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Abstract: Healthy diets may lower oxidative stress and risk of chronic diseases. However, no previous
studies examined associations between diet and fluorescent oxidation products (FlOP), a global
marker of oxidative stress. We evaluated associations between healthy eating patterns (Alternative
Healthy Eating Index (AHEI), Dietary Approach to Stop Hypertension (DASH), and Alternate
Mediterranean Diet (aMED)) and FlOP, measured at three excitation/emission wavelengths
(FlOP_360, FlOP_320, FlOP_400) from 2021 blood samples collected from 1688 women within the
Nurses’ Health Study. AHEI, DASH, and aMED scores were significantly positively associated
with FlOP_360 and FlOP_320 concentrations (p-trend ≤ 0.04), but not associated with FlOP_400.
Among specific food groups that contribute to these diet scores, significantly positive associations
were observed with legumes and vegetables for FlOP_360, vegetables and fruits for FlOP_320,
and legumes and alcohol for FlOP_400. Inverse associations were observed with nuts, sweets
or desserts, and olive oil for FlOP_360, nuts for FlOP_320 and sweets or desserts for FlOP_400
(all p-trend ≤ 0.05). However, FlOP variation due to diet was small compared to overall FlOP
variation. In conclusion, AHEI, DASH, and aMED scores were unexpectedly positively, but weakly,
associated with FlOP_360 and FlOP_320. However, these findings should be interpreted cautiously
as the determinants of FlOP concentrations are not fully understood.

Keywords: healthy eating pattern; oxidative stress; fluorescent oxidation products; nutrition;
epidemiology

1. Introduction

Oxidative stress is a condition associated with an increased rate of cellular damage induced
from an imbalance between the overproduction of reactive oxygen species and insufficient removal
of oxidants by defense systems [1]. Oxidative stress damages lipid, protein, and DNA integrity [2,3],
which subsequently disrupt inflammation, tissue homeostasis, apoptosis, and proliferation [4,5] and
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has been implicated in the pathophysiology of a myriad of human diseases [1,2,5,6]. Foods rich
in healthy diets—characterized by a high intake of fruit, vegetables, and whole grains as well as a
low intake of saturated fat—are aggregate sources of bioactive compounds. These compounds work
as components in antioxidant systems, such as superoxide dismutases or glutathione peroxidase,
and may break free radical chain reactions [7]. Therefore, the reduced risk of chronic diseases such
as cancer, cardiovascular disease and neurodegenerative disorders observed with healthy diet [8–13]
have been postulated to be, in part, attributable to their effect on lowering oxidative stress. However,
epidemiologic evidence supporting the beneficial effects of healthy diets on oxidative stress was
primarily from small and short-term feeding trials [14–22].

Fluorescent oxidation products (FlOP) are a global marker of oxidative stress. Compared
to commonly used oxidative stress biomarkers that reflect oxidative damage to specific cellular
components, experimental studies demonstrated that reactive oxygen species, such as aldehydes
or hydroperoxides, interact with subcellular components—including amino groups, fatty acids and
DNA—to increase the formation of fluorescent products [23–26]. Thus, higher FlOP concentrations
reflect higher levels of oxidative stress that arises from multiple cellular components. Epidemiologic
studies also reported that FlOPs are significantly positively associated with diseases or conditions
related to oxidative stress, such as smoking [27], hypertension [27], coronary heart disease [28,29]
and Alzheimer’s disease [30]. Furthermore, FlOPs were observed to be reasonably reproducible [29]
and relatively stable regardless of processing time and collection matrix [31]. Therefore, FlOPs are
biologically sensitive and reliable biomarkers of global oxidative stress.

To our knowledge, no epidemiologic studies have examined the association between diet and FlOP
concentrations in healthy women, though in vitro and in vivo studies reported that antioxidants high
in healthy diets—such as β-carotene and vitamin E—reduce oxidative stress measured by FlOP [24,32].
Examining the association between FlOP concentrations and dietary patterns in a large sample of
healthy women can improve our understanding of the mechanisms underlying the benefit of a healthy
diet. Therefore, we hypothesized that healthy dietary patterns are inversely associated with FlOP.
To evaluate our hypothesis, we conducted cross-sectional analyses examining the association between
FlOP concentrations and the established healthy dietary patterns associated with the lower risk of
chronic diseases [8–12] (the Alternative Healthy Eating Index (AHEI), the Dietary Approach to Stop
Hypertension (DASH), and the Alternate Mediterranean Diet (aMED)) using a total of 2021 blood
samples collected from 1688 healthy women who were free of disease at the time of blood collection in
the Nurses’ Health Study. We further examined the association between individual food groups that
form these diet patterns and plasma FlOP.

2. Materials and Methods

2.1. The Nurses’ Health Study Blood Subcohort

The Nurses’ Health Study (NHS) enrolled 121,700 female nurses aged from 30 to 55 years in
1976. Participants provided information on lifestyles and medical histories at baseline and subsequent
biennial questionnaires [33]. Blood samples were first collected from 32,826 women from 1989 to
1990 [34,35]. Among those, 18,743 women provided second blood samples from 2000 to 2002 [36].
All samples were obtained and processed using identical protocol in both blood collections and
samples packed on ice were mailed to the laboratory via overnight couriers. Ninety-seven percent of
them arrived within 26 hours of being drawn. Upon arrival, samples were processed, separated into
plasma—red blood cell and white blood cell components—and archived in liquid nitrogen freezers
(≤−130 ◦C).

2.2. Study Population

This study included women within nested case-control studies of fluorescent oxidation products
(FlOP) and myocardial infarction (MI) [29] and breast cancer in the NHS [37]. We included all controls
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and cases of MI and breast cancer diagnosed at least 10 years after the blood collection (n = 2144).
FlOP concentrations in the MI nested case-control studies were assayed in the 1990 blood samples
(n = 1019), whereas FlOP concentrations in the breast cancer nested case-control studies were measured
in both the 1990 and 2000 blood samples (n = 1125). Among those, controls who were subsequently
diagnosed with MI or breast cancer (n = 13) were excluded. Outliers for FlOP_360, FlOP_320, and
FlOP_400—identified by the extreme studentized deviate many-outlier approach [38]—were set to
missing (n = 14 for FlOP_360, 11 for FlOP_320, and 14 for FlOP_400), leaving a total of 2031 samples
with any FlOP measurements. We further excluded women who reported an implausible intake of total
calories (<800 or >4200 kcal/day) or missed more than 70 items on the food frequency questionnaire
(FFQ) (n = 105) and who had a history of MI or cancer before the blood collection (n = 5). This left a
total of 2021 blood samples collected from 1688 women who were free of cancer and MI at the time
of data collection (Figure S1). The institutional review board of the Brigham and Women’s Hospital
(Boston, MA, USA) approved this study.

2.3. Assessment of Dietary Intake and Healthy Eating Diet Score

Usual dietary intake was assessed by a validated FFQ, administered approximately every four
years in the NHS [39]. This present study used dietary intakes assessed from 1990 FFQ and 2000 FFQ.
Nutrient intake was calculated by multiplying the frequency of consumption of each specified food
item by the nutrient content of the specified portions and summing these products for all food items.
Intake of the food group was calculated by summing the consumption of all individual food items
within the specific group. The multivitamins and other dietary supplements were assessed via biennial
questionnaires. Nutrient intake was energy-adjusted [40]. The correlation coefficients of the nutrient
intakes assessed from the FFQ and dietary records ranged from 0.36 to 0.75 [39].

AHEI, aMED and DASH scores (Table S1) were calculated using the FFQ assessment collected
closest to the time of blood collection. AHEI scores are based on nine components [41,42]: vegetables
(excluding potatoes), fruits, nuts and soy, white to red meat ratio, trans fat, polyunsaturated to
saturated fat ratio, cereal fiber, alcohol, and multivitamin use. For each item, a score from 1 to 10 was
assigned, with 10 indicating the most desirable consumption (e.g., high vegetable intake or low trans
fat intake). For multivitamin use, the possible scores were 7.5 for a multivitamin user of more than five
years and 2.5 for others.

The aMED score is composed of nine items [42,43]: vegetables (excluding potatoes), fruits,
nuts, legumes, whole grains, monounsaturated to saturated fat ratio, fish, red or processed meats,
and alcohol. For red or processed meats, one point was given when intake was less than the median
intake. For alcohol, one point was assigned for intakes within the ideal range of intake (5–15 g/day).
For the remaining items, one point was given for each desirable component if the participant’s intake
of that item was greater than the median; otherwise, no point was assigned.

The DASH score [44,45] is composed of eight items: vegetables (excluding potatoes), fruits, nuts or
legumes, whole grains, low-fat dairy products, red or processed meats, sodium, and sugar-sweetened
beverages. A score from one to five was assigned, with five indicating the most desirable consumption.
For vegetables, fruits, nuts or legumes, whole grains, and low-fat dairy products, a value of one
was assigned for the lowest quintile intake of that food. For red or processed meats, sodium,
and sugar-sweetened beverages, inverse scores were assigned.

2.4. Laboratory Assays

FlOP was measured using the assay methods, proven to reflect the change of oxidative
insults [31], in Dr. Wu’s laboratory. Plasma samples extracted with ethanol-ether were measured by a
spectrofluorometer at the wavelengths (excitation/emission) of 360/420 nm (FlOP_360), 320/420 nm
(FlOP_320), and 400/475 nm (FlOP_400). The fluorescence was determined as relative fluorescent
intensity (FI) units per milliliter of plasma. FlOP_360 reflects the oxidation product arising from the
interaction of lipid oxidative products with protein, DNA, and carbohydrates [27,28,31]. FlOP_320
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represents the interaction of lipid hydroperoxide with DNA and metals [24,25]. FlOP_400 represents
the interaction of malondialdehyde (MDA) with proteins and phospholipids [25,46]. The correlation
coefficients with FlOP_360 were 0.44 for FlOP_320 and 0.76 for FlOP_400, whereas the correlation
between FlOP_320 and FlOP_400 was 0.17. The average of intra-batch coefficients of variation (CV)
in the MI and breast cancer nested case-control studies ranged from 5.7% to 13.6%. To correct for
variation in FlOP concentrations across batches, we standardized FlOP concentrations to an average
batch [47].

Plasma total cholesterol and carotenoids were measured in a subset of the study population.
Cholesterol was measured by enzymatic determination using reagents from Roche Diagnostics
(Indianapolis, IN, USA) and Genzyme Corporation (Cambridge, MA, USA) [48]. CVs, based on
blinded quality control samples, were 2%–14%. Plasma carotenoids were assayed using reverse-phase
HPLC [49]. CVs were generally <20% with a maximum CV of 41% for β-cryptoxanthin.

2.5. Assessment of Non-Dietary Data

Lifestyle factors, such as physical activity and smoking status, were reported at baseline and
updated via biennial follow-up questionnaires. Information on age, fasting status, and time of day at
blood draw were collected through separate questionnaires. Body mass index (BMI) was calculated
using the weight reported at blood draw and height at baseline.

2.6. Statistical Analyses

FlOP concentrations were log-transformed to improve normality. To estimate the association of
healthy dietary scores with FlOP concentrations, we used dietary intake and covariate information
collected closest to the time of blood draw. For example, samples collected in 1990 were matched to
dietary intake or covariate data obtained from the 1988 or 1990 questionnaires, whereas samples
collected in 2000 were matched to corresponding data from the 1998 or 2000 questionnaires.
The geometric means of FlOP concentrations were calculated using a linear mixed model with a
sandwich variance estimator [50]. The linear mixed model included a random intercept to take into
account the correlation among the repeated measurements. Multivariate models adjusted for variables
listed in Table 2 as fixed effects. The trend test was conducted using quintile medians, modeled as
continuous variables [51]. We also conducted an analysis stratified by multivitamin use (yes/no),
smoking status (never/ever), alcohol consumption (none/>0–<10/≥10 g/day), BMI (<25/≥25 kg/m2),
blood collection year (1990/2000), and age (<60/≥60 years). The interactions between dietary pattern
scores and these stratification factors were tested by including the cross-product term between these
factors and the dietary pattern score in the multivariable model. In sensitivity analyses, we restricted
our analysis to controls or women who fasted at the time of blood collection and repeated the analyses.

All analyses were conducted separately for FlOP_360, FlOP_320, and FlOP_400. However,
results from FlOP_360 are presented as our primary analysis given that FlOP_360 is the most
comprehensive biomarker of oxidative products [27,28,31] validated previously [28]; FlOP_320 and
FlOP_400 were analyzed as secondary outcomes. All tests were two-sided and considered to be
statistically significant if p < 0.05. Analyses were performed using SAS 9.2 (SAS Institute Inc., Cary,
NC, USA).

3. Results

Women in the higher quintiles of healthy eating scores were less likely to be current smokers or
have high-pack years of smoking. They were also more likely to be physically active, use multivitamins,
and drink alcohol; but among alcohol consumers, women in the highest quintiles of healthy eating
scores drank less alcohol than those in the lowest quintiles (Table 1). The BMI, fasting status, and age
at blood draw were similar across quintiles of dietary scores. The majority of women (~90%) were not
using medications such as cholesterol-lowering drugs or anti-hypertensive drugs (data not shown).
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Table 1. Age-standardized characteristics among women * from breast cancer and MI nested case-control analyses in the Nurses’ Health Study according to quintiles
(Q) of dietary scores.

AHEI DASH aMED

Q1 Q3 Q5 Q1 Q3 Q5 Q1 Q3 Q5

N 405 404 404 304 470 492 366 381 566
Age at blood draw, year † 58.2 ± 8.2 59.6 ± 7.4 61.1 ± 7.1 57.7 ± 8.4 59.7 ± 7.4 61.0 ± 6.8 57.6 ± 7.7 60.0 ± 8.0 60.9 ± 7.0
Premenopausal, % 13 14 13 14 16 13 15 14 13
Nonfasting at blood collection, % 27 25 26 27 24 25 28 27 24
Current smoker, % 23 15 10 23 17 12 27 16 9
Pack years of smoking, year 15.4 ± 21.8 14.7 ± 18.9 13.5 ± 18.6 17.4 ± 22.3 13.5 ± 19.3 11.9 ± 17.0 16.1 ± 22.5 15.4 ± 20.4 10.5 ± 16.0
Nondrinker, % 49 33 28 39 36 34 42 35 30
BMI at blood draw, kg/m2 26.0 ± 5.1 25.2 ± 4.2 24.9 ± 3.9 26.0 ± 5.1 25.5 ± 4.4 24.8 ± 4.0 25.9 ± 4.7 25.4 ± 4.7 25.0 ± 4.1
Physical activity, MET-h/week ‡ 13.1 ± 17.2 16.3 ± 19.1 24.1 ± 32.7 10.9 ± 14.0 16.8 ± 19.6 21.7 ± 22.0 13.4 ± 16.9 16.7 ± 20.0 22.2 ± 28.7
Multivitamin usage, % 36 46 47 38 39 48 36 43 47
Energy intake, kcal/d 1713 ± 480 1773 ± 475 1866 ± 522 1748 ± 478 1766 ± 514 1870 ± 478 1555 ± 434 1741 ± 485 2021 ± 489
Alcohol consumption among drinkers, g/day 12.4 ± 14.3 8.0 ± 9.4 7.4 ± 7.1 10.1 ± 12.2 10.2 ± 10.5 8.1 ± 9.6 9.7 ± 12.3 8.9 ± 9.9 8.3 ± 8.1
Vegetables, servings/day 2.3 ± 1.1 3.4 ± 1.7 4.9 ± 2.1 2.2 ± 1.1 3.4 ± 1.6 4.8 ± 1.9 2.1 ± 0.9 3.3 ± 1.6 4.8 ± 1.9
Fruits, servings/day 1.1 ± 0.7 1.7 ± 1.0 2.6 ± 1.3 0.9 ± 0.6 1.6 ± 0.9 2.5 ± 1.2 1.0 ± 0.6 1.6 ± 1.0 2.4 ± 1.2

AHEI, the Alternative Healthy Eating Index diet; aMED, the Alternate Mediterranean Diet; DASH, the Dietary Approach to Stop Hypertension diet; MI, Myocardial Infarction.
Values are mean (SD) or percentages and are standardized to the age distribution of the study population. * 2021 FlOP samples from 1688 women were included in this analysis;
† Value is not age adjusted; ‡ Metabolic equivalents from recreational and leisure time activities.
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Results from the multivariate and simple models adjusted for age and blood collection variables
were generally similar (data not shown). We, therefore, present only multivariate results. AHEI, DASH,
and aMED scores were positively associated with FlOP_360 (p-trend ≤ 0.03) (Table 2). When comparing
women in the extreme quintiles of dietary scores (Q1–Q5), the mean FlOP_360 concentrations increased
from 224 to 240 FI/mL for AHEI (mean difference = 16 FI/mL), from 222 to241 FI/mL for DASH
(mean difference = 19 FI/mL), and from 224 to 243 FI/mL for aMED (mean difference = 19 FI/mL).
Positive associations were observed between the three dietary patterns and FlOP_320 (p-trend ≤ 0.04),
whereas FlOP_400 was not associated with any of the three dietary patterns. The overall differences
in FlOP_360, FlOP_320, and FlOP_400 across extreme quintiles of dietary patterns were consistently
small (<19 FI/mL for FlOP_360, <109 FI/mL for FlOP_320 and <2 FI/mL for FlOP_400) compared to
the overall variation in FlOP concentrations (the differences between the 90th and 10th percentiles of
FlOP: 218 FI/mL for FlOP_360, 2484 FI/mL for FlOP_320, and 66 FI/mL for FlOP_400).

Given that the AHEI and aMED diets award points for moderate alcohol consumption, but alcohol
may contribute to oxidative stress; we also ran analyses taking out the alcohol components for AHEI
and aMED. However, we obtained similar results (data not shown). Additional adjustments for
multivitamin use, history of hypertension and diabetes, and plasma cholesterol and carotenoids also
did not change results materially (data not shown). Restricting the analysis to fasting samples [27]
attenuated the associations between healthy eating scores and FlOP_360 and FlOP_320 measurements,
but the associations remained in the same positive direction (data not shown). Other analyses
excluding cases or users of anti-hypertensive or cholesterol lowering medications did not change results
(data not shown). Multivitamin use, smoking status, alcohol consumption, BMI, blood collection year,
and age at blood draw did not significantly modify associations between healthy dietary patterns and
FlOP concentrations, except for significant interactions of AHEI score with smoking status in relation
to FlOP_400 and of the DASH score with BMI in relation to FlOP_320 (P-interaction ≤ 0.01; Table S2).
However, the associations between the AHEI score and FlOP_400 were non-significant in each stratum
of smoking status. In the stratified analyses of BMI, the positive association between the DASH score
and FlOP_320 was only statistically significant in women with BMI ≥ 25 kg/m2 (Table S2).

To identify foods that contributed to the observed association between the dietary patterns and
FlOP concentrations, we examined the associations between the food groups that contributed to the
dietary pattern scores and FlOP concentrations (Table 3; Table S3). Intakes of total vegetables and
legumes were significantly positively associated with FlOP_360 (p-trend < 0.002), whereas intakes
of nuts, sweets or desserts, and olive oil were significantly inversely associated with FlOP_360
(p-trend < 0.01). No significant associations were observed between FlOP_360 and consumption
of total fruits, whole grains, red/processed meat, poultry, fish, alcohol, or sugar-sweetened beverages.
The differences in the means of FlOP_360 concentrations across quintiles of individual food groups were
less than 27 FI/mL. Intakes of total vegetables, particularly cruciferous (e.g., broccoli, cabbage, kale) and
other (e.g., eggplant, celery, mixed vegetable) vegetables, and total fruits were significantly positively
associated and nut intake was inversely associated with FlOP_320 (p-trend ≤ 0.008). There were
generally no associations between individual food groups and FlOP_400 except a significant positive
association with alcohol consumption and a significant inverse association with intake of sweets or
desserts (p-trend ≤ 0.04).
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Table 2. Multivariate-adjusted * geometric mean concentrations of FlOP_360, FlOP_320 and FlOP_400 (FI/mL) by quintiles (Q) of healthy dietary scores from the
Nurses’ Health Study.

Quintiles of Dietary Scores

Q1 Q2 Q3 Q4 Q5 p-Trend †

AHEI
N 405 403 404 405 404
Median value of AHEI score 35 43 49 55 64
FlOP_360 ‡ (95% CI) 224 (215, 233) 226 (216, 235) 234 (224, 244) 240 (230, 250) 240 (229, 250) 0.006
FlOP_320 ‡ (95% CI) 501 (458, 549) 519 (471, 571) 546 (493, 604) 600 (541, 665) 610 (544, 684) 0.003
FlOP_400 ‡ (95% CI) 64 (62, 66) 64 (61, 67) 64 (62, 67) 66 (64, 68) 63 (61, 66) 0.90

DASH
N 304 431 470 324 492
Median value of DASH score 2 3 4 5 6
FlOP_360 (95% CI) 222 (212, 233) 232 (224, 241) 231 (223, 240) 230 (220, 242) 241 (231, 251) 0.03
FlOP_320 (95% CI) 515 (462, 574) 528 (482, 579) 545 (496, 598) 559 (499, 627) 607 (549, 672) 0.02
FlOP_400 (95% CI) 64 (61, 66) 66 (63, 68) 65 (63, 68) 62 (60, 64) 64 (62, 66) 0.41

aMED
N 366 327 381 381 566
Median value of aMED score 20 23 26 28 32
FlOP_360 (95% CI) 224 (215, 233) 227 (217, 238) 225 (217, 233) 237 (226, 249) 243 (234, 252) 0.002
FlOP_320 (95% CI) 507 (460, 559) 539 (482, 602) 542 (491, 598) 584 (523, 653) 581 (529, 639) 0.04
FlOP_400 (95% CI) 65 (62, 67) 64 (61, 67) 62 (60, 64) 65 (62, 68) 65 (63, 68) 0.54

AHEI, the alternative healthy eating index diet; aMED, the alternate Mediterranean Diet; DASH, the dietary approach to stop hypertension diet; FlOP, fluorescent oxidation product.
* Adjusted for age at blood draw (continuous), endpoint and lab project (MI1, MI2, Breast One and Breast Two), fasting status (yes and no), time of blood draw (midnight-11 h, and
noon-23 h), season of blood draw (spring, summer, fall, and winter), BMI at blood draw (<20, 20–<25, 25–<30, and ≥30 kg/m2), smoking (never, past, and current), physical activity
(≤3, 3–<9, 9–<18,18–<27, and ≥27 METs/week), total calorie intake (quintiles). Alcohol consumption (0, >0–<5, 5–<15, 15–<30, and ≥30 g/day) was adjusted for the analyses of the
DASH diet score, but not for the analysis of the AHEL and aMED diet scores because alcohol consumption is a component of the AHEL and aMED scores; † p-trend was calculated
by modeling the median value of dietary score quintiles as a continuous variable and calculating the Wald test statistic; ‡ The mean (SD) of FlOP concentrations was 269 (283) for
FlOP_360, 1567 (4287) for FlOP_320, and 72 (54) for FlOP_400.
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When we examined individual nutrients (Table S4), intakes of saturated fat, trans fat,
and protein were significantly inversely with FlOP_360, while dietary fiber was positively associated
(p-trend ≤ 0.04). Among the antioxidants, vitamin C, lutein/zeaxanthin, and lycopene intakes were
significantly positively associated with FlOP_360 (p-trend ≤ 0.04). Nonetheless, the differences in the
geometric means of FlOP_360 across quintiles of nutrients were less than 28 FI/mL. Similarly, FlOP_320
was significantly positively associated with protein, dietary fiber, vitamin C and lutein/zeaxanthin.
Vitamin E, vitamin A, β-carotene, and total carotenoid intakes were more strongly associated with
FlOP_320 than FlOP_360 (p-trend ≤ 0.03). No significant association was observed for FlOP_400 with
any of the nutrients examined, except for an inverse association with flavonoids (p-trend = 0.006).
However, these nutrients contributed to only small variations in FlOP concentrations (model r2 ≤ 0.03
for FlOP_360 and FlOP_320 and ≤0.008 for FlOP_400; data not shown).

Table 3. Multivariate-adjusted * geometric mean concentrations of FlOP_360 (FI/mL) by quintile (Q)
of food group or individual food intake from the Nurses’ Health Study.

Food Group/Individual Food ‡
Quintiles of Dietary Intake

p-Trend †

Q1 Q2 Q3 Q4 Q5

Total vegetables 226 (217, 236) 225 (216, 234) 231 (221, 240) 232 (222, 241) 249 (237, 261) 0.002
Yellow/orange vegetables 234 (222, 246) 229 (221, 238) 232 (223, 242) 235 (225, 247) 232 (224, 241) 0.70
Leafy vegetables 241 (227, 255) 230 (220, 240) 229 (222, 237) 235 (226, 245) 230 (221, 240) 0.76
Cruciferous vegetables 230 (221, 239) 224 (215, 234) 237 (228, 247) 227 (219, 236) 243 (232, 254) 0.08
Other vegetables 230 (220, 241) 230 (221, 239) 230 (220, 240) 228 (221, 236) 243 (231, 255) 0.11

Total fruits 230 (221, 239) 224 (215, 234) 237 (228, 247) 227 (219, 236) 243 (232, 255) 0.07
Nut 245 (233, 256) 232 (223, 241) 231 (221, 241) 234 (225, 243) 222 (213, 231) 0.01
Legume 216 (205, 228) 226 (218, 233) 228 (218, 238) 241 (232, 251) 243 (233, 253) <0.001
Whole grains 233 (221, 246) 233 (223, 244) 236 (222, 250) 227 (219, 236) 233 (226, 241) 0.65
Red/processed meat 228 (219, 238) 231 (221, 241) 235 (226, 245) 240 (229, 251) 226 (217, 236) 0.72
Poultry 246 (231, 262) 224 (215, 234) 224 (216, 234) 229 (222, 236) 243 (233, 254) 0.15
Fish 227 (216, 239) 236 (226, 246) 226 (219, 234) 240 (230, 250) 230 (221, 240) 0.74
Alcohol 229 (221, 237) 228 (221, 234) 244 (234, 255) 231 (219, 245) 241 (221, 264) 0.07
Sugar-sweetened beverages 228 (219, 238) 231 (221, 241) 235 (226, 245) 240 (229, 250) 226 (217, 236) 0.71
Sweets/desserts 246 (235, 258) 238 (228, 247) 231 (222, 240) 225 (216, 234) 224 (215, 233) 0.002
Olive oil 238(225, 252) 235(225, 245) 236(228, 245) 231(205, 261) 226(220, 233) 0.03

FlOP, fluorescent oxidation product. * Adjusted for variables used in Table 2; † p-trend was calculated by
modeling the median value within the categories of dietary intake as a continuous variable and calculating the
Wald test statistic; ‡ The median intakes of individual food groups within the categories of increasing quintile are
as follows: 1.54, 2.42, 3.23, 4.15 and 5.9 servings/day for total vegetables; 0, 0.14, 0.50, 1.00 and 1.28 servings/day
for yellow/orange vegetables; 0.07, 0.14, 0.28, 0.57 and 1.00 servings/day for leafy vegetables; 0.49, 1.06, 1.50,
2.06 and 3.14 servings/day for cruciferous vegetables; 0.14, 0.43, 0.64, 0.93 and 1.50 servings/day for other
vegetables; 0.49, 1.06, 1.50, 2.06 and 3.14 servings/day for total fruits; 0.42, 0.78, 1.21, 1.71 and 3.14 servings/day
for nuts; 0.14, 0.21, 0.50, 0.57 and 1.00 servings/day for legumes; 0.07, 0.14, 0.21, 0.43 and 0.50 servings/day
for whole grains; 0.21, 0.35, 0.56, 0.85 and 1.42 servings/day for red/processed meat; 0.07, 0.14, 0.21, 0.35,
and 0.64 servings/day for poultry; 0.07, 0.28, 0.35, 0.56 and one serving/day for fish; 0, 1.80, 9.90, 19.50 and
36.00 g/day for alcohol consumption; 0.21, 0.35, 0.56, 0.85 and 1.42 servings/day for sugar-sweetened beverages;
and 0.21, 0.56, 0.99, 1.51 and 2.85 servings/day for sweets/desserts.

4. Discussion

In this large, cross-sectional study of healthy women, we examined the association between
healthy eating patterns and oxidative stress measured by plasma FlOP concentrations. The AHEI,
DASH, and aMED scores were significantly positively associated with FlOP_360 and FlOP_320.
Higher intake of total vegetables and legumes and lower intakes of nuts and sweets or desserts were
significantly associated with higher FlOP_360 concentrations. Lower intakes of nuts and higher intakes
of total vegetables (particularly cruciferous and other vegetables) and total fruits were significantly
associated with higher FlOP_320. Among the nutrients examined, positive associations were observed
for the intakes of protein, dietary fiber, vitamin C and lutein/zeaxanthin with FlOP_360 and FlOP_320.
The three dietary scores, individual foods, and nutrients were generally not associated with FlOP_400.
Nonetheless, the variation of FlOP_360, FlOP_320 and FlOP_400 explained by these dietary predictors
was small and sometimes opposite to the expected direction, suggesting that FlOP may not be a useful
measure of diet-related oxidative stress in population studies.
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To date, a variety of oxidative stress biomarkers have been used, though each reflects different
sources of oxidative stress. For example, FlOP represents the end product of reactions between
the free radicals and biologic molecules from the multiple cellular components of lipid, protein,
and DNA, whereas malondialdehyde (MDA) measures an oxidative product from all polyunsaturated
fat. F2-iso-prostanes represents oxidation of arachidonic acid and 8OHdG excretion reflects oxidative
damage to DNA [52]. Furthermore, the behavior of oxidative biomarkers can differ by population
characteristics such as age [53], and a particular exposure may variably affect markers of oxidative
stress [54].

Eight small intervention studies examined the effect of the Mediterranean diet on MDA [17,55],
F2-isoprostanes [18,56], 8OHdG [14,15], or oxidized LDL [16,19]. Among those, six studies [14–19]
observed reduced levels of oxidative stress in the Mediterranean diet group, compared to the control
diet group. In the remaining two studies, the level of oxidative stress did not differ between the
intervention and control arms [55,56]. The recent randomized controlled trial of 192 obese participants
(with two years of follow-up) found that levels of F2-isoprostanes significantly decrease in the
intervention group with the Mediterranean diet, compared to the control group with a conventional
diet [18]. All three previous DASH diet intervention studies [20–22] found a decreased level of either
MDA or F2-isoprostanes when comparing the intervention group to the control group. Furthermore,
previous intervention studies of high fruit and vegetable consumption generally reported a favorable
effect on oxidative stress as evidenced by either lower oxidized LDL or increased antioxidant
capacity [57–66]. In summary, current evidence generally supports the benefit of healthy diet-lowering
oxidative stress, contrary to the positive associations observed in our study.

Previously, the potential adverse effects of natural toxins in plants [67,68], pesticide exposure
on fruits and vegetables [69], and the high nitrate content of vegetables [70] were reported. In the
Alpha-Tocopherol, Beta Carotene Cancer Prevention study [71] and the Beta Carotene and Retinol
Efficacy Trial [71], smokers who were administered beta-carotene supplementation were observed to
have a higher incidence of lung cancer than smokers administered a placebo, suggesting a detrimental
potential of carotene under certain oxidative conditions. However, these study results are not
comparable with our findings, given the higher doses achieved from supplements compared to
dietary consumption, as well as the fact that all study participants were smokers. Common levels of
fruit and vegetable consumption are also not likely to be sufficient to induce toxicity.

Reviewing the evidence from animal and epidemiologic studies, it is unlikely that healthy eating
scores increase oxidative stress. Rather, our results suggest that, although diet may lower risk of
chronic disease, the involved mechanism may not be oxidative stress as measured by plasma FlOP.
FlOP may not serve as a biomarker of oxidative stress for dietary exposure. Indeed, the magnitude of
increase in FlOP_360, FlOP_320, and FlOP_400 across extreme quintiles of dietary patterns, individual
foods, and nutrients was small, compared to overall variation of FlOP defined by inter-decile range
(<28 FI/mL vs. 352 FI/mL for FlOP_360, <213 FI/mL vs. 2483 FI/mL for FlOP_320 and <6 FI/mL
vs. 66 FI/mL for FlOP_400). Similarly, the differences in FlOP due to diet are far less than the
FlOP differences we observed previously due to smoking, hypertension, and coronary heart disease
risk [27,28]. Thus, positive associations observed between diet and the FlOP in our analyses were weak
and may not be clinically meaningful despite the statistical significance.

Alternatively, although the FlOP assay is a sensitive, global marker of oxidative stress that
captures the final fluorescent oxidation products resulting from several cellular components [72,73],
little is known about the specificity of FlOP measurements. Our results might be partly attributable
to other fluorescent compounds that are irrelevant to oxidative damage [72,74]. For example, dietary
factors such as lycopene, vitamin C, and protein that were selected as predictors of FlOP in our study
have delocalized systems of conjugated bonds or aromatic organic compounds that can also emit
fluorescence [75,76]. Certain organic radicals reduced by antioxidants may also emit fluorescence.
These may interfere with the FlOP assay [74] in their performance measuring the accumulation of
oxidation products [31]. Thus, the weak association between dietary factors and FlOP concentrations
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could have been more easily affected by the possible potential dietary fluorescent compounds or
chance findings detected in the FlOP assay, leading to the unexpected results of our study.

Our study has several limitations. Though we cannot rule out some unknown preexisting
conditions that might have influenced FlOP levels, this cross-sectional analysis is based on the data
and blood specimen collected from healthy women. In addition, we further excluded women who
developed MI and breast cancer within 10 years of blood collection to avoid any behavior change
due to preclinical disease. The results from control women who did not develop MI or breast cancer
also did not change results. One measurement of diet and of the FlOP might have attenuated the
association. However, the correlations of individual food intakes from FFQ and from dietary records
were generally greater than 0.5 [77]. The intra-class correlation coefficients of FlOP concentrations
measured one to two years apart were also reasonable (r = 0.44 for FlOP_360; 0.55 for FlOP_320;
and 0.70 for FlOP_400) [37]. Although plasma measures of dietary components may differ from the
consumption measured by FFQ due to differences in bioavailability [78], neither adjustment for plasma
carotenoids (a marker of fruits and vegetables intake) nor for plasma cholesterol (which can influence
plasma levels of carotenoids) changed the results. The score ranges, particularly from the aMED and
DASH diet, were narrow, limiting the power of our study. However, overall results were similar to
those from the AHEI score that has a larger range. Dietary scores pool the intakes of many factors and
thus might mask effects of specific foods. However, FlOP concentrations were only weakly associated
with the individual food groups and nutrients examined. Finally, though the generalizability of our
results could be limited because our study population is health professionals, who are more likely to be
well-nourished, the self-reported data from these individuals are known to be highly accurate [79,80]
ensuring the validity of the results.

To our knowledge, this is the first and largest epidemiologic study examining the associations
of dietary patterns with oxidative stress measured by FlOPs. FlOP is a novel biomarker that is
well correlated with established causes of oxidative stress (e.g., smoking, hypertension, reduced renal
function) [28]. FlOP also has the clinical and practical benefits of improved sensitivity and stability over
other oxidative stress biomarkers [31], but little is known about its dietary determinants. Our analyses
contributed to the limited literature on the predictors of FlOP by examining associations between three
FlOP measures and dietary pattern scores, food groups, and specific nutrients.

5. Conclusions

In conclusion, healthy dietary patterns were not associated with a lower level of oxidative
stress measured by FlOPs. We unexpectedly observed the positive associations between AHEI,
DASH, and aMED scores and oxidative stress as measured by FlOP_360 and FlOP_320. However,
the proportion of FlOP variations determined by dietary factors was low. Our results should be
interpreted with caution due to the possibility of potential artifacts or non-specificity of the FlOP
biomarkers, and should not alter the current guidelines recommending diets high in fruits, vegetables,
whole grains and plant sources of protein.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/8/9/587/s1,
Figure S1: A diagram for the development of the study sample. Table S1: Individual food components of healthy
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oxidation product (FlOP) measurements by smoking status and body mass index. Table S3: Multivariate-adjusted
* geometric mean concentrations of FlOP_320 and FlOP_400 (FI/mL) by quintile (Q) of food group or individual
food intake from the Nurses’ Health Study. Table S4: Multivariate-adjusted * geometric mean concentrations
of FlOP_360, FlOP_320 and FlOP400 (FI/mL) by quintile (Q) of individual nutrient intakes from the Nurses’
Health Study.
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