experi-

mental energy effects of 380 mutations from 19 proteins,

including those measured at unusual pH (Supporting In-

formation Table S2). Furthermore, the pH-dependent

profile of mutating the P1 residue (Leu18) of OMTKY3

to Glu and His are well reproduced.

In addition, the study shows that with very fast and

easy to set up calculations (3 h on a medium powered

single CPU desktop PC), the hotspots responsible for

binding, including the pH-selective binding on Fc-FcRn

interface are accurately identified for both murine and

human complexes. We can also match the experimentally

found stabilizing mutations for the murine complex and

for most of the important ones found in human com-

plex. It is encouraging that with a high quality homology

model of the human complex, the method can identify

the hotspots and suggest possible mutations for improv-

ing the binding.

Recent experimental studies demonstrate that the IgG

half-life in serum can indeed be prolonged by increasing

its binding to FcRn7,8 at low pH in endosome. However,

all the engineered antibodies produced so far also have

increased binding to FcRn at normal pH in serum. This

imposes an upper limit for how much we can improve

the half-life of IgG in the host system.9,39 In this article,

we proposed a simple strategy that combines the pH-sen-

sitive and pH-insensitive mutations that lead to engi-

neered proteins with desired binding affinities at different

pH environments as shown in Figure 5. We hope this

approach can suggest mutations that can further increase

the half-life of IgG in serum. With the full understanding

that in silico predictions are not always confirmed in real

experiments given that there are so many other factors

influencing the binding, we hope that our results will

motivate experimentalists to consider the pH-dependent

computational mutagenesis as a tool in their search for

new proteins. The method we presented here can per-

form mutagenesis scanning of the IgG residues interact-

ing with FcRn in a few hours on a standard laptop. We

believe that the method is reliable enough to be used for

initial screening to find candidates for further experimen-

tal study. Besides the engineering of protein therapeutics,

the method can be applied in many other areas, such as

studying the effect of mutations on ligand binding, pro-

tein-DNA interactions, or for creating pH-selective pro-

tein inhibitors or enzymes for the purposes of biotech-

nology.
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