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Abstract

Identificationofvarious factors involved inadversedrugreactions in targetproteins todeveloptherapeuticdrugswithminimal/noside

effect is very important. In this context, we have performed a comparative evolutionary rate analyses between the genes exhibiting

drug side-effect(s) (SET) andgenes showingnosideeffect (NSET)withanaimto increase thepredictionaccuracyofSET/NSETproteins

using evolutionary rate determinants. We found that SET proteins are more conserved than the NSET proteins. The rates of evolution

between SET and NSET protein primarily depend upon their noncomplex (protein complex association number = 0) forming nature,

phylogenetic age, multifunctionality, membrane localization, and transmembrane helix content irrespective of their essentiality, total

druggability (total number of drugs/target), m-RNA expression level, and tissue expression breadth. We also introduced two novel

terms—killer druggability (number of drugs with killing side effect(s)/target), essential druggability (number of drugs targeting

essential proteins/target) to explain the evolutionary rate variation between SET and NSET proteins. Interestingly, we noticed that

SET proteins are younger than NSET proteins and multifunctional younger SET proteins are candidates of acquiring killing side effects.

We provide evidence that higher killer druggability, multifunctionality, and transmembrane helices support the conservation of SET

proteins over NSET proteins in spite of their recent origin. By employing all these entities, our Support Vector Machine model predicts

human SET/NSET proteins to a high degree of accuracy (~86%).

Key words: side effect associated drug target (SET), nonside effect associated drug target (NSET), killer druggability, essential

druggability, protein evolutionary rates, support vector machine (SVM).

Introduction

The extents to which evolutionary changes have affected drug

side effects among human targets remain unanswered till

date. The present study intends to elucidate the grounds of

unwanted toxic side effects in drug targets. A handful data-

bases (Kuhn et al. 2013; Juan-Blanco et al. 2015; Zhou et al.

2015) for human proteome are of immense importance in this

regard. Based on one of such databases (SIDER 2 of Kuhn

et al. [2013]) with actual experimental drug adverse data,

Wang et al. (2013a) worked on drug target proteins from a

network perspective to explore the biological factors leverag-

ing drug side effects in human. They (Wang et al. 2013a)

discovered that protein essentiality and centrality largely

drive side effects of the reported drugs. Focusing on human

essential targets, a recent study (Liu and Altman 2015) has

highlighted the influence of low affinity binding to

“off-target” proteins as a potential cause of drug side ef-

fect(s). Binding to multiple targets could be another plausible

reason of producing drug side effects in human (Wang et al.

2013b).

Earlier, we have (Begum and Ghosh 2014) emphasized that

interactome network perturbation (drug-induced perturba-

tion) strongly influences target drug side effects. In 2015,

Perez-Lopez et al. (2015) found that drug side effect associ-

ated targets (SET) are better spreaders of network perturba-

tions than nonside effect associated targets (NSET). Using two

different interactome network perturbation models (edgetic

perturbation model and drug-induced perturbation model),

we have previously established that proteins prone to network

perturbations are conserved in nature. All the aforementioned

studies stress on the fact that evolutionary rates should vary

between SET and NSET proteins. Therefore, in the present
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study, we want to identify various factors responsible for be-

tween groups (SET vs. NSET) evolutionary rate variation. A

wide range of publications have already disentangled deter-

minants of protein evolutionary rates in terms of nonsynony-

mous amino acid changing substitution rates (dN) and/or

using the ratio of nonsynonymous to synonymous substitution

rates (dN/dS) (Hirsh and Fraser 2001; Fraser et al. 2002; Alba

and Castresana 2005; Drummond et al. 2006; Pal et al. 2006;

Cai et al. 2009; Wolf et al. 2009a; Begum and Ghosh 2010;

Panda et al. 2012; Zhang and Yang 2015). A number of de-

terminants are yet to be identified to explain total variability of

protein evolutionary rates. In this perspective, another objec-

tive of our present study is to find out some novel biological

attributes which we can use along with previously known

evolutionary rate determinants to increase the prediction ac-

curacy of side/non side effect associated proteins in human.

Using high-coverage genome sequence data from thirteen

vertebrate species (including human, mouse, cow etc.) to eval-

uate the consistency of dN and dS estimates using eight com-

monly-used methods, Wang et al. (2011) has established that

all the methods yielded a nearly uniform result when estimat-

ing dN, but not dS (or dN/dS). Along with Wang et al. (2011),

a couple of other researchers used dN rather than dN/dS to

compute protein evolutionary rates efficiently (Alba and

Castresana 2005; Drummond et al. 2005; Wolf et al.

2009b; Wang et al. 2011). Hence, in this article, we empha-

sized on commonly used human–mouse orthologous pair

(Liao and Zhang 2006; Gharib and Robinson-Rechavi 2011;

Georgi et al. 2013) to define fast evolving and slow evolving

protein coding genes in SET and NSET groups on the basis of

their dN data. Using the druggable subset (drug targeted pro-

teins) of human genome, our study demonstrates that NSET

proteins evolve faster than SET proteins, mainly within

noncomplex forming group. The trend of our result does

not change after controlling two major determinants of pro-

tein evolutionary rates—gene expression level and tissue ex-

pression breadth (Drummond et al. 2005, 2006; Pal et al.

2006; Cai et al. 2009; Park and Choi 2010; Zhang and

Yang 2015). Although, target essentiality (the target protein

is essential in nature) is claimed to play lead role in drug side

effects (Wang et al. 2013a, 2013b; Liu and Altman 2015), we

observed that the variation in evolutionary rates between SET

and NSET proteins does not solely depend on target essenti-

ality. We also used three druggability measures of targets: (i)

total druggability, essential druggability, and killer druggability

to explain the rate discrepancy of SET vs. NSET proteins.

Among the three factors, killer druggability can partially ex-

plain the conservation of comparatively recently emerged SET

proteins over older NSET proteins. In the context of protein

evolution, our study establishes relationship between protein

age, killer druggability, protein multifunctionality, and subcel-

lular localization to explain the variation of evolutionary rates

between the SET and NSET proteins. We observed that re-

cently emerged SET proteins are conserved if they are

membrane localized, more multifunctional, have higher killer

druggability and elevated transmembrane helix content.

Finally, Support Vector Machine (SVM) (Chang and Lin

2011) approach was adopted to predict SET/NSET proteins

considering all the evolutionary rate attributes (genomic, struc-

tural, and functional) those differ significantly between the

SET and NSET proteins. Our machine learning approach can

predict SET/NSET proteins to a high degree of accuracy

(~86%) with 94% precision level.

Materials and Methods

Collection of Protein Evolutionary Rate Data of Human
SET and NSET Proteins

DrugBank v.4.3 (Law et al. 2014) was used to retrieve a cat-

alogue of total 2426 human drug targets and drug related

information. We chose SIDER v.2 (http://sideeffects.embl.de/)

database to identify drugs with 996 experimental side effect

information (Kuhn et al. 2013; Zhou et al. 2015). For a target

protein, more than one drug may have association to side

effect(s). We, therefore, considered a protein as side effect

associated (SET) if its target drug(s) have at least one known

side effect. Nonside effect associated proteins (NSET) are those

whose drug targets are not associated with any side effect.

BioMart interface of Ensembl v.82 (Flicek et al. 2013) was

utilized to obtain evolutionary rate (dN) data using human–

mouse orthologous pairs with dS< 3 (Tang and Epstein 2007;

Begum and Ghosh 2014; Acharya and Ghosh 2016).

However, proteins with dS = 0 were not considered for this

study (although the result remained unchanged when we

considered them). The strength of selection was inferred

based on the value of dN/dS (Drummond et al. 2006; Pal

et al. 2006; Cai et al. 2009; Wang et al. 2011; Zhang and

Yang 2015). Mapping of those evolutionary rate data to SET

and NSET proteins finally yielded 388 SET and 1488 NSET

proteins (supplementary table S1, Supplementary Material

online) with accessible dN (and dN/dS) data for further

analyses.

Acquiring Essential Proteins and Computing Target
Essential Druggability

Target essentiality data for 2472 human proteins were ob-

tained from the study of Georgi et al. (2013). After matching

these essential proteins with our data set, we finally attained

target essentiality information of 120 SET and 361 NSET

proteins.

Considering all 2472 human essential proteins, we first

catalogued the drugs that targets essential proteins using

DrugBank v.4.3 (Law et al. 2014) data. Next, we counted

the number of such drugs against each protein target of our

data set to get the essential druggability of that target. By this

way, we got essential druggability of 1382 proteins out of

total 1876 proteins.
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Estimation of Target Killer Druggability

To estimate killer druggability of a target protein, we listed the

drugs for which killing/toxic side effect(s) currently exist in

SIDER2 database (Kuhn et al. 2013). Zhou et al. (2015) con-

sidered death, sudden death, sudden cardiac death, cardiac

death, cancer, hemorrhagic strokes, heart failure, and conges-

tive heart failure as killing side effects. However, we consid-

ered death, sudden death, cancer, metastasis, myocardial

infarction, heart failure, congestive heart failure, coma, com-

pleted suicide, stroke, and cardiac arrest as potentially toxic/

killing side effects for our study. Next, we counted the number

of drug(s) exhibiting killing side effects against each protein

target to assign the killer druggability of the target. It is a

property of SET proteins and we found the killer druggability

of 215 (out of total 388) SET proteins for our investigation.

Retrieval and Analyses of Protein Complex Data

CORUM database (http://mips.helmholtz-muenchen.de/

genre/proj/corum/) was browsed to collect human protein

complex assembly data (Ruepp et al. 2010). The number of

complexes in which a target protein participates represents

the complex number of that target (Chakraborty et al.

2010). Thus, we perceived 385 complex forming proteins

for further investigation.

To reconfirm our result, we further considered large protein

complexes (size� 5), since, very small protein complexes of

CORUM could produce high hit rate fluctuations (Bin Goh

et al. 2015). Following this method, protein complex data

for SET/NSET proteins get reduced from 385 to 178.

Estimation of Gene Expression Level and Tissue
Expression Breadth

We fetched http://genes.mit.edu/burgelab/mrna-seq/ to re-

trieve human mRNA-seq data to evaluate gene expression

levels (Wang et al. 2008). Following Huang et al. (2013), we

call a gene is expressed in a tissue if its expression value is

greater than M + 2�MAD, where M and MAD are deter-

mined by M = median(x); and x indicates the average expres-

sion values for the corresponding gene among all tissues. For

each gene, we counted the number of expressed tissues to

indicate its tissue expression breadth (Begum and Ghosh

2014). To represent the expression level of a gene, we took

the average expression value in the tissues where it is found to

be expressed (Begum and Ghosh 2014). By this way, we ob-

tained expression data of total 1411 genes of our data set.

Dating Protein Age

Two different approaches were taken to quantify the phylo-

genetic emergence of a protein. As a first measure, we col-

lected the list of human gene encoded proteins along with

their phylostrata of origin from the supplementary data given

by Domazet-Lošo and Tautz (2008). We considered a protein

as “old” if it falls in ps1 or ps2 (before fungi and up to eu-

karyotes) group and as “new” if it belongs to any other ps

group (Domazet-Loso and Tautz 2008; Nagaraj et al. 2010).

We then mapped the age data to our data set of SET/NSET

proteins which finally provided 365 “new” and 1459 “old”

proteins for further analyses. As an alternative to the first

method (which provides categorical age information), we es-

timated the evolutionary origin of our proteins of interest (in

Ma: million years ago) using a phylogenetic approach imple-

mented by ProteinHistorian tool (Capra et al. 2012). By this

way, we obtained numerical age data of 1836 proteins.

Determining Pleiotropic Index of a Protein

We contemplated on Gene Ontology (GO) annotation for the

“biological process” from Ensembl Genome Browser v.82 (He

and Zhang 2006; Chakraborty and Ghosh 2013; Flicek et al.

2013) to calculate the multifunctionality/pleiotropic index of a

protein.

Analyzing Protein Subcellular Localization

Even though a couple of databases are available to predict

subcellular localization of a protein, we deliberately used the

data provided by Wang et al. (2013b) to identify the subcel-

lular localization of proteins of our data set. Following this

method, we spotted the subcellular localizations of 1004

SET/NSET proteins.

However, to predict the transmembrane helices of a pro-

tein, we relied on hidden Markov model based TMHMM v.2.0

Server (http://www.cbs.dtu.dk/services/TMHMM/), the best

performing transmembrane prediction program (Huang

et al. 2002).

Statistical Analyses

All statistical analyses were done with the help of SPSS v.13.

We considered nonparametric Spearman rank correlation co-

efficient and two-tailed Mann–Whitney U test (MWT) to cal-

culate correlation and difference between two data sets,

respectively. To create randomized data set for performing

simulation study, we used R package v. 2.13.1 (http://www.

r-project.org). For randomization, if n1 and n2 be the sample

sizes respectively (n1> n2); we drew n2 points from the first

sample of size n1 at random to compute the mean of each

subset (Necsulea et al. 2009). We did n2 times of such simu-

lations. Finally, we used R v 2.13.1 package to compare the

mean of two groups (Necsulea et al. 2009; Hesterberg et al.

2010). The results were considered to be statistically signifi-

cant if the P value is less than 0.05.

Implementation of Support Vector Machine

The SVM algorithm implemented in the open access LIBSVM

v.2.84 package (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)

(Chang and Lin 2011) was adopted to perform prediction of

Evolutionary Analyses of Human Side Effect Associated Proteins GBE
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SET/NSET proteins using different evolutionary rate attributes.

In our data set of 1876 proteins, 388 SET proteins were clas-

sified as positives and rest of the 1488 NSET proteins was

treated as negative cases. Using “subset.py” function of

LIBSVM (Chang and Lin 2011), 70% of the total data set

was randomly chosen as the training data set and the remain-

ing 30% was used as test set. All the attributes in the training

and test data sets were scaled in the range of�1 to 1. For our

study, we considered most widely used C-SVC type SVM and

Radial Basis Function (RBF) kernel for better performance of

our model (Dey et al. 2012). The penalty parameter C and the

RBF kernel parameter g were optimized using grid search, a

built in function of LIBSVM (Chang and Lin 2011). In addition

to 5-fold cross-validation, we checked the average perfor-

mance of our model on 10 different randomly generated

training and test sets.

Performance Assessment

Considering TP, FP, TN, and FN as the number of true posi-

tives, false positives, true negatives and false negatives respec-

tively; we estimated the prediction accuracy
ðTPþ TNÞ

ðTPþ FNþ TNþ FPÞ � 100
h i

of our model (Dey et al. 2012;

Kisslov et al. 2014). In addition, we relied on a balanced mea-

sure “Matthews correlation coefficient (MCC)” during cross-

validation, as the positive to negative case ratio was not one

(Dey et al. 2012). The MCC value was determined using the

following formula:

MCC ¼
½ðTP � TNÞ � ðFP � FNÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðTP þ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ�
p

Where, the values+1, 0, and �1 signify a perfect, a random

and an inverse prediction, respectively (Dey et al. 2012). We

also determined sensitivity or recall TP
ðTPþ FNÞ � 100
h i

, specificity

TN
ðTNþ FPÞ � 100
h i

, positive predictive value (PPV) or precision

TP
ðTPþ FPÞ � 100
h i

, negative predictive value (NPV)

TN
ðTNþ FNÞ � 100
h i

, and F-measure 2�Precision�Sensitivity
ðPrecisionþSensititvityÞ

h i
to evalu-

ate the prediction performance of our model (Dey et al. 2012;

Kisslov et al. 2014).

Results

Side Effect Associated Drug Targets Are Conserved and
Exhibit Higher Druggability

In this study, we collected evolutionary rates (dN) data from

public resources for the druggable subset of human SET and

NSET proteins (n = 1876). We observed that SET proteins

evolve slower than the NSET proteins (average

dNSET= 0.062, average dNNSET = 0.083, PMWT = 2.81�10�5).

Similar trend was observed using dN/dS data (average

dN/dSSET= 0.092, average dN/dSNSET = 0.126, PMWT =

2.08�10�6). Interestingly, we did not find any difference

in dS between SET and NSET proteins (average

dSSET= 0.676, average dSNSET = 0.669, PMWT = 3.65�10�1).

This analysis suggests that the difference in dN/dS value be-

tween NSET and SET proteins mainly depends upon the dif-

ference in dN. To assess that the significance is not due to the

sample size difference of the proteins of our interest, we per-

formed nonparametric test with randomized data set of SET

and NSET proteins (10,000 simulated replicates). Thereby, a

significant difference (Wilcoxon rank sum test:

P<2.20�10�16) in dN between SET and NSET strengthens

the fact that our observation is free from sample size bias.

We observed an inverse correlation between total drugg-

ability (total number of drugs/target) and protein evolutionary

rates (Number of drugs/target r dN =�0.060, P = 9.00�10�3,

n = 1876) which is in agreement with the earlier observation

by Wang et al. (2013b). To understand the evolutionary rate

heterogeneity between human SET and NSET proteins, we

pooled all the proteins into two bins according to their

target drug number(s) (bin 1 [number: 1–3]: Low, bin 2 [num-

ber�4]: High). Interestingly, we found that the difference in

dN between SET and NSET proteins exists only in bin 2 (fig. 1),

whereas the total druggability differs between SET and NSET

proteins in both bin 1 (PMWT = 1.39�10�8) and bin 2

(PMWT = 5.58�10�16). Similar result was obtained using dN/

dS (data not shown). This study affirms that total druggability

may not be a crucial factor for obtaining evolutionary rate

heterogeneity between human SET and NSET proteins.

Recently, Zhou et al. (2015) have claimed that 51% of FDA

approved drugs have higher killing index, which usually de-

notes the potentiality of a drug having harmful side effects. In

our analysis, we computed the number of drugs exhibiting

killing side effects for each target protein and termed them

as “killer druggability” of that target protein. When we cor-

related dN and the killer druggability of proteins, killer drugg-

ability has been found to have only a weak but significant

negative correlation with protein evolutionary rates (Number

of killer drugs/target r dN =�0.085, P = 2.16� 10�4,

n = 1876). This observation suggests that killer druggability

may influence evolutionary rates of SET/NSET proteins.

Based on protein evolutionary rates, equally populated bins

(i.e., having the identical number of proteins in each of the

two bins: bin 1 [rate: 0.0006–0.0576; slow evolving], bin 2

[rate: 0.0576–0.5762; fast evolving]) were constructed to

better understand the distribution pattern of killer druggable

proteins (proteins with killer druggability> 0). The pattern is

found to be consistent with our correlative study since slowly

evolving group (bin 1) contains more proteins (58.60%) with

higher killer druggability (killer druggability> 0) than that of

other proteins (48.89%) with killer druggability (killer

druggability = 0) (Two sided Fisher’s exact test:

P = 4.10� 10�2). To comprehend the relative influences of

total druggability and killer druggability on the rates of
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molecular evolution, we performed a linear regression analysis

considering dN as dependent variable and total druggability,

killer druggability as independent variables. We observed that

killer druggability is a better predictor of protein evolutionary

rates (F = 6.979, P = 1.00�10�3) than total druggability (b total

druggability/target =�0.021, P = 5.26�10�1; b killer druggability/tar-

get =�0.070, P = 3.40�10�2).

Target Essentiality and Target Essential Druggability Are
Not Sole Determinants of SET/NSET Protein Evolutionary
Rates

It was observed that essential genes evolved slowly than

nonessential genes (Kimura and Ohta 1974; Chakraborty

and Ghosh 2013; Zhang and Yang 2015) and essential drug-

gable targets were shown to have strong affinities towards

drug side-effects (Liu and Altman 2015). We mapped human

essential genes [provided by Georgi et al. (2013)] to our data

set and found that essential proteins evolve slower than

nonessential proteins (average dNEssential proteins

[n =481]= 0.059, average dNNonessential proteins [n =1395] = 0.085,

PMWT = 4.84�10�16). This finding led us to presume that

the conservation of SET proteins over the NSET group may

largely attributable to their difference in essential protein con-

tents. Despite the fact that the proportions of essential pro-

teins are significantly higher in SET (30.93%; 120/388)

compared to the NSET proteins (24.26%; 361/1488) (SET

vs. NSET: Z score = 2.679, P = 7.40� 10�3), no significant dif-

ference in the rate of protein evolution was detected between

SET and NSET proteins within the essential gene set (average

dNSET= 0.055, average dNNSET = 0.061, PMWT = 7.74�10�1).

From this study, we infer that the difference in rate of

evolution between SET and NSET proteins is independent of

target essentiality.

In other words, the number of essential proteins that bind

to a drug is a key predictor of drug side-effects (Wang et al.

2013a; Liu and Altman 2015). To investigate, we introduced a

new term “essential druggability” of a target protein which

actually denotes the number of drug(s) having one or more

essential partner(s) for each target protein (irrespective of the

essential/nonessential nature of the target). We hypothesize

that increasing essential druggability of a target will intensify

its sequence conservation rate and indeed we observed the

same trend (Number of drugs that binds to essential proteins/

target r dN =�0.147, P = 1.00�10�6, n = 1382). We also

found that essential druggability differs between SET and

NSET protein targets (average essential druggabilitySET

[n=360]= 9.328, average essential druggabilityNSET

[n=1022] = 2.208, PMWT = 1.21�10�62). We thus infer that es-

sential druggability could be a potential evolutionary rate de-

terminant. To better understand, proteins are pooled into a

number of bins by means of their essential druggability (bin 1

[number: 1–2]: Low, bin 2 [number: 3–4]: Medium, bin 3

[number�5]: High). Thereby, we found that the difference

in dN does not exist between SET and NSET proteins in any

of the three bins (PMWT: bin 1 = 2.87�10�1, bin

2 = 2.08�10�1, bin 3 = 4.16�10�1) while target druggabil-

ity differs in bin 1 and bin 3 (PMWT: bin 1 = 2.00� 10�3, bin

2 = 8.90�10�2, bin 3 = 2.42� 10�5). The result does not

change using dN/dS data (data not shown). All these analyses

indicate that essential druggability may not be a sole crucial

factor for obtaining evolutionary rate heterogeneity between

SET and NSET proteins.

FIG. 1.—The relationships between protein evolutionary rates (dN) and target drug numbers of human SET vs. NSET proteins in different bins.

PMWT< 0.05 denotes significant difference between groups.
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Noncomplex Forming Ability Plays Key Role in
Evolutionary Rate Disparity between SET and NSET
Proteins

Protein complexes where two or more proteins integrate to

carry out and regulate a variety of cellular functions and es-

sential genes are more likely to be components of the protein

complexes (Wang et al. 2009; Chakraborty and Ghosh 2013;

White et al. 2013). Such complex forming proteins endure

strong selective pressure due to their functional constraints

(Teichmann 2002; Mintseris and Weng 2005; Chakraborty

et al. 2010). Even though, complex forming proteins are

found to be slow evolving than noncomplex forming protein

(average dNcomplex forming [n=385]= 0.063, average dNnoncomplex

forming [n=1491] = 0.083, PMWT = 7.45�10�13), we did not find

any difference in protein complex number (number of com-

plexes a protein belongs to) between SET and NSET protein

sets (average complex numberSET [n=388]= 0.771, average

complex numberNSET [n=1488]= 0.795, PMWT = 4.95�10�1).

We, thus, infer that complex number may not be an evolu-

tionary rate determinant of SET and NSET proteins.

We splitted our data set into (i) complex forming (complex

number> 0) and (ii) noncomplex forming (complex num-

ber = 0) groups. Subsequent analysis demonstrates that SET

and NSET proteins are under equal selective constraint (dN/dS)

within complex forming group (fig. 2a) plausibly due to their

comparable functional utility. However, the difference in dN

(within complex difference: PMWT = 5.15�10�1; within

noncomplex difference: PMWT = 9.11�10�6) and dN/dS

between SET and NSET proteins persist in noncomplex form-

ing group (fig. 2a), where almost equal proportions of SET

(80.67%; 313/388) and NSET (79.17%; 1178/1488) proteins

are present (SET vs. NSET: Z score = 0.653, P = 5.14�10�1).

From this analysis, we conclude that the observed difference

in evolutionary rates between SET and NSET proteins may be

guided by protein noncomplex forming ability irrespective of

their sample size bias.

A recent article has emphasized that some protein com-

plexes those are very small in size may prompt high hit rate

variations (Bin Goh et al. 2015). To reconfirm our result, we

considered protein complexes with size� 5 (Bin Goh et al.

2015). Further analyses revealed an identical trend i.e. the

dN (within complex difference: PMWT = 6.11�10�1; within

noncomplex difference: PMWT = 6.83�10�7) or dN/dS differ-

ence between SET and NSET proteins remains insignificant

only within the complex forming group (fig. 2b). This study

affirms that noncomplex forming ability acts as an important

evolutionary rate determinant of SET and NSET proteins, in-

dependent of protein complex sizes.

Gene Expression Level and Tissue Expression Breadth
Are Inadequate to Explain Evolutionary Rate Variation
between SET and NSET Proteins

Proteins belonging to multiple complexes (higher protein com-

plex association number) are comparatively highly expressed

than proteins those have subunits of fewer protein complexes

or those do not form any complex (Chakraborty and Ghosh

FIG. 2.—The impact of complex forming ability on dN/dS of SET and NSET proteins. The bar graphs demonstrate the difference in the distribution of dN/

dS between SET and NSET proteins in complex/noncomplex forming groups considering (a) all protein complexes (b) large protein complexes (size� 5) of

CORUM database. PMWT< 0.05 between groups was used to represent a statistically significant difference. Error bars signify 95% confidence interval.
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2013). In addition, gene expression level is known as primary

determinant of evolutionary rate because highly expressed

genes reduce mistranslation induced misfolding cost by

experiencing higher selective constraints (Drummond et al.

2005, 2006; Pal et al. 2006; Wolf et al. 2009b; Zhang and

Yang 2015). Therefore, it is necessary to determine the influ-

ence of gene expression levels on the rates of evolution of SET/

NSET proteins to draw any further inference. We did not find

any significant correlation between gene expression level and

dN; although a weak negative correlation exists between gene

expression level and dN/dS (Expression level r dN=�0.024,

P = 3.60�10�1, n = 1411; Expression level rdN/dS=�0.077,

P = 4.00�10�3, n = 1411). In contrast, we obtained a lower

gene expression level in SET group of genes compared to the

NSET group (average gene expression levelSET

[n =385]= 48.740, average gene expression levelNSET

[n =1491] = 92.624, PMWT = 6.22�10�5). We also estimated ex-

pression levels of SET and NSET genes separately within com-

plex and noncomplex forming groups. SET genes are found to

be lowly expressed than NSET genes, whereas difference in dN

or dN/dS between SET and NSET does not exist (complex

forming group: average gene expression levelSET [n =55] vs.

NSET [n=268] = 44.411 vs. 82.126, PMWT = 3.00�10�3;

noncomplex forming group: average gene expression level

SET [n =194] vs. NSET [n =894]= 49.967 vs. 95.771,

PMWT = 3.00�10�3). This finding highlights the fact that

gene expression level does not have any influence in explain

the evolutionary rate variations between SET and NSET group.

It has been argued that tissue expression breadth has more

influence on protein evolutionary rate than gene expression

level and such tissue-specific genes evolve faster than broadly

expressed housekeeping genes (Duret and Mouchiroud 2000;

Zhang and Li 2004; Park and Choi 2010). In this context, it is

expected that conserved SET proteins are comparatively

broadly expressed than the NSET proteins. Surprisingly, we

noticed a lower tissue expression breadth of SET group of

proteins (average expression breadth& 8, n = 249) compared

to NSET (average expression breadth& 12, n = 1162, and

PMWT for SET vs. NSET tissue expression

breadth = 1.80�10�12) proteins, implies that side effect as-

sociated genes tend to be expressed in limited number of

tissues in spite of their lower evolutionary rates. Similar

trends were observed in complex (SET vs. NSET:

PMWT = 8.48�10�5) and noncomplex (SET vs. NSET:

PMWT = 2.40�10�9) forming groups.

Protein Age, Functionality, and Killer Druggability
Simultaneously Influence the Conservation of SET
Proteins over NSET Group

The time of origin of a protein strongly influences its rate of

molecular evolution since protein cites some “memory” of its

age (Vishnoi et al. 2010). It has been found that younger

proteins evolve faster than older proteins (Alba and

Castresana 2005; Wolf et al. 2009b). Therefore, it is expected

that SET proteins have to be comparatively older than NSET

proteins. Using categorical gene age data of Domazet-Lošo

and Tautz (2008), we found that younger proteins are signif-

icantly overrepresented in SET group than random expectation

(odds ratio = 1.325, Z score = 2.233, P< 2.55�10�2). Similar

trend was observed when we carried another study with pub-

licly available tool: “ProteinHistorian” (Capra et al. 2012)

(average ageSET [n=382]&949 Ma, average ageNSET

[n=1454]& 1172 Ma, PMWT = 4.00�10�3), although there

exists an inverse correlation between protein age and evolu-

tionary rates (Age of proteins r dN=�0.364, P = 1.00�10�6,

n = 1836). In view of the fact that tissue specific proteins are

comparatively younger than housekeeping proteins (Duret

and Mouchiroud 2000; Zhang and Li 2004; Wolf et al.

2009a, 2009b; Park and Choi 2010), we performed a corre-

lation analysis between protein age and tissue expression

breadth for our data set. A significant positive association be-

tween the variables (Age of proteins r Expression breadth= 0.308,

P = 1.00�10�6, n = 1409) strengthens the fact that lower

tissue expression breadth of SET proteins are relatively youn-

ger than the NSET proteins. A comparison of protein age be-

tween SET and NSET proteins indicates a similar mode of age

difference only within noncomplex forming group (table 1).

All these results imply that the time of origin may have some

influence to explain the evolutionary rate heterogeneity be-

tween SET and NSET proteins.

In an attempt to find the causes of target drug side effects,

a recent article has highlighted that many of the drug side-

effects stem from disruption of important biological processes/

pathways (Liu and Altman 2015). Therefore, one plausible

reason of detecting variation in dN or dN/dS between SET

and NSET proteins could be their differences in functionalities

which strongly influence protein age as well as the rate of

molecular evolution (Kimura and Ohta 1974; Wolf et al.

2009b; Ohta 2011). Concentrating on biological functions

(see “Materials and Methods” section) of proteins, we per-

ceived that SET proteins are more multifunctional than NSET

proteins (average pleiotropic indexSET [n =387]= 20.052, aver-

age pleiotropic indexNSET [n=1480] = 15.724,

PMWT = 3.57�10�7) where protein multifunctionality boosts

its sequence conservation rates (pleiotropic index r
dN=�0.157,

pleiotropic index r dN/dS=�0.155, P = 1.00� 10�6, n = 1867).

Here pleiotropic index has been used to measure the multi-

functionality of a protein. Based on our result, we infer that

multifunctionality could be a promising determinant of evolu-

tionary rates of SET/NSET proteins. When we performed cor-

relation analyses between protein biological functions, their

age and killer druggability, we found that killer druggability

increases with protein multifunctionality (pleiotropic index r killer

druggability/target= 0.168, P = 1.00�10�6, n = 1867) and redu-

ces with their age (table 2). Our result affirms that more multi-

functional younger drug targets are candidates for acquiring

killing side effects (tables 2 and 3). Furthermore, to interpret
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the impact of killer druggability on related biological parame-

ters, we removed all SET proteins with killer druggability> 0

[55.41%; 215/388] from our entire data set. We, thereby,

noticed that the differences in protein age (considering nu-

merical age data: SET = 1080 Mya, NSET = 1172 Mya,

PMWT = 3.33�10� 1; considering categorical age data: SET

vs. NSET old: 76.88% vs.79.23%, SET vs. NSET new:

22.54% vs.17.81%, P>5.00� 10�2 in both cases) and pro-

tein multifunctionality (PMWT = 3.33�10�1) no longer hold

between SET and NSET groups. A consistent trend was ob-

tained for noncomplex forming proteins where the dN differ-

ence exists for SET vs. NSET proteins (data not shown). From

these observations, we conclude that higher killer druggability

and multifunctionality have the potential to explain the lower

evolutionary rates of recently emerged SET proteins over the

NSET proteins. However, after removal of SET proteins with

killer druggability> 0, the average dN of SET proteins elevates

from 0.062 to 0.066, although the between group (SET vs.

NSET) dN difference (PMWT = 1.90�10�2) still persists in rest

of the data set. These findings corroborate that target killer

druggability strongly influences protein age and functionality

in the evolutionary landscape and partially explains the con-

servation of SET proteins over NSET group.

Impact of Protein Age and Sub-Cellular Localization for
the Evolutionary Rate Difference of SET vs. NSET Proteins

A significant evolutionary rate conservation of SET (n = 173)

proteins with respect to NSET (n = 1488) group in rest of the

data set (i.e. excluding drug targets with killing side effect>0)

indicates that some other factor(s) also influence the evolu-

tionary rates of SET (with no killing side effect) and NSET pro-

teins. A significant difference (Wilcoxon rank sum test:

P<2.20� 10�16) in dN between randomized (10,000 simu-

lated replicates) SET and NSET groups reassures that our result

is insensitive to the nonuniform sample sizes of SET and NSET

proteins. To determine the impact of gene age on dN in the

data set of proteins exhibiting no killing side effects, we per-

formed a correlation analysis between the two factors. A

better correlation than whole data set (considering numerical

age data: Age of proteins r dN=�0.390, P = 1.00� 10�6,

n = 1626) was observed by this way. When we compared

the evolutionary rates of SET and NSET proteins separately

within “old” and “new” age groups; the evolutionary rate

variation was found only within new age group (considering

both the age data resources; fig. 3). So as the case for

noncomplex forming young proteins (Data set of numerical

age data; categorical age data respectively: dNSET vs. dNNSET

PMWT = 1.00�10�3; dNSET vs. dNNSET PMWT = 6.00�10�3).

Since because, the sample size distributions of SET and NSET

proteins within new age class are statistically insignificant

(Z = 1.524; P = 1.27�10�1); our observation confirms that

protein age is a significant feature that drives SET/NSET protein

evolutionary rates in new age group irrespective of sampling

distribution.

One possible reason for obtaining lower dN of SET proteins

compared to the NSET proteins within the new age group

could be their subcellular localization that largely imposes se-

lective constraints on protein sequences in an order of intra-

cellular dN/dS<membrane dN/dS< extracellular dN/dS

(Julenius and Pedersen 2006; Wang et al. 2013b). In this

regard, it is already published that membrane-embedded pro-

teins are of principal therapeutic interest due to the ease of

drug binding to membrane proteins (Wang et al. 2013b).

Proceeding further, the proportions of membrane targets

are found to be considerably higher in new SET proteins com-

pared to the NSET proteins (considering ProteinHistorian

(Capra et al. 2012) age data set: SET vs. NSET 18.02% vs.

6.95%, Z score = 5.030, P< 1.00�10� 4; considering

Domazet-Lošo and Tautz (2008) age data set: SET vs. NSET

10.46% vs. 4.22%, Z score = 3.588, P = 3.00�10�4).

Table 1

Age Distribution of SET/NSET Proteins within Complex Forming and Noncomplex Forming Groups

Resource Class Proteins Those Form Complex P-value Noncomplex Forming proteins P value

ProteinHistorian server SET &885 Ma 1.82 � 10�1 &965 Ma 1.10� 10�2**

NSET &1183 Ma &1169 Ma

Supplementary Material Old SET: 14.69% 5.50 � 10�1 SET: 57.47% 1.10� 10�3**

NSET: 15.92% NSET: 63.31%

New SET: 4.64% 6.38 � 10�1 SET: 21.13% 3.49� 10�2**

NSET: 4.10% NSET: 13.71%

NOTE.—Significant difference **(P< 0.05) between pairs are highlighted in bold. Mann–Whitney U test was used to demonstrate the difference in protein numerical age
data taken from ProteinHistorian.

Table 2

Killer Druggability Per Target Proteins Using Age Data from Two

Different Resources

Gene Class Killer Druggability/Target

(Considering age data of

Domazet-Lošo and Tautz)

Killer Druggability/Target

(Considering Protein

Historian server)

New 0.715 0.421

Old 0.210 0.248

PMWT value 1.30� 10�4** 3.60� 10�2**

NOTE.—Significant difference **(P< 0.05) between groups are highlighted in
bold. Mann–Whitney U test was used to exhibit the differences between groups.
In case of age data from ProteinHistorian, we considered proteins with age
� 500Ma as “new” and proteins with age > 500 Ma as “old.”
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However, no such result was obtained for intracellular or ex-

tracellular target proteins (data not shown). When we esti-

mated evolutionary rates of SET and NSET proteins within

the new age class, dN of membrane localized SET proteins

are found to be substantially lower than NSET proteins (aver-

age dNSET vs. NSET= 0.0.086 vs. 0.162, average dNSET vs.

NSET = 0.093 vs. 0.182; considering numerical and categorical

age data respectively; PMWT [SET vs. NSET]< 7.00�10�3 in both

cases). Our results do not alter considering noncomplex new

gene class (table 4). To understand why membrane located

SET proteins evolve slower than NSET proteins, we considered

transmembrane proteins (proteins containing transmembrane

helices) because such proteins often demonstrate tissue re-

stricted expression and evolve slowly due to their elevated

buried residue composition (Oberai et al. 2009; Ramskold

et al. 2009; Begum and Ghosh 2014). Thus, we noticed

that only within new membrane protein class, transmembrane

helices share a significant negative correlation to protein evo-

lutionary rates (considering ProteinHistorian (Capra et al.

2012) data: Transmembrane helices/protein r dN=�0.367,

P = 1.54�10�5, n = 132; considering Domazet-Lošo and

Tautz (2008) age data: Transmembrane helices/protein

r dN=�0.517, P = 1.04� 10�6, n = 79). However, such cor-

relation does not persist considering the whole data set

(Transmembrane helices/protein r dN= 0.032, P = 1.62�10�1,

n = 1866) or considering data set after eliminating SET pro-

teins with killing side effect(s) (Transmembrane helices/protein

r dN= 0.0.075, P = 2.00�10�3, n = 1652). It indicates that

relatively higher number of transmembrane helices may be

present in SET proteins within new membrane class in support

of their lower evolutionary rates and this is the case in reality

[considering ProteinHistorian (Capra et al. 2012): average

transmembrane helicesSET [n=31]= 4.742, average transmem-

brane helicesNSET [n =101] = 3.139, PMWT = 3.00�10�3; consid-

ering Domazet-Lošo and Tautz (2008) age data: average

transmembrane helicesSET [n=18]= 5.444, average transmem-

brane helicesNSET [n =61] = 3.361, PMWT = 1.50� 10�3]. These

results support the fact that simultaneous effect of protein age

FIG. 3.—Comparisons of evolutionary rates (dN) of SET vs. NSET proteins within different age groups. In the figure, (a) the categorical age data are

provided by Domazet-Lošo and Tautz (2008); (b) the numerical protein age data were obtained from ProteinHistorian (Capra et al. 2012). For numerical data,

we considered proteins with age� 500Ma as “new” and rest as “old” proteins. The plots showing the importance of young/new gene age in the disparity

of evolutionary rates of SET and NSET proteins. Error bars represent 95% confidence interval.

Table 3

Comparison of Features between Drug Targets with Killing Side Effect(s) and with Nonkilling/No Side Effect(s)

Serial no. Groups Evolutionary Rates (dN) Pleiotropic Index Tissue Expression Breadth

1 Drug targeted proteins with killer druggability > 0 0.058 24.195 7

2 Drug targeted proteins with killer druggability = 0 00.081 15.636 12

PMWT value 3.48� 10�4** 5.94� 10�13** 2.09� 10�8**

NOTE.—Mann–Whitney U test was used to demonstrate the significant **(PMWT< 0.05) differences between groups. Bold data represent significant difference.
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(young) and membrane localization of target are the driving

force for distinct evolutionary rates of SET and NSET proteins.

Discussion

In the present communication, we analyzed and compared

the evolutionary rates of human drug side effect associated

targets (SET) with respect to the targets having no available

side effect data in the public repositories (NSET) to understand

the biological features of targets contributing to drug side

effect(s) in the evolutionary landscape. We observed that

SET proteins evolve substantially slower than NSET proteins.

To clarify the underlying reason of such fluctuations in evolu-

tionary rates between SET and NSET proteins, we considered

factors (gene expression levels, tissue expression breadth,

target essentiality, total druggability, killer druggability, essen-

tial druggability of a target, complex association number, pro-

tein complex size, pleiotropic index, age of a protein, and

protein subcellular localization) (Zhang and Li 2004; Alba

and Castresana 2005; Drummond et al. 2006; He and

Zhang 2006; Liao and Zhang 2006; Pal et al. 2006; Park

and Choi 2010; Panda et al. 2012; Chakraborty and Ghosh

2013; Wang et al. 2013a, 2013b; Begum and Ghosh 2014;

Zhang and Yang 2015) those either have known correlations

or we conjectured to have relation with protein evolutionary

rates. Thereby, we identified that noncomplex forming

nature, time of origin of proteins, killer druggability of targets,

multifunctionality, and subcellular localization play key roles to

dictate the divergence in evolutionary rates between SET and

NSET proteins among all other features.

To estimate protein evolutionary rates, we considered most

common human-mouse orthologous pair due to the func-

tional conservation between the two species in normal and

pathological conditions (Liao and Zhang 2006; Cai et al. 2009;

Gharib and Robinson-Rechavi 2011). However, it is now es-

tablished that a shorter generation time in the murid lineage

may possess problems to estimate dN/dS (Hoffman and Birney

2007). Moreover, it is well known that in human and mouse,

dS is not constant and depends upon GC content, gene re-

combination rates, codon usage bias and several other param-

eters (Castresana 2002; Williams and Hurst 2002; Hoffman

and Birney 2007). Therefore, to avoid any confusion, a possi-

ble alternative is to consider another mammal to estimate dN,

dS, and dN/dS. To serve the purpose, we used human-cow

orthologous pair to compute evolutionary rates of SET

(n = 375) vs. NSET (n = 1424) proteins. When we replicated

the whole analyses between SET vs. NSET proteins using

human-cow orthologous pair, we noticed that the results

remain absolutely similar to what we found using human-

mouse orthologs (supplementary tables S1 and S2,

Supplementary Material online). Even, in the new data set,

the dS value between two groups (PMWT = 2.15�10�1)

does not vary. This result suggests that the difference in dN/

dS in SET vs. NSET proteins strongly depend on the nonsynon-

ymous evolutionary distance, dN (supplementary table S1,

Supplementary Material online) and our result is free from

any bias due to orthology selection.

Previous study has affirmed the fact that the number of

essential proteins that bind to a drug is a crucial factor of drug

side effects rather than the total number of drugs that bind to

a target (Wang et al. 2013a). Regarding total druggability of a

target, we draw a similar conclusion i.e. the evolutionary rates

vary between SET and NSET groups independent of the total

number of drug(s) against a target. Contemplating on essen-

tial targets, we noticed that the rates of molecular evolution

do not vary between SET and NSET proteins, even though

essential proteins are significantly overrepresented in SET

group. Since, essential proteins are multifunctional in nature

(Chakraborty and Ghosh 2013; Acharya et al. 2015); one

plausible reason for not obtaining such evolutionary rate dif-

ference could be due to the equal number of biological pro-

cess involvement (PMWT = 1.11�10�1) of SET and NSET

proteins in the essential group. Introducing essential drugg-

ability of a target, we detected slow evolutionary rates for

proteins with higher essential druggability compared to pro-

teins with lower essential druggability. Again, proteins are

pooled into three bins according to their essential target

druggability (bin 1 [number: 1–2]: Low, bin 2 [number: 3–4]:

Medium, bin 3 [number�5]: High). No difference in dN even

where variation in essential druggability exists (in bin 1 and bin

3; see “Results” section) suggests that the evolutionary rate

heterogeneity between SET and NSET proteins does not solely

Table 4

Distribution of SET/NSET Membrane Proteins within Complex Forming and Noncomplex Forming New Age Class Considering Targets with Killer

Druggability= 0

Resource Proteins Those

Form Complex

Z score, P value Noncomplex

Forming Proteins

Z score, P value

Age data provided by Domazet-Lošo and Tautz SET: 1.16% Z = 0.679, SET: 9.30% Z = 3.580,

NSET: 0.69% P = 4.97� 10�1 NSET: 3.54% P = 3.00 � 10�4**

From age data of ProteinHistorian server SET: 1.74% Z = 0.743, SET: 16.28% Z = 5.088

NSET: 1.10% P = 4.57� 10�1 NSET: 5.84% P < 1.00 � 10�4**

NOTE.—Significant difference **(P< 0.05) between pairs and their corresponding Z scores are highlighted in bold.
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rely on target essential druggability. In this context, it is well

known that disruption/alteration of a biological function often

lead to the progression of human diseases which are overrep-

resented in targets with elevated drug side effects (Janjic and

Przulj 2012; Begum and Ghosh 2014). When we estimated

protein functionality in three bins (showing no difference in

dN), we did not find any difference in protein functionality

between SET and NSET groups within those bins (bin 1:

PMWT = 7.64�10�1, bin 2: PMWT = 8.23�10�1, bin 3:

PMWT = 5.70�10�1). This study indicates that protein func-

tionality, rather than protein essentiality or essential target

druggability, is one of the key evolutionary rate determinants

of SET and NSET proteins in the evolutionary landscape.

In our study, we found that within noncomplex forming

group, SET and NSET proteins are under distinct selective con-

straints. However, within complex forming group, such evo-

lutionary rate difference does not persist. One plausible reason

might be essential proteins are largely involved in protein com-

plexes to execute important biological functions (Chakraborty

et al. 2010; Ruepp et al. 2010). Since, we did not notice any

difference in the evolutionary rates and functionalities of SET

and NSET proteins within the essential group; it could be a

reason for not obtaining complex number variation between

SET and NSET proteins. In this context, we know that dis-

turbed essential genes may impact all the genes in an organ-

ism by causing complete cell death and therefore, majority of

human disease genes are nonessential in nature (Goh et al.

2007; Han et al. 2013). We have previously seen that human

disease genes are largely associated with drug side effects

(Begum and Ghosh 2014). Therefore, in agreement to Goh

et al. (2007), we here confirm that nonessential noncomplex

forming proteins are the major candidates of drug side effects

and influence the evolutionary trajectory of SET and NSET

proteins.

Disruption of cell division and expression regulation can

also lead to drug side effects in many cases (Liu and Altman

2015). Thus, indispensable factors of protein evolutionary

rates are expression level of a gene as well as tissue expression

breadth (Drummond et al. 2006; Park and Choi 2010).

However, in contrast to our expectation, in both cases we

noticed that conserved SET proteins are lowly expressed as

well as tissue restricted in nature compared to NSET proteins.

It may be due to the fact that restricted expression of SET

proteins (table 3) may impede the spread of drug side effects

(especially killing side effects) along the links of the interac-

tome network to maintain the activity of their interaction part-

ners and undergo reasonable purifying selection to keep the

side effects restricted in a limited number of tissues. However,

from evolutionary perspective, our results suggest that gene

expression levels or tissue expression breadth alone is inade-

quate to explain the evolutionary rate difference between SET

and NSET proteins.

Previous communications have claimed that phylogenetic

age of a protein strongly influences the rates of protein

evolution (Alba and Castresana 2005; Wolf et al. 2009b).

Even though, SET proteins are highly conserved in nature,

such proteins are found to be substantially younger than

NSET proteins. Contrary to the previous findings i.e. ancient/

old proteins are more multifunctional (Wolf et al. 2009b); we

obtained a higher multifunctionality of druggable young pro-

teins than ancient proteins. It is also found that such multi-

functional young SET proteins are candidates those acquire

undesirable killing side effects. Thus, higher killer druggability

and multifunctionality supports the lower evolutionary rates of

SET proteins over the NSET proteins. However, killer drugg-

ability cannot be a sole attribute to explain the discrepancy in

evolutionary rates between SET and NSET proteins, since it is a

characteristic of SET proteins. For better understanding, SET

proteins with killing side effects were eliminated from our data

set. We, thereby, found that membrane-embedded young

transmembrane proteins significantly explain the evolutionary

rate diversity between SET and NSET proteins.

Potential Caveat

The purpose of our study is to detect genomic and structural

evolutionary features those can help to capture the general

properties of side effect associated targets and in turn, may

help to predict SET or NSET proteins based on the character-

istic features employed in our analyses. Experimental valida-

tion of our outcome is time-consuming and therefore, the

scope is quite limited. One potential caveat of our study is

the incomplete set of experimental side effect data of SIDER

v.2 (Kuhn et al. 2013) database which plausibly may introduce

some bias in our results. To address the problem, we thought

of revalidating our analyses with some experimental/manually

curated side-effect databases of human. However, due to lack

of experimental side-effect database apart from SIDER (Kuhn

et al. 2013), we focused to use advanced version of SIDER

(v.4.1) database to revalidate our analyses. In contrast to SIDER

v.2, we identified 48 proteins whose annotations differ from

the previous version (i.e. SET in the current data set which

used to be NSET in SIDER2 and vice versa) and the SET protein

number increased from 388 to 414 using the newer version

(v.4.1) SIDER (supplementary table S2, Supplementary

Material Online). Replicating the whole analyses with the

newer data set of SET (n = 414) and NSET (n = 1462) proteins

reflected similar trends of results (data not shown) as previ-

ously obtained, although the magnitudes differed. Such ob-

servation reconfirms the fact that our evolutionary rate

parameters can be used further to predict unknown SET/

NSET proteins in human.

SVM Training and Prediction of SET/NSET Proteins

To understand the influences of all the 13 evolutionary rate

attributes (dN, dN/dS, gene expression level, tissue expression

breadth, protein age, complex/noncomplex forming ability,

functionality, subcellular localization, number of
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transmembrane helices, target total druggability, target essen-

tiality, target essential druggability, and target killer druggabil-

ity) those showing significant difference between SET and

NSET proteins, we trained two mathematical SVM models

(using gene age data from two different resources—model

1 incorporates categorical gene age data of Domazet-Lošo

and Tautz (2008) and model 2 uses numerical gene age

data of ProteinHistorian server (Capra et al. 2012)) with

these parameters and optimized the kernel parameters C

and g to maximize the prediction accuracy as well as the

MCC value of our model. Since, SVM uses numerical values

of predictors; we assigned +1 and �1 value to the categorical

predictors before scaling and training the model. A predictor

which is unable to predict one class (small TP or TN) ade-

quately is undoubtedly biased and less informative, and in

such cases MCC can critically assess the bias of a result by

acquiring a negative or nearly zero value (Dey et al. 2012;

Kisslov et al. 2014). We found that the optimal values of C

and g for our SVM models are 32 and 0.0078125, respec-

tively. When we trained our models using these kernel param-

eters and applied on test sets to predict SET/NSET proteins, we

observed that the success rate (~86%) and all other perfor-

mance measures for both the models (table 5) are quite im-

pressive. When we excluded dN/dS attribute from our

analyses, the optimal values of C and g become 1 and

0.0078125, respectively. In that case, the success rates de-

crease by ~5% (accuracy of model 1 and model 2 are

80.92% and 81.29%, respectively) for both of our SVM

models. Furthermore, this study reveals that using dN and

dN/dS altogether have the potential to increase the prediction

accuracy of our models.

In addition, we optimized the kernel parameters C and g of

our SVM models trained with all 13 evolutionary rate param-

eters using 5-fold cross-validation. In such a case, our data set

was broken into five subsets: (i) four subsets are used to train

the classifier and (ii) rest of the subset is used as a test set to

evaluate prediction accuracy using the trained model (Dey

et al. 2012). The process is replicated five times so that all

subsets could be used for training and testing (Dey et al.

2012). The prediction accuracy achieved by this process re-

mains almost similar to what we found before (cross validation

accuracy of model 1 is 86.03% and the accuracy of model 2 is

85.98%).

DR. PRODIS, a recent open access web server, has been

designed to identify side effect associated proteins in the

human genome with a reported precision of ~57% and a

recall of ~24% (Zhou et al. 2015). We mapped the annota-

tions (SET/NSET) of DR. PRODIS to our data set of 1876 pro-

teins to compare the performances of our SVM models with

respect to DR. PRODIS web server. Drug side effect associated

targets provided by the SIDER v.2 database (Kuhn et al. 2013)

was used to benchmark the approach. We, thereby, noticed

that our optimized SVM models outperform DR. PRODIS

server in terms of MCC, accuracy, specificity, PPV, NPV, and

F-measure, respectively, except for sensitivity measure. In con-

trast to the performance of our models as summarized in

table 5, the MCC, accuracy, specificity, PPV, NPV, and

F-measure of DR. PRODIS for the 1876 human proteins are

�0.1056, 49.09%, 53.02%, 15.88%, 75.50%, and 21.66%,

respectively. However, the sensitivity for our models are in

the range of ~29% to 31.5% which is almost comparable

to the sensitivity of DR. PRODIS (i.e. 34.02%) for our data

set. Based on the MCC value, we infer that our models

predict better than the previous existing prediction server.

Even when we used human-cow orthologs, we achieved a

prediction success rate of ~80% (for model 1 and model 2

prediction accuracy are 79.58% and 80.74%, respec-

tively) using all 13 evolutionary rate attributes.

Comparison of our prediction results in terms of MCC

(model 1 and model 2 MCC are 0.2203 and 0.2259 re-

spectively) to the results of DR. PRODIS further strength-

ens our conclusion that our prediction models work better

than the existing prediction model irrespective of our

orthology selection.

Concluding Remarks

To conclude, our systematic study reports the key factors lead-

ing to drug side effects in the framework of protein evolution.

It is clear from this communication that the evolutionary

origin, involvement in biological processes, noncomplex form-

ing ability and localization of targets are the special features

for predicting candidates with drug (killing) side effects. Our

study has described the relative influences of killer druggability

vs. essential druggability on protein evolutionary rates consid-

ering nonside effect associated (NSET) proteins as control.

Furthermore, our results help to identify unknown SET/NSET

proteins in human. Using all 13 evolutionary rate attributes

incorporated in this study, our SVM models perform predic-

tions that are much better than the existing prediction server.

With the increasing coverage of the drug side effect

Table 5

Efficiency Evaluation of Our Optimized SVM Model

Test Set MCC Sensitivity Specificity PPV NPV F-measure

Our data set using categorical gene age dataa 0.4810 29.26% 99.74% 94.94% 85.30% 44.57%

Our data set using numerical gene age dataa 0.5056 31.47% 99.75% 97.02% 85.11% 47.39%

aPerformance measures were averaged over 10 randomized test sets to obtain a single value.
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associated data in human, more interesting analyses can be

performed to further dissect the properties of drug targets and

the associated side effects and the accuracy of our prediction

models can be further improved.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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