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Abstract
Background: The increasing use of DNA microarrays in biomedical research, toxicogenomics,
pharmaceutical development, and diagnostics has focused attention on the reproducibility and
reliability of microarray measurements. While the reproducibility of microarray gene expression
measurements has been the subject of several recent reports, there is still a need for systematic
investigation into what factors most contribute to variability of measured expression levels
observed among different laboratories and different experimenters.

Results: We report the results of an interlaboratory comparison of gene expression array
measurements on the same microarray platform, in which the RNA amplification and labeling,
hybridization and wash, and slide scanning were each individually varied. Identical input RNA was
used for all experiments. While some sources of variation have measurable influence on individual
microarray signals, they showed very low influence on sample-to-reference ratios based on
averaged triplicate measurements in the two-color experiments. RNA labeling was the largest
contributor to interlaboratory variation.

Conclusion: Despite this variation, measurement of one particular breast cancer gene expression
signature in three different laboratories was found to be highly robust, showing a high
intralaboratory and interlaboratory reproducibility when using strictly controlled standard
operating procedures.
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Background
Gene expression analysis with DNA microarrays has been
used to develop molecular taxonomies of various types of
cancers [1-16]. Small gene sets or signatures of tens to
hundreds of genes have been examined for their potential
utility in defining tumor subtypes and providing specific
prognostic or diagnostic information. One factor that will
influence the capability to fully realize the potential utility
of these signatures for biomedical research, toxicogenom-
ics, pharmaceutical development, and diagnostics is the
reproducibility of the technology used to measure them.

Several studies have examined the reproducibility of gene
expression analysis by DNA microarrays across different
laboratories. One study used aliquots of a common
mouse liver and pooled RNA, and compared gene expres-
sion measurements made in seven laboratories using a
total of 12 microarray platforms [17]. They found that cor-
relations were highest between labs when the same plat-
form was used with standardized protocols. A second
study measured gene expression in a set of four knockout
human cell lines across ten laboratories using three differ-
ent microarray platforms [18]. They found that the partic-
ular laboratory which performed the analysis had a
greater effect on the precision than did the choice of plat-
form, and the results from the best-performing labs agreed
fairly well. A third study done in four laboratories using
the same platform to analyze tumor tissue blocks, cell
lines, and RNA samples found that correlation within lab-
oratories was only slightly better than correlation between
laboratories, with correlations weakest for genes
expressed at low levels [19]. More recently, the Microarray
Quality Control project (MAQC) compared gene expres-
sion measurements of two RNA samples using a number
of microarray platforms, as well as alternative technolo-
gies, and demonstrated intraplatform consistency and
interplatform concordance in terms of genes differentially
expressed [20]. A related study found consistency among
microarray platforms at different sites using 36 different
RNAs from rats treated with three chemicals [21]. Neither
of these two recent studies examined whether the varia-
tion seen between laboratories was due to the labeling or
hybridization steps, or both. While these papers give a
general overview of the reproducibility of microarray-
based gene expression profiling across a variety of plat-
forms, they focused on the overall reproducibility of
measurements made with arrays containing probes
designed to measure the majority of known human tran-
scripts, rather than on the reproducibility of gene expres-
sion signatures composed of relatively small numbers of
genes analyzed on a smaller, targeted array.

In this study, we examined the interlaboratory reproduci-
bility of a specific 70-gene breast cancer signature [1,2],
recently developed into a diagnostic tool (MammaPrint®,
Agendia BV) [14], using the same microarray platform
and standardized protocols for labeling and hybridization

across three different laboratories. In particular, we exam-
ined the level and primary sources of variability between
technical replicates using a small array containing probes
that measure only a fraction of known human transcripts.
In order to better understand the degree and sources of
errors attributable to the measurement itself, independent
of any biological variability among the samples, we
assayed aliquots of the same four breast tumor RNAs in all
three laboratories. We specifically measured the variabil-
ity introduced by each step of the microarray analysis pro-
tocols: labeling, hybridization, and scanning. We found
that the sample labeling was the largest source of technical
variability in this study. However, this variability did not
have any significant influence on the overall 70-gene
breast cancer signature correlation values, which were
quite robust within and between laboratories.

Results
Experimental setup
To compare DNA microarray data reproducibility within
and between laboratories, we employed the experimental
scheme shown in Figure 1. Aliquots of the same prepara-
tions of total RNA from four different human breast

Outline of experimental designFigure 1
Outline of experimental design. All four tumor RNAs 
plus the reference RNA were amplified and labeled twice 
with each dye, in both the Amsterdam and California labora-
tories. Half of the labeled material was exchanged between 
the two labs, and samples labeled locally and in the other lab-
oratory were hybridized in replicate, and scanned. Slides 
were shipped to the other laboratory for rescanning. In the 
third lab (Paris), the tumor samples were independently 
labeled and hybridized three times.
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tumors were given to three laboratories, one in California,
one in Amsterdam, and one in Paris.

In the first phase of this study, we examined the reproduc-
ibility of microarray measurements between the Califor-
nia and Amsterdam laboratories. Both laboratories
amplified and labeled each RNA sample, and sent aliq-
uots of each labeled product to the other laboratory. Both
laboratories then hybridized all the samples labeled in
both labs, scanned the slides, and then shipped the slides
to the other laboratory for rescanning. The same lot of
labeling kits and microarrays were used in both labs. In
this manner we could compare the intra- and inter-labo-
ratory variations in each step of the microarray assay, start-
ing with purified total RNA.

Each slide contained eight individual microarrays, which
could be hybridized separately. The hybridization setup is
shown in Table 1. Both labs hybridized each tumor RNA
labeled in each lab in dye flip pairs against the reference.
Each site hybridized replicates of the two separate slides
on two different days, for a total of four slides per lab.

Signals correlate extremely well between replicate 
hybridizations
Variability among microarray assays might arise from dif-
ferences between labeled samples, between the arrays
themselves, or between hybridization conditions. A repli-
cate hybridization is defined here as a pair of assays for
which the sample labeling and hybridization conditions
are held constant; that is, aliquots from a single labeling
reaction are hybridized to different arrays at the same
location. Comparison of replicate hybridizations allows
us to determine the noise attributable to hybridization,

washing, and scanning, and to variations among the
arrays themselves. Contributions to noise include an
additive background, a proportional precision, and a sto-
chastic element. In Figure 2 we compare the background-
subtracted green (Cy3) and red (Cy5) signals for each of
the eight pairs of hybridization replicates of tumor 248.
All three sources of noise are evident in the plot: a consist-
ent proportional noise of a few percent, increasing as the
signals approach the background noise level (2–5
counts), and a smattering of single-feature outliers. The
Pearson correlation reflects all these noise sources, while
remaining insensitive to normalization issues. For tumor
248, seven out of eight of the replicate pairs showed Pear-
son correlation values of > 0.993 in both signal and refer-
ence channels, while the other replicate pair had a
correlation of 0.983. For the other three tumors, all sam-
ples had replicate correlations greater than 0.988, with all
but two replicates above 0.993 (Additional file 1). These
results indicate that the signals from replicate hybridiza-
tions correlated extremely well for genes expressed at all
intensity levels measured.

Scanners correlate extremely well between sites
In order to determine whether differences between micro-
array scanners introduce significant variability into the
results, we scanned the hybridized arrays at each site and
then shipped them to the other site for rescanning. Figure
3 compares the scan and the rescan for the tumor 248
hybridizations. The signals from the original scan of each
of the 16 arrays are plotted against the rescans in green

Replicate correlations for tumor 248Figure 2
Replicate correlations for tumor 248. Plot shows signals 
from all background subtracted non-control features of 8 
replicate hybridization pairs (16 arrays total) for tumor 248. 
All of the individual features from all of the16 arrays are plot-
ted. One of each replicate pair is plotted on the x-axis, the 
other is on the y-axis. Green data points are the Cy3 chan-
nel, red data points are the Cy5 channel.
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Table 1: Hybridization slide setup. Setup of slides hybridized in 
Amsterdam and California.

Slide 
Number

Array 
Number

Cy3 Sample Cy5 Sample Labeling

1 1 Reference 234 California
1 2 234 Reference California
1 3 Reference 234 Amsterdam
1 4 234 Reference Amsterdam
1 5 Reference 239 California
1 6 239 Reference California
1 7 Reference 239 Amsterdam
1 8 239 Reference Amsterdam
2 1 Reference 241 California
2 2 241 Reference California
2 3 Reference 241 Amsterdam
2 4 241 Reference Amsterdam
2 5 Reference 248 California
2 6 248 Reference California
2 7 Reference 248 Amsterdam
2 8 248 Reference Amsterdam
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(Cy3) and red (Cy5). The Cy3 signals correlated extremely
well between the scan and rescan, regardless of whether
the slide was first scanned in Amsterdam or California
(Pearson correlation >0.995, slope = 0.97). The Cy5 sig-
nals correlated less well, and the signals were always much
lower on the rescanned slide, especially for slides scanned
first in Amsterdam. This was likely due to degradation of
the Cy5 during shipment of the slide between labs, possi-
bly caused by atmospheric ozone [22]. Hybridized slides
for the other tumor RNAs showed similar results (data not
shown). We conclude that the scanner adds virtually no
variability to the array results, as the variability seen in the
Cy5 channel is due to shipment of hybridized slides,
which typically does not occur in a standard microarray
experiment.

70-gene signature values correlate between different 
hybridizations
As a biologically relevant way of measuring the reproduc-
ibility of the microarray results, we computed the 70-gene
breast cancer signature correlation value as previously
described [14] for each dye-swapped pair of arrays. The
70-gene signature correlation value is determined by tak-
ing the weighted average of the log10 ratios for each of the
triplicate probes for each of the 70 genes, and then deter-
mining the cosine correlation of the average log10 ratios
for the 70 genes in the particular tumor sample with the
average profile of these genes in tumors from a specific,

defined set of patients. This procedure eliminates the
effect of random variation in microarray signal strength
between probe replicates [14]. The variability of this sig-
nature correlation value among the tumor hybridization
dye swap pairs under different conditions is a good meas-
ure of overall variability in the microarray assay.

Figure 4 shows the eight signature correlation values for
each of the eight dye swap pairs of hybridizations of each
of the four tumors. The correlation values for each tumor
clustered quite tightly, indicating only a small amount of
variation in the assay. Even tumor 248, which had the rep-
licate pair with the lowest Pearson correlation (0.983),
shows tight clustering of the results from all replicates,
indicating the slightly lower Pearson correlation of the
one replicate pair does not influence the 70-gene signa-

70 gene signature correlation valuesFigure 4
70 gene signature correlation values. The 70-gene sig-
nature correlation values for the four tumors were deter-
mined for each hybridization; these values indicate the 
correlation of the log ratios of the 70 signature genes from 
the tumor sample with the average log ratios from a previ-
ously defined set of patients [14]. The correlation values for 
each dye-swapped pair (y-axis) are plotted for each of the 
four tumors (x-axis). Red data points were labeled in 
Amsterdam, while blue data points were labeled in California. 
The mean and standard deviations of the correlation values 
for each tumor are indicated beneath the plot. Each set of 
hybridizations for each tumor was divided into two groups, 
based either on hybridization site, labeling site, or hybridiza-
tion day. An ANOVA was then performed on the 70 gene 
signature correlation values obtained in the hybs for both 
groups, and the resulting P values for each tumor are shown.
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By Label Site: 0.016  0.50   0.0026   0.50
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Scan/rescan correlations for tumor 248Figure 3
Scan/rescan correlations for tumor 248. Plot shows 
background subtracted signals from the original laboratory 
scan (x-axis) plotted against the signals from the rescan per-
formed in the other laboratory. All of the individual features 
from all of the16 arrays are plotted. All 16 arrays for tumor 
248 were scanned in the hybridization lab, then shipped to 
the other lab and rescanned (32 scans total from 16 arrays, 
on 2 slides). Green data points are from the Cy3 channel, red 
data points are from the Cy5 channel.
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ture correlation value. The results in Figure 4 are colored
by labeling site, and the correlation values for tumors 234
and 241 seem to show some systematic variation in the
results, with correlation values from samples labeled in
Amsterdam being higher than those labeled in California.
In order to determine whether there is any statistically sig-
nificant bias in the correlation values depending on the
labeling or hybridization site, we classified the dye-swap
pairs for each tumor, according to hybridization site, labe-
ling site, and hybridization day. We then performed an
ANOVA analysis to determine whether any of these classes
differ significantly in their correlation value means, as
reflected in the ANOVA P values. We found that there
were no significant differences between the values
obtained at different hybridization sites, or on different
hybridization days (regardless of site), indicating that the
site or day of hybridization did not contribute any system-
atic variability to the assay. However, tumors 234 and 241
showed a small but statistically significant difference (P
value < 0.05) between labeling sites.

Small differences are seen due to labeling site
In order to further examine the differences between labe-
ling sites, we averaged the log10 ratios of signature probes
from the four arrays (two dye-swap pairs) that shared the
same labeling and hybridization location, as there is little
systematic variation between replicate hybridizations
(Figure 2). This resulted in four sets of averaged, dye-bias
corrected log10 ratios, corresponding to the four combina-
tions of labeling and hybridization locations: Amsterdam
labeled/hybridized, California labeled/hybridized,
Amsterdam labeled/California hybridized, and California
labeled/Amsterdam hybridized. Averaging dye-swapped
pairs in this manner eliminates systematic dye bias and
reduces random variation, allowing the small differences
between samples labeled at the two sites to be observed.
These small differences between log10 ratios of the sam-
ples can be clearly seen by examining the differences
between the averaged log10 ratios of probes between two
different combinations of labeling/hybridization sites.
Figure 5 shows plots of the distributions of such log10
ratio differences for the 182 of the 232 probes on the array
corresponding to the breast cancer associated genes [1]
that had signals significantly above background. Each of
the curves in Figure 5 is the probability distribution (nor-
malized histogram) of the differences between the average
log10 ratios of the significant probes in one condition, and
their average in the other condition. The green distribu-
tions compare the arrays with the same labeled sample,
but hybridized in different laboratories. These distribu-
tions are very narrow, and are centered around zero, indi-
cating there is no systematic difference depending on the
hybridization site. The blue distributions compare arrays
labeled at different locations, but hybridized in the same
laboratory, and the black distributions were with different

labeled material, hybridized in different laboratories.
These distributions are wider, indicating the log10 ratios
show more variance, and are also not always centered at
zero, indicating a systematic difference depending on the
labeling reaction, but not on the hybridization site.
Clearly it mattered little where the arrays were hybridized,
but the log10 ratios differ depending on where they were
labeled. These differences were still relatively small how-
ever, as a log10 ratio difference of 0.02 is equivalent to a
5% difference in the actual expression ratio.

We next asked whether the residual variation in the corre-
lation values between labeling sites (Figure 4) is distrib-
uted across all the signature genes, or is due to a particular
subset of genes that consistently vary between labeling
sites. To investigate this, we performed an ANOVA analy-
sis on the log10 ratios for each of the 70 signature genes
separately, to see if they varied significantly between
hybridization or labeling sites. A synopsis of the ANOVA
P values determined for each tumor is shown in Figure 6.

Distribution of log10 ratio differences between conditions for all four tumorsFigure 5
Distribution of log10 ratio differences between condi-
tions for all four tumors. Distributions of log10 ratio dif-
ferences for the 182 of the 232 genes that had signals 
significantly above background (signals > 15) are plotted. 
Each set of log10 ratios were compared with another set by 
subtracting the log10 ratios of one set from those of the 
other to get a set of 182 log10 ratio differences. The green 
distributions compare arrays with the same labeled sample, 
hybridized in different laboratories. The blue distributions 
compare arrays labeled at different locations but hybridized 
at the same location. The black distributions compare arrays 
with different labeled samples, hybridized in different loca-
tions. Each curve is a probability distribution (normalized his-
togram) of the differences between the average log10 ratios 
of the 182 probes in one condition, and their average in the 
other condition.
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When the hybridizations were grouped by hybridization
site, the number of genes showing a statistically signifi-
cant difference between the two sites (P value < 0.05)
ranged from 2 (tumor 241) to 14 (tumor 239). Four of the
70 genes in each signature would be expected to exhibit P
values of < 0.05 by chance alone (i.e. 0.05*70). In con-
trast, when the hybridizations were grouped by labeling
site, the number of genes showing a statistically signifi-
cant difference was much higher, ranging from 24
(tumors 234 and 239) to 36 (tumor 248). Thus many of
the 70 signature genes in all four tumors showed signifi-
cant differences between labeling sites, even though the
signature correlation values only showed significant dif-
ferences between labeling sites for tumors 234 and 241.
Further analysis showed that 60 out of the 70 genes varied
in at least one tumor, and only five were significantly dif-
ferent in all four tumors. This suggests the variation in
labeling was due to increased noise, rather than some sort
of systematic variation.

70-gene signature values correlate using different reagent 
lots at a third laboratory
The assays performed in the California and Amsterdam
sites used the same batch of arrays, dye-NTPs, and labe-
ling kits in order to minimize differences between the two
laboratories. To further look at the variability of the sys-

tem, we analyzed the same four tumor RNAs in a third
laboratory (located in Paris), at a time several months
after the initial comparison was finished, using a different
lot of microarrays and different lots of labeling reagents.

Figure 7 shows the 70-gene signature correlation values
for each of the four tumors when labeled and hybridized
in the Paris lab using different lots of arrays and reagents
(green), and the results are compared with those obtained
in California (red) and Amsterdam (blue). We performed
an ANOVA analysis to determine whether the locations
differed in the correlation value means for any of the
tumors, as reflected by the ANOVA P values. We found
that as in the comparison between just the Amsterdam
and California sites, when grouped by labeling site, the
correlation value distributions for tumors 234 and 241
were significantly different, while those for tumors 239
and 248 were not. When grouped by hybridization site,
only tumor 234 was significantly different. Since the Paris
samples were both labeled and hybridized in Paris, this

70 gene signature correlation values between three laborato-riesFigure 7
70 gene signature correlation values between three 
laboratories. 70-gene signature correlation values for the 
four tumors were determined for each hybridization done in 
three different laboratories. On the x-axis are the four differ-
ent tumor samples, and on the y-axis are the correlation val-
ues for each dye-swapped pair. Green data points were 
labeled and hybridized in Paris, red data points were labeled 
in Amsterdam, and blue data points were labeled in Califor-
nia. The mean correlation values at each hybridization loca-
tion, and the ANOVA P values when grouped by labeling and 
hybridization site are shown beneath the plot.
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P values from ANOVA analysis of each of the 70 signature genesFigure 6
P values from ANOVA analysis of each of the 70 sig-
nature genes. For each tumor the log10 ratios of the 70 sig-
nature genes were averaged for each dye-swapped 
hybridization pair, after reversing the sign of one of the dye 
swaps. An ANOVA analysis was then performed for each 
individual gene for each tumor, to determine if the log ratios 
for each gene varied by hybridization site or by labeling site. 
The plots show the number of genes for each tumor having P 
values of < 0.001, 0.001–0.01, 0.01–0.05, and 0.05–1.0 from 
the ANOVA analysis, when grouped by hybridization site 
(left) or by labeling site (right).
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probably reflects the very low P value of the labeling dif-
ference between sites. Thus, even at a third site, using dif-
ferent lots of reagents and arrays manufactured several
months after the ones used by the first two labs, the 70-
gene signature correlation values for each of the four
tumors were very consistent.

Discussion
In this study we examined the reproducibility of a 70-gene
breast cancer signature in a series of experiments per-
formed in three laboratories, one in Amsterdam, one in
California, and one in Paris. In the first part of the study
identical RNA samples were labeled and hybridized to
identical microarrays using the same platform and proto-
cols, in both the Amsterdam and California laboratories.
Reproducibility of signals and ratios was measured for
replicate assays in each laboratory. We found that the
results were very reproducible between sites. The low
noise across the entire platform, as shown by the repro-
ducibility of replicate hybridizations (those done in the
same laboratory with the same labeled material), allowed
the averaging of the replicates, with the result that minor
differences in the data became more apparent (Figure 5).
In the second phase of the study, the same tumors were
labeled and hybridized in the Paris laboratory. Despite
being done several months later, and using different lots
of microarrays and labeling reagents, the results from the
third laboratory were in close agreement with those from
the two other laboratories, giving another indication of
the robustness of the measurement technology.

We took care to be sure the same operating protocols were
used between all the laboratories, and the operators in all
laboratories were well trained. We found that if variations
in the wash protocol were introduced between laborato-
ries, significant discrepancies in the results emerged (data
not shown). It is clear from our findings and those of oth-
ers [17] that microarray protocols must be uniform and
strictly adhered to in order to achieve good reproducibil-
ity between laboratories and operators. However, as we
show here, if this is done then reproducibility is very high.

A DNA microarray measurement can be considered as
hundreds or thousands of simultaneous analytical meas-
urements of the relative concentrations of mRNAs in a
sample. In order to examine the analytical precision, accu-
racy, and detection limits of these measurements, several
laboratories have published cross-platform and other
comparisons of microarray measurements [17-19,23-29].
However, there has not been a detailed examination of the
factors contributing to any observed variability in the
measurements. A microarray measurement requires sev-
eral distinct steps. The microarrays themselves must be
printed, handled, and stored until use. The RNA sample is
purified, labeled with fluorophores, possibly amplified,

and possibly fragmented. The labeled sample is hybrid-
ized to the arrays, which are then washed, dried, and
scanned. At each of these steps variation and errors can
arise which could contribute to imprecision in the overall
measurement. By using the same input RNAs, the same
batches of arrays and reagents, and by exchanging labeled
samples and hybridized slides between the Amsterdam
and California laboratories, we were able to examine
which steps exhibited the largest variation between the
two sites.

It should be noted that the experimental setup used in this
study cannot measure every possible source of variation.
Since all of the hybridizations involving a common sam-
ple were hybridized to arrays on the same slide, and the
replicate slides in each laboratory were hybridized on dif-
ferent days, we cannot determine whether any variation
observed between the two replicate slides is due to slide-
to-slide variability or day-to-day variability, or a combina-
tion of the two. However, since the experimental setup
compounds both potential sources of variation, we would
expect that any such differences would be maximized in
this study. Despite this, the 70-gene signature correlation
values did not vary significantly by hyb day (Figure 4).

Another possible source of variation is inter-individual
variability. Since all the labelings and hybridizations done
at each site were performed by single individuals, the
cross-laboratory variability cannot be de-convoluted from
the inter-individual variability. However, we would expect
that if two different individuals took care to follow the
exact protocols, as in this study, that interlaboratory vari-
ation would be greater than inter-individual variation,
due to use of a different set of laboratory equipment
(pipettes, hybridization ovens, etc.). Another study
reported measuring the 70-gene signature correlation val-
ues of two tumor samples repeatedly in the same labora-
tory, by six different individuals, with very consistent
results (14, and data not shown).

We found that the largest discrepancy between the
Amsterdam and California sites was in the amplification/
labeling step. This discrepancy was relatively small (about
0.02 in the log10 ratios, which amounts to a 5% difference
in the actual expression ratio) but is detectable nonethe-
less. We used labeling kits from the same lots and pur-
chased at the same time, so all labeling reagents were
equivalent. While the labeling site differences were signif-
icant for only two of the four tumors when comparing the
tumor signature correlation values, the differences
extended to all four tumors when examining the log10
ratios of the 70 signature genes on an individual basis.
This suggests that the differences seen on an individual
gene level are relatively random, and cancel one another
out when looking at the signature as a whole, which rep-
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resents a correlation of the log10 ratios of all 70 genes and
averages of measurements from three replicate features for
each gene. The variation in individual genes did not cor-
relate with the expression level of the genes, which differs
from the findings of Dobbin et al. [19] who found that
lower expressed genes were more variable between labora-
tories.

Several previous studies examined the cross-platform
comparability of microarray measurements [17,18,20-
26], with some studies reporting less variability between
platforms than others. Our findings that array results on
one platform performed with identical protocols are
reproducible across laboratories are similar to the findings
of other studies [17-21]. However, ours is the first report
of the reproducibility of a gene expression signature com-
prised of a small, defined set of genes. Such signatures
have great potential utility in biomedical research, toxi-
cogenomics, pharmaceutical development, and diagnos-
tics. Reproducibility across labs and over time is essential
in all these application areas, and our results are an
encouraging indication that microarray-based analysis of
defined gene signature sets can yield highly robust and
reproducible measurements.

Conclusion
We tested the reproducibility of DNA microarray meas-
urements by measuring a 70-gene breast cancer expression
signature across three different laboratories. We found
high intralaboratory and interlaboratory reproducibility
when using strictly controlled standard operating proce-
dures.

Methods
RNA samples
Total RNA from four breast tumors were isolated as previ-
ously described [1,2]. A pool of 105 breast tumor RNAs
was prepared as a reference RNA, as described in Glas et
al. [14]. 200 ng of total RNA from the breast tumor pool
and the individual breast tumors were amplified and
labeled with Cy3- and Cy5-CTP (PerkinElmer) using the
T7-based Low RNA Input Fluorescent Linear Amplifica-
tion Kit (Agilent Technologies, Santa Clara, CA). The same
lot of labeling kit was used by both the California and
Amsterdam laboratories, while a different lot was used by
the Paris laboratory. Labeled RNAs were quantitated for
yield and dye incorporation using a Nanodrop spectro-
photometer. To ensure that equal amounts of RNA were
hybridized in both labs, the RNA concentration for all
samples was determined at one site.

DNA microarrays
The DNA microarrays were fabricated by Agilent Technol-
ogies according to specifications provided by Agendia BV.
The array design contained 1900 features of 60 mer oligo-

nucleotide probes associated with the MammaPrint® assay
as previously designed and described by Glas et al. [14].
232 features containing probes for 231 genes previously
found to be associated with breast cancer outcome [1],
plus ESR1 (estrogen receptor), were present in triplicate
on the arrays (696 features total). 915 individual features
containing probes for cellular genes were used for dye nor-
malization between the Cy3 and Cy5 channels. The
remaining 289 features contained various positive and
negative control probes. The microarray slides contained
8 identical arrays per slide, which could each be individu-
ally hybridized [14].

Microarray hybridization
Microarray hybridization was done according to the man-
ufacturer's recommended protocol (Agilent Technolo-
gies). 200 ng each of Cy3- and Cy5-labeled RNA were
hybridized to each array in a 45 ul total volume of hybrid-
ization buffer (Agilent Technologies) for 16 hours at 60C,
followed by room temperature disassembly in 6× SSC/
0.005% Triton X-102, a ten minute room-temperature
wash in 1× SSC/0.005% Triton X-102, and a five minute
room temperature wash in 0.1× SSC/0.005% Triton X-
102. Slides were dried with filtered, compressed nitrogen
and scanned immediately in a DNA Microarray Scanner
(Agilent Technologies). After slides were scanned in the
Amsterdam or California laboratories, they were then
shipped overnight to the other laboratory for rescanning.
Slides hybridized in Paris were not rescanned.

Data analysis
Array images were extracted using Agilent Feature Extrac-
tion software, version A.7.5.1, per manufacturer's instruc-
tions. After subtraction of feature backgrounds the signals
in the test and reference channels were normalized for
consistency of the normalization features, as described in
the Feature Extraction software documentation.

For the 232 genes with three replicate features per array,
the signals for the triplicate features on each array were
averaged [14]. For each breast tumor sample, the correla-
tion coefficient of the level of expression of the 70 previ-
ously described breast cancer signature genes [1,2] with
the previously determined average profile of these genes
in tumors from a specific set of patients was calculated as
previously described [1,2,14].

To assess reproducibility in this study, ANOVA P values
were calculated using JMP 5.1 software (SAS). To deter-
mine the averaged log10 ratios of probes from the four
arrays (two dye-swap pairs) that shared the same labeling
and hybridization location, we took the probes for the
232 breast cancer-related genes [1,2] and eliminated all
probes with signals of less than 15 counts, which is three
Page 8 of 10
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times the additive background noise measured on the
noisiest array.
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