
Accelerating Whole-Cell Simulations of mRNA Translation Using a
Dedicated Hardware
David Shallom, Danny Naiger, Shlomo Weiss, and Tamir Tuller*

Cite This: ACS Synth. Biol. 2021, 10, 3489−3506 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: In recent years, intracellular biophysical simulations
have been used with increasing frequency not only for answering
basic scientific questions but also in the field of synthetic biology.
However, since these models include networks of interaction
between millions of components, they are extremely time-
consuming and cannot run easily on parallel computers. In this
study, we demonstrate for the first time a novel approach addressing this challenge by using a dedicated hardware designed
specifically to simulate such processes. As a proof of concept, we specifically focus on mRNA translation, which is the process
consuming most of the energy in the cell. We design a hardware that simulates translation in Escherichia coli and Saccharomyces
cerevisiae for thousands of mRNAs and ribosomes, which is in orders of magnitude faster than a similar software solution. With the
sharp increase in the amount of genomic data available today and the complexity of the corresponding models inferred from them,
we believe that the strategy suggested here will become common and can be used among others for simulating entire cells with all
gene expression steps.

KEYWORDS: mRNA translation, FPGA, gene expression optimization, TASEP, hardware acceleration, whole-cell translation simulation

■ INTRODUCTION

Biophysical models of intracellular processes such as gene
expression have been used in recent years for studying numerous
questions related to all biomedical disciplines.1−8 The more
advanced models in the field consider the “competition” of
molecules in the cell (e.g., mRNAs) on resources (e.g.,
ribosomes).8−11 In recent years, we understand that without
considering this aspect, the models usually provide significantly
biased prediction and miss important intracellular as-
pects.6−9,11−19 Thus, it is clear that in the near future, these
models will be very frequently used for synthetic biology for
designing cells and viruses; indeed, recent manuscripts
emphasize the importance of such whole-cell simulations in
synthetic biology.20−23 However, when performing designs
based on such models, the running time is orders of magnitude
lower than just predicting a single intracellular stage. Thus, our
approach is needed.
As a case study, we focus here on mRNA translation. Since a

typical cell includes thousands of mRNAs and ribosomes, the
simulation of such a process is computationally challenging and
cannot be parallelized easily. As the state of each mRNA
molecule depends on the global assignment of ribosomes to
mRNAmolecules, software simulating mRNAmolecules should
operate in a synchronized manner. That enforces large
synchronization overheads that, in turn, will also degrade the
performance of equivalent graphical processing unit (GPU)
implementations that typically accommodate large amounts of
parallel threads.

This is specifically challenging when various sets of
parameters of the models are studied or optimized as in the
case of synthetic biology, where the aim is to find a set of
modifications in the cell that will optimize a certain objective
that is affected by a large pool of factors in the cell.7,9,11,19,21,24−27

In such cases, the optimizations can easily take many months or
even years.
In this study, we demonstrate for the first time a new approach

for tackling this challenge based on the design of a dedicated
hardware that can yield an optimization process that is orders of
magnitude faster. There exist a few previous studies describing
very small analogous circuits28−33 that are inspired by biological
phenomena and can capture many biological effects. However,
no previous study included digital parallel whole-cell dedicated
hardware.
In this work, we design a dedicated hardware using an FPGA

(field-programmable gate array). FPGAs are configurable chips
that can accommodate large user-designed digital circuits.
FPGAs are often used for prototyping hardware designs before
producing full dedicated ASICs (application-specific integrated
circuits). An FPGA chip usually consists of a two-dimensional
array of configurable logic blocks (memories, logic gates,

Received: August 27, 2021
Published: November 23, 2021

Research Articlepubs.acs.org/synthbio

© 2021 The Authors. Published by
American Chemical Society

3489
https://doi.org/10.1021/acssynbio.1c00415

ACS Synth. Biol. 2021, 10, 3489−3506

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+Shallom"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Danny+Naiger"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shlomo+Weiss"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tamir+Tuller"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acssynbio.1c00415&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=abs1&ref=pdf
https://pubs.acs.org/toc/asbcd6/10/12?ref=pdf
https://pubs.acs.org/toc/asbcd6/10/12?ref=pdf
https://pubs.acs.org/toc/asbcd6/10/12?ref=pdf
https://pubs.acs.org/toc/asbcd6/10/12?ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/

multiplexers, etc.) alongside programmable interconnections
that can connect logic blocks (see Figure 1A). The development
of FPGA hardware consists of writing HDL (hardware
description language) code and utilizing the FPGA’s vendor
tool chain to translate the HDL to the FPGA configuration.
The general flow diagram of the suggested approach is

described in Figure 1B. We first design the simulative model
based on large-scale experimental biological measurements (e.g.,
coding sequences, mRNA levels, ribosomal densities, etc.). We
then transform the simulative model to hardware by combining
the building blocks described in this paper. Consecutive fast runs
of the model in hardware with various parameters will follow,
and finally, based on the results, synthetic biology experiments
are performed. The entire process can then be repeated based on
new experimental observations.

■ RESULTS

To demonstrate our approach, we focus here on a basic whole-
cell simulation of mRNA translation. The model includes all the
basic aspects of the computational models previously used in the
field7 in addition to the ribosomes’ diffusion property.
Specifically, our model includes the following aspects (see
Figure 1C for illustration):

(1) Different translation time for each codon, which is related
to the local biophysical properties of the mRNA and their
interactions with translation factors and/or the availability
of translation factors (e.g., tRNA levels).

(2) Initiation rates (which are affected by the properties of the
mRNAs and initiation factors and global factors such as
the concentrations of ribosomes and translation factors).

(3) More than one ribosome can translate an mRNA at a
certain time.

Figure 1. (A) Schematic high-level diagram of an FPGA. It consists of configurable logic blocks that are connected via the switching matrices (S). (B)
Flow graph of the suggested iterations using the hardware model. (C) Schematic illustration for the biophysical process of mRNA translation.
tinit
i denotes the average time it takes a ribosome to attach to a specific mRNA molecule, ttranslation

ci denotes the translation time of codon c on the ith
mRNA, tdiffusion denotes the diffusion time of the ribosome after finishing translation, and mi denotes the length of the ith mRNA. (D) High-level flow
diagram of the research flow. (E) High-level flow graph of the software model. Profiling results of the different stages is also shown next to each node in
percentage out of total runtime. T denotes the end time of the simulation in real cell time.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00415
ACS Synth. Biol. 2021, 10, 3489−3506

3490

https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig1&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

(4) A single ribosome occupies several codons when moving
alongside the mRNA molecule (due to its size).
Therefore, several ribosomes alongside the same mRNA
are forced to keep a minimal distance from each other.

(5) The movement is directional from the 5′ to the 3′ end of
the mRNA.

(6) Different mRNA molecules compete for the same pool of
ribosomes, i.e., a limited resource of ribosomes exists.

(7) Diffusion timethe time it takes for each ribosome to
become available for translation after completing a
translation of an mRNA molecule.

Our main test case for this research is the bacterium
Escherichia coli. We specifically used all the genomic information
related to real E. coli cells (see more details in the Methods
section).
The research flow is described in Figure 1D. We first design,

implement, and analyze an equivalent software model. Then, in
accordance with the performance bottlenecks observed in the
software model, we tackle the challenge of designing a dedicated
hardware model using two architectural approaches. Next, we
analyze the results and proceed to a whole-system proof-of-
concept. The proof-of-concept includes variants of the
algorithms presented in ref 22 for ribosomal traffic jam
optimization. Finally, we analyze the results and suggest some
future research directions.
Equivalent Software Model Design. The software

implementation consists of a list of mRNA objects that is
addressed via a global scheduler that controls the global
ribosomes’ pool and keeps track of the allocated and released
ribosomes. Each mRNA object should only keep track of the

times (in milliseconds) in which the previous ribosome finished
initialization, codon translations, and diffusion (the “time-event
vector”). When receiving a ribosome from the global scheduler,
the above list of times can be calculated only by using themRNA
translation delays and the previous ribosome time-event vector
(see the Methods section for a pseudo code). Then, the global
scheduler keeps track of the generated time vectors of all
mRNAs to determine the exact times in which ribosomes are
allocated to specific mRNAs, ribosomes are freed, and proteins
are generated. The high-level flow of the software model is
shown in Figure 1E.

Analyzing the Software Model. The software model
runtime in seconds as a function of mRNAs and ribosome
numbers for 20 min of real cell time is shown in Figure 2.A. The
percentage values depicted in Figure 1E are based on profiling
the software model.
As can be seen in Figure 1E, the most time-consuming task is

the calculation of the time-event vector upon granting a new
ribosome to an mRNA. This calculation is responsible for
calculating the exact times in which the new ribosome finishes
translating each codon. In theory, we can reach this state with
several ribosome attachments simultaneously. The time vector
calculation for all the simultaneous grants can be carried in a
parallel manner to reduce execution time. In Figure 2C, we can
see that simultaneous grants are very rare, so in practice, we will
not get significant improvement by parallelizing this part (i.e.,
using more cores to execute separate calls to the time-event
vector calculation function). Also, we noticed that as the number
of ribosomes in the cell grows, simultaneous grants are more
probable (but still negligible).

Figure 2. Software model analysis. (A) The runtime in seconds of the software model for 20 min of a real cell for various numbers of mRNAs and
ribosomes. R denotes the number of ribosomes in the cell and M denotes the number of mRNAs. (B) The total amount of generated proteins as a
function of time. As expected, we get more proteins as we increase the number of ribosomes in the cell. (C) The distribution of simultaneous ribosome
grants in simulation. Ribosome grants are the events in which some ribosomes are released to the global pool and the arbiter decides which mRNA
molecule is going to receive them. For example, for 32,768 ribosomes, we get one ribosomal grant in each iteration in around 80% of the iterations. (D)
The number of iterations required by the model. As shown, all graphs end at the same time and take different numbers of iterations to complete.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00415
ACS Synth. Biol. 2021, 10, 3489−3506

3491

https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig2&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Also, the calculation of the time-event vector itself is highly
sequential due to its cumulative nature and the dependency in
the previous ribosome time-vector. That is, the time-vector
calculation itself also cannot be easily parallelized.
This implies that the main bottleneck of the software model is

the mRNA synchronization stagethe simulation can advance
only after calculating the state of all mRNA molecules. Thus,
implementing the entire model in FPGA can accelerate this
stage as FPGA is suitable for accommodating large amounts of
synchronized replicas of hardware instances.
Also, note that the Δt between consecutive global while

iterations are determined by the fastest event (release/request of
a ribosome). If those events happen at a similar time on all
mRNAs, the simulation can be rather effectiveit advances in
large steps instead of waiting for the delay times (as done in our
hardware equivalent model as shown later). Since this, in
general, is not the case in real cells with various mRNA lengths,
initiation times, diffusion times, and codon delays, the software
simulation suffers greatly from the synchronization overhead
(see Figure 2D for the timing of the simulation steps).

Moreover, as shown in Figure 2A, the average runtime of the
software model grows as the number of ribosomes and mRNAs
grows.
We show that, by implementing the optimization algorithms

in ref 22 for more mRNA molecules, we needed approximately
110,000 runs of the model with various parameters. According
to the profiling results, using the software model, it would take
from 2.2months (for 1024mRNAs and 4096 ribosomes) up to 1
year and 3 months (for 1024 mRNAs and 32,768 ribosomes).

High-Level Hardware Architecture. In this work, we are
using the Xilinx ZCU104 evaluation board (see Figure 3A) that
consists of a Zynq chip containing several CPU (central
processing unit) cores alongside an FPGA.
We first divided the overall architecture design to several

building blocks that should be designed (see Figure 3B). These
include:

(1) mRNA module − Hardware entity that contains the
specific codons’ information, manages the ribosomes, and
keeps track of the generated proteins.

Figure 3. Hardware overview and design. (A) Xilinx ZCU104 evaluation board containing a Zynq Ultrascale+ FPGA chip. In the system POC, the
firmware is loaded to the SD card, and the model is accessed via an ethernet connection. (B) High-level block diagram of the hardware models. The
dashed lined components are for synchronizing the mRNAmodules in the iterative model and are not present in the parallel model. (C) Schematic of a
basic round-robin arbiter. In dashed line: By replacing the cyclic counter with a pseudorandom number generator (PRNG), we can get a uniform
arbiter.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00415
ACS Synth. Biol. 2021, 10, 3489−3506

3492

https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig3&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Figure 4. Arbiter’s hit probability and the parallel mRNA module. (A) The amount of mRNA molecules that are free to receive new ribosomes in the
steady state for various ribosome amounts. (B) Block diagram of the parallel mRNAmodule and its local allocated hardware ribosomes. (C)Hardware
ribosome’s state machine. The dashed-line states are later moved to the global mRNA context.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00415
ACS Synth. Biol. 2021, 10, 3489−3506

3493

https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig4&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

(2) Global arbiter − Hardware entity that is responsible for
managing the ribosomes’ assignment to different mRNAs
and keeps track of the overall ribosomes’ counter.

(3) Ribosomes−Hardware entity that keeps track of the state
of the ribosomes (current codon index, translation time,
etc.).

Also, to model allocation, translation, and diffusion delays, we
use timers that are decremented in each clock cycle. The
initialization value of those timers is chosen by normalizing all
delays from seconds to clock cycles. In E. coli, for instance, each
timer decrement models 1 ms in “real” cell time. Therefore,
when running the hardware with input clock frequency f, the
timer’s decrement phase of the model can potentially take

f0.001 (Hz)
f

1 ms
1 /

= × times faster in hardware. Thus, for

example, for f = 100 MHz, the hardware runs 100,000 times
faster (in the decrement phase) than a real cell.
Ribosomes’Global Arbiter.We choose an approach where

one global entity keeps track of the available ribosomes. As
shown in Figure 3B, this entity receives the request from and
releases signals to all mRNAs, updates the free ribosome pool,
and grants ribosomes (if available) to the requesting mRNAs.
We also examined an alternative approach in which we did not

keep a global entity that manages the ribosomes but a small local
buffer of ribosomes that propagates in a concatenated manner
between the mRNA molecules. This method introduced
considerable bias in the ribosomal allocation probability (see
the Supporting Information and Figures S1, S7, and S9 for more
details).
The required arbiter here is quite different from the common

arbiters used today in hardware implementations34−40 for the
following reasons:

(1) The arbitration is done among lots of endpoints
(potentially hundreds to thousands)this depends on
the number of the mRNA molecules that we were able to
fit into the device.

(2) The arbitration is done with uniform probabilityeach
requesting endpoint (mRNA) should receive the resource
(ribosome) with equal probability.

We note that existing implementations of hardware arbiters
are designed for only few endpoints (i.e., multiple cores
accessing the same shared memory) and are not required to
be strictly uniform. In this work, we examined two
implementations for the global arbiterthe “round-robin
arbiter” and the “uniform arbiter.” The first is examined since
it is commonly used in hardware implementations, and the
second is our own variation that fixes the bias caused by the first.
Round-Robin Arbiter. For simplicity, we first examined a

basic round-robin arbiter, which is deterministic and therefore
does not necessarily satisfy item (2) above. The round-robin
arbiter sequentially examines the mRNAs, grants a ribosome if
requested (and if a ribosome is freely available), and updates the
pool’s counter with respect to the mRNA release signals (see
Figure 3C).
Figure 4A depicts the number of mRNAs that are free to

receive new ribosomes as a function of time. As can be noticed
for low and intermediate levels of ribosomes, the probability that
a given mRNA is free to receive a ribosome is quite high.
Therefore, since in this case, most of the mRNAs can receive
new ribosomes in a steady state, it is highly probable that when
the arbiter releases a ribosome from the ith mRNA, it will be
collected by the consecutive (i + 1)th mRNA. This, of course,

introduces a bias (see the Supporting Information and Figure S9
for more details).
On the other hand, for cases in which the cell is saturated with

ribosomes, we see that the number of free mRNAs reduces
substantially. Therefore, in those cases, the bias that the round-
robin arbiter introduces is smaller.

Uniform Arbiter. The round-robin arbiter consists of a
cyclic counter that iterates sequentially over all mRNA indices.
This counter is what causes the bias discussed above for
simulations with low and intermediate numbers of ribosomes.
Therefore, we decided to replace the counter by a hardware-
efficient uniform pseudorandom number generator (UPRNG;
see Figure 3C). By doing so, the arbiter first randomizes an index
and then examines the signals of the indexed mRNA. This
arbiter randomizes an index regardless of the state of the
corresponding mRNA (requesting a ribosome or not). From
Figure 4A, we can see that the arbiter’s hit probability (the
probability to hit a free mRNA) is quite high for low and
intermediate cell ribosomes’ number (which fits the typical
physiological conditions41). For lower hit probabilities that
occur in highly saturated cells, it might take the arbiter a long
time until it reaches a free mRNA.
We will show that even for low hit probabilities, this arbiter is

quite accurate. To understand that, we first need to introduce
the mRNA modules’ architecture.

Iterative Versus Parallel Hardware mRNA Model
Approaches. For the design of the mRNA module, we
examined two common hardware complementary design
approaches:

(1) Parallel hardware design approach − Using as many
replicas of processing units as necessary to improve timing
performance. This approach typically results with high
chip area consumption and high throughput.

(2) Iterative hardware design approach − Employing the
same processing unit for different workloads if possible.
This approach typically results with low chip-area
consumption but also with lower throughput.

While the parallel approach might greatly improve the overall
performance with respect to the software implementation, it
might not support as many mRNAs as we need in a single FPGA
chip. Next, we examine both approaches.

Parallel Hardware mRNA Module. In the parallel
approach, we wish to have all mRNAs and ribosomes run as
autonomously as possible as if they were real molecules
operating in a living cell. The major difficulty introduced by
this approach is the assignment of ribosomes to mRNA
molecules.
Here, each mRNA molecule contains a concatenated

structure of hardware-implemented ribosomes as shown in
Figure 4B (see the Supporting Information for more
information).
Each mRNA molecule has a static allocation of hardware

ribosomes. The hardware ribosomes start inactive and are
activated one by one when an mRNA receives new ribosomes
from the global arbiter. For managing the hardware ribosomes
(i.e., activation and release), the mRNA state machine manages
the following pointers:

(1) Write pointer − The index of the next inactive hardware
ribosome. When the mRNA receives a new ribosome
from the arbiter, the hardware ribosome pointed by this
pointer is activated.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00415
ACS Synth. Biol. 2021, 10, 3489−3506

3494

https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00415/suppl_file/sb1c00415_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00415/suppl_file/sb1c00415_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00415/suppl_file/sb1c00415_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00415/suppl_file/sb1c00415_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00415/suppl_file/sb1c00415_si_001.pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

(2) First pointer − The index of the last hardware ribosome
that was activated. That ribosome is the closest to the 5′
end of the mRNA. Using this pointer, the mRNA state
machine can monitor the first ribosome’s index until it is
far enough along the mRNA for it to be able to accept a
new ribosome.

(3) Read pointer − The index of the ribosome that is closest
to the 3′ end of the mRNA. The ribosome pointed by this
pointer will be the next to generate a protein and then is
deactivated.

The concatenation structure of the hardware-ribosomes
resembles the internal implementation of memory-based first-
in first-out (FIFO), which similarly consists of read and write
pointers with similar functionality.
Instead of maintaining a local copy of the mRNA delays’ table

for each hardware ribosome, we used a round-robin arbiter and a
single read-only memory (ROM) for all hardware ribosomes of
the same mRNA. That is important because, as shown later, the
hardware utilization of each ribosome is the main limiting factor
in the global utilization of the FPGA’s resources. The round-
robin arbiter sequentially reads the current index of each
ribosome and posts the codon delay from the table.
The diffusion of the ribosomes (i.e., the time it takes a

ribosome to be usable again by other mRNAs) is modeled by
delaying the “released” signal of the mRNA molecule.
Hardware Ribosome Module. Each ribosome consists of

the state machine as illustrated in Figure 4C. Here, the delay that
the state machine adds to the ribosome timing (including
waiting for the ROM arbiter) is negligible in relation to the
timer’s delays.
As the hardware ribosome module is instantiated multiple

times in the hardware, it is important to keep it as compact as
possible. Placing themRNA’s ROM in themRNAmodule with a
common arbiter instead of keeping a copy for each ribosome

results in each ribosome consuming 65 lookup tables (LUTs)
and 31 flip flops (FF) on average. To further improve that, we
removed the allocation states (dashed line in Figure 4C) from
the ribosome’s state machine and added allocation logic to the
mRNA state machine. That is possible as only one ribosome can
be at the allocation phase (at the 5′ end) at a given time. By
doing so, we were able to reduce the size of the hardware
ribosome to 48 LUTs and 22 FFs on average, improving the
LUTs and FFs consumption by 26 and 30%, respectively (also
see Figure S15).

Parallel Hardware Results. Running at an 200 Mhz clock,
the parallel hardware model implemented in the FPGA can
consist of up to 4096 hardware ribosomes statically distributed
among 512 mRNA molecules.
For each mRNA molecule, the maximal number of

simultaneously active ribosomes is bounded by m
D
, where m is

the mRNA length and D is the minimal distance between
consecutivemRNAs. This is of course a bound that is very rare in
physiological conditions. In this extreme case, 4096 ribosomes
are needed to translate 128 mRNAs in E. coli. See the Methods
section for a better utilization approach of the hardware
ribosomes for cells with low concentrations of ribosomes.
As the model is not iterative, the runtime does not depend on

the number of ribosomes or mRNAs and is given by

T (FPGA) ,T
Tclk

sim× Δ where Tclk(FPGA) is the period of the

design clock, Tsim is the real cell simulation time (20 min, for
example), andΔT is the time interval of a single step of the
hardware model.
For E. coli, as mentioned before, ΔT = 1 ms. Therefore, since

the parallel hardware model runs at 200 MHz, it takes
5 ns 6 ms20 min

1 ms
× = to model 20 min of a real cell. From

Figure 2A, we see that the software model runs for 28.1 s for 128
mRNAs and 4096 ribosomes and 1.89 s for 128mRNAs and 512

Figure 5. Iterative mRNAmodule block diagram. Here, we have a FIFO that contains the state of all active ribosomes. The state of the ribosome is read
and updated from the FIFO by the state machine. When a specific ribosome advances to the next codon, the next translation delay is brought from the
concatenated memories shown above. This module also contains a separate state machine for communication with the global ribosomes’ pool arbiter.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00415
ACS Synth. Biol. 2021, 10, 3489−3506

3495

https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00415/suppl_file/sb1c00415_si_001.pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig5&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ribosomes. Therefore, for those cases, the parallel model runs
4683 and 315 times faster, respectively.
We conclude that this model is highly effective for

intermediate and high amounts of ribosomes in term of
execution runtime.
Iterative Hardware mRNA. To improve the number of

supported mRNAs and ribosomes, we next examined the
iterative approach. The iterative mRNA module block diagram
is shown in Figure 5 (see the Supporting Information for more
details).
The codons’ data is stored in two concatenated memories

one containing the codon’s code and one mapping the code to
translation delays (see the Methods section for more details).
Instead of having multiple replicas of hardware ribosomes (as

in the parallel case), we only keep the state of each active
ribosome (the current codon index and remaining translation
time) inside a cyclic first-in first-out (FIFO).

To manage the system, we introduce two separate state
machines. The first is to internally iterate over all active
ribosome and advance their state. To synchronize the timing of
all mRNA molecules, the state machine outputs a “ready” signal
upon iteration completion and waits for all other mRNAs before
moving to the next iteration (see the dash-circled area in Figure
3B).
The synchronization here affects the performance greatly as

the “busiest” mRNA (the one with most active ribosomes) will
hold back the update of all the other mRNAs. By doing so, the
“busiest” mRNA dictates the time it takes the model to finish
each step.
The second state machine is responsible for the communi-

cation with the global arbiter. This separation is done to have the
global arbiter run as freely as possible at the designed clock
speed. This feature is later shown to compensate for the lower hit
probabilities of the uniform arbiter for the iterative case.

Figure 6. System POC design and flow. (A) Block diagram of the system including the FPGA part (in light blue) and the ARM part (light orange). (B)
Flow graph to illustrate the order in which operations are carried throughout the POC.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00415
ACS Synth. Biol. 2021, 10, 3489−3506

3496

https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00415/suppl_file/sb1c00415_si_001.pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig6&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Finally, as before, the diffusion time is modeled by delaying
the “release” signal.
Iterative Model Results. By implementing this model, we

were able to fit into the FPGA up to 1024 mRNA molecules at
200 MHz (with the required space for the maximal number of
active ribosomes for each mRNA).
Since this model can accommodatemoremRNAs, we decided

to proceed and implement our proof-of-concept with the
iterative model.
The performance analysis of this model is more complicated

than the case of the parallel model since the runtime highly
depends on the steady-state distribution of the ribosomes
among the mRNA molecules. The empirical performance for
various parameters is described later as part of the POC analysis.
System Design Proof-of-Concept. To further demon-

strate the effectiveness of hardware modeling, we decided to run
the FGM and BGM algorithms presented in ref 22 using the
iterative hardware model as described below.
In ref 22, optimization algorithms for improving the allocation

of ribosomes in the cells by decreasing their traffic jams during
translation were introduced. The algorithms introduced silent
mutations within the coding regions. These do not affect the
linear chain of the encoded protein amino acids but can affect
the cell growth rate. Specifically, the algorithm introduced in ref
22 are:

(1) Forward gene minimization (FGM): Incorporates all
silent mutations (from the beginning of the ORF) that
improve the free ribosomal pool while not reducing/
increasing the mRNA’s translation rate beyond some
threshold. In each iteration, the mRNA that increases the
free ribosomal pool the most is selected.

(2) Backward gene minimization (BGM): Similar to FGM
but starting at the end of the modified region in the ORF
and traversing backwards.

To reduce communication overhead as much as possible, we
used the ARM cores in the Zynq processor to operate the FPGA
and run the optimization algorithms.
The system design is shown in Figure 6A. Also, the general

flow of running the POC is shown in Figure 6B (also see the
Supporting Information). As shown, to connect the FPGA
model to the CPU cores, we used the on-chip dedicated

interfaces (named AXI) between the cores and the FPGA. This
interface eventually generates a memory-mapped register read−
write interface to the hardware. Also, for reading large amounts
of data from the FPGA (for example, read all protein counters
from all mRNAs), a direct memory access (DMA) engine can be
connected to allow the FPGA direct access to the on-board CPU
memory. Finally, when the model reaches the configured stop
time, it raises an interrupt to the dedicated interrupt pins of the
ARM cores.

Verification and Validation of the Hardware Models.
The hardware verification was performed by comparing the
software simulator to the hardware outputs. When using the
same random seed, we observed that the results were identical.
In order to test the accuracy of the hardware model

predictions, we decided to model Saccharomyces cerevisiae and
E. coli with the iterative model and the typical ribosome
concentrations found in those cells.42,43

We then calculated the Spearman’s correlation between the
predicted translation rate of proteins and real experimental
measurements of protein abundance (PA). We got that the
correlation is 0.63 (P < e−110) in E. coli (see Figure 7A) and 0.7
(P < e−50) in S. cerevisiae (see Figure 7B and additional details in
the Methods section). Those correlation results are considered
very high in the field (and similar to typical correlation between
to experimental measurements) since cellular measurements are
typically noisy, biased, and related to PA while we predict the
translation rate (there are no large-scale measurements of
translation rate).

Proof-of-Concept Results: Ribosomal Traffic Jam
Optimization Based on Dedicated Hardware. Figure
8A,B presents the speedup of the hardware iterative model
versus the software model. Here, the speedup is defined as the
ratio between the software and hardware latencies. As expected,
we can see that the runtime depends on the number of
ribosomes. As the execution time of the mRNA iterative module
increases with the number of ribosomes, it increases the iteration
time (see Figure 8C for average iteration time of the iterative
model as a function of the number of ribosomes). Also, as
illustrated, the runtime flattens at some point for both the
hardware and the equivalent software model. That is the
saturation point in which the mRNAs have as much ribosomes

Figure 7.Comparison betweenmodel translation rate predictions (TR) andmeasurements of protein abundance (PA) in a logarithmic scale for (A) E.
coli and (B) S. cerevisiae.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00415
ACS Synth. Biol. 2021, 10, 3489−3506

3497

https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00415/suppl_file/sb1c00415_si_001.pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig7&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

as they can consume; this, however, is not a usual physiological
condition. Recall that we have already seen the same saturation
point in Figure 4A for 32,768 ribosomes. Figure 8C also proves
that the uniform arbiter stays effective even for low hit
probabilities. As the cell is more saturated with ribosomes, the
hit probability reduces but the latency of each iteration
increases. That is the reason why we kept the communication
state machine in Figure 5 independent of the iterative state
machineto allow receiving and requesting ribosomes at the
high 200 MHz clock speed regardless of the iterations’ state.
Figure 8B suggest that the speedup of the hardware iterative

model varies between 180 and 262.
Figure 8D depicts the results for the optimization POC using

the FGM and BGM algorithms. In the POC, we started with
about 6000 free ribosomes (saturated cell as done in ref 22). As
depicted, by inducing silent mutations from codons 11 to 50, we

can significantly increase the effectiveness of the ribosomes
without impacting the translation rate of each mRNA (up to a
given threshold). We can also notice that on average, the FGM
algorithm yields better results than the BGM algorithm, similarly
to ref 22.
In Figure 8D, we added graphs for a combined solutionfor

each mRNA, we are choosing the configuration that yields the
best results. We can see that although the BGM is less effective
on average, in some mRNA molecules, it performs better than
the FGM algorithm.
Furthermore, from Figure 7E,F, we can see that the mRNAs

that yield the best results also require less mutations. That is
important because now, we have a small subset of roughly 64
mRNAs that is interesting to explore for further optimizations
and can fit in the considerably faster parallel hardware model.

Figure 8. Results from full-system POC. (A) The average runtime of a single model run in software vs hardware (iterative model). Used parameters: 5
min of real cell time and 1024 mRNAs. (B) Speedup of hardware iterative model vs software model with the same parameters as in (A). We observed
that the hardware iterative runs up to 262 times faster than the software model. (C) Average number of clock cycles per iteration of the iterative model
in hardware versus total number of cell ribosomes. (D−F) Results of FGM and BGM on hardware with 1024 mRNAs and enough ribosomes to
saturate the cell (around 38,000) as done in the referenced paper. The threshold is the allowed variation for each mRNA in the proteins’ production
rate. Max (FGM, BGM): For each mRNA, the method that yields the best result was chosen and used. In (F), the mutation effectiveness is the ratio
between the number of newly added free ribosomes and the required number of mutations of the specific mRNA. The graph is sorted similarly to (D)
and (E).

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00415
ACS Synth. Biol. 2021, 10, 3489−3506

3498

https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig8&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

To produce these results, for each algorithm (FGM/BGM)
and each threshold (1 or 5%), we needed an average of 110,000
model runs. For 1024 mRNAs, 38,000 ribosomes (for
saturation), and 10 min of real cell time, the iterative model
runs for approximately 1 s and the software model runs for 191 s.
Therefore, a such a single optimization procedure took 30 h with
our hardware iterative model and is approximated to take more
than 8 months with the software model.

■ DISCUSSION

In this study, we describe for the first time a novel approach that
can be very useful in synthetic biology: whole-cell modeling and
engineering of translation based on a dedicated hardware. The
model (whole-cell model of translation) we analyze here was
chosen as a POC example, and our approach can of course be
implemented to solve various similar problems and models.
The complexity of synthetic biology models dramatically

increases in the recent years7,9,11,19,21,24−27 in a rate higher than
the increase in computation cost. In some cases, when the
models and algorithms are too extensive, the simulations may
become the bottleneck of the development process.
Thus, we suggest that in some cases, the usage of a software in

the Design−Build−Test−Learn (DBTL) synthetic biology
cycle will be replaced by dedicated hardware (see Figure 1B).
Comparison between the Hardware Models. By

examining the results, it is easy to see that the iterative model
runs slower (up to 260 times faster than software) but can
accommodate more mRNAs (up to 1024 mRNAs) and
ribosomes as the parallel model runs much faster (up to 4690
times faster than software) but contains less molecules (up to
128 mRNAs and 4096 ribosomes).
These results could be anticipated since this is a common

tradeoff in designing hardwareruntime vs chip area. In the
parallel model, the ribosomes can run in parallel to each other for
the price of having them implemented in hardware. Conversely,
in the iterative model, the ribosomes are being run sequentially
(and therefore, more slowly) by the mRNA state machine and
can only therefore consume the area needed for their state.
As the iterative model can accommodate more mRNA

molecules, it is best suited for whole-cell modeling and
optimization of translation. In order to explore a smaller part
of the cell, the parallel model can be used to cover much more
configurations in the same amount of time.
Going back to the above POC, we can first run the FGM and

BGM algorithms on large amounts of mRNAs and then we can,
for example, use the simulated annealing algorithm to further
optimize the 64 “best” mRNA molecules using the parallel
model.
Our Approach Can Be Used for Modeling Other Type

of Intracellular Competitions and for Changing Intra-
cellular Conditions. In this work, we chose to demonstrate our
approach by modeling competition over a limited ribosomal
pool as this is currently the most studied intracellular model in
the field, mainly due to the fact that most of its parameters can
accurately be estimated from experimental data. It is important
to emphasize the fact that due to the competition on limited
cellular resources such as ribosomes and tRNAs, even a small
intracellular circuit (e.g., 1−3 genes) can affect the entire cell
and should be engineered based on a whole-cell model.8−11 This
is specifically true when the expression levels of the circuit need
to be high and induce huge load on the host. We would like to
emphasize the fact that translation consumes more than 75% of

the energy in the cell;44−53 thus, it is not surprising that
translation is an important aspect in such cases.
In the future, similar approaches can be used for modeling

other intracellular aspects such as competition of tRNA,
miRNA, transcription factors, and more8 alongside more details
related to the biophysical process (e.g., operon structure and
reinitiation54).
For example, for modeling competition of tRNAs, we suggest

examining a similar approach to the arbitration over the finite
ribosomal pool. We can consider 61 pools of tRNA molecules
(excluding the stop codons) that receive requests from all
ribosomes. It seems that the challenge here might be the routing
of all requests from all ribosomes to this pool in a ribosomal
saturated cell.
It is important to emphasize that during the intracellular

engineering process, the parameters of the models may change.
For example, the concentrations of the tRNA molecules mainly
impact the codons’ translation delay, and the values used here
are the average based on measurements from real cells and
therefore already include the influences of various tRNA
concentrations. Thus, the demand for tRNA molecules in the
cell might change when inducing silent mutations to several
mRNAs as suggested in this paper. If the change in the demand is
substantial, it might impact the translation delay of several
codons. By going back to the first stage shown in Figure 1B with
new experimental data, those variations can be corrected.
Finally, we want to emphasize the fact that according to our

experience, whole-cell models based on differential equation are
also very slow; thus, although the resolution of themodel usually
decreases, this is not a solution to the challenge of performing
very fast simulations. This suggests that the hardware solution
may also be relevant for accelerating whole-cell models based on
differential equations.

From 1024mRNAs to a Whole-Cell Translation Model.
In most cases, real cells contain thousands of mRNA molecules
and even more ribosomes. It is often needed to model a whole
translation cell and not just a subset of chosen mRNAs. For that
purpose, the following changes should be examined.
First, one can simply consider using a bigger FPGA. The

FPGA used for this POC is Xilinx Zynq Ultrascale+ ZU7EV,
which contains 230 K LUTs and 11 Mbit total BRAM memory.
By using Xilinx Virtex Ultrascale+ VU57P, which contains 1.3M
LUTs and 70.9 Mbit total BRAM memory, it is expected to be
possible to fit much more mRNAs and ribosomes into the
design. As a matter of fact, ignoring scaling considerations (as
the enlargement of the global arbiter for more mRNAs), VU57P
is expected to support up to 2900 mRNAs in the parallel model
and much more mRNAs in the iterative model (i.e., all the
mRNAs in the case of most bacterial species).
Moreover, as the main limitation of the parallel model is the

amount of hardware ribosomes, a considerable challenge when
designing it was efficiently distributing the hardware ribosomes
between the mRNAmodules (see theMethods section for more
details). Perhaps it is possible to come up with a more dynamic
approach so that the hardware ribosomes could be shared by
several mRNAs. This problem of dynamically allocating a
common resource resembles the way virtual memory is
implemented in the hardware.55,56 A similar approach can
perhaps be implemented here. If so, it is interesting to examine
how it affects the performance as the main advantage of the
parallel model over the iterative one is its performance.
Also, we can consider a solution in which multiple FPGAs are

connected to form a large system. Platforms that support several

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00415
ACS Synth. Biol. 2021, 10, 3489−3506

3499

pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

FPGAs already exist in the market today. By using such
platforms, we can distribute more mRNAs between the FPGA
chips and split the global ribosomes’ pool to several small pools
that are communicating with each other. In addition, each FPGA
can simulate one aspect or stage of gene expression (e.g., one
FPGA for transcription, one for transport, one for translation,
etc.).
Finally, one can consider implementing an application-

specific integrated circuit (ASIC). FPGAs are quite comfortable
for prototyping as done here but are quite inefficient in the
matters of power consumption, area utilization, and operating
frequency in comparison to ASICs.57−59 Specifically, for
example, according to ref 59, we can expect that for a full
system design, the equivalent ASIC area will be up to 10 times
smaller than the FPGA area. Therefore, we can expect that by
having an ASIC of the same die size as the FPGA, we can
potentially support up to 10,240 iterative mRNAs and 1280
parallel mRNAs. Using the architectures presented in this paper,
it is possible to implement a high-speed, highly configurable
ASIC that can accommodate large numbers of mRNAs and
ribosomes.
Also, the lightweight randomization mechanism presented

here can be easily adapted to randomize the translation delay of
the codons. By doing so, the model can become completely
stochastic at the cost of consuming more FPGA resources.
Another feature that can be considered is modeling the

degradation of ribosomes and mRNA molecules in the cell. The
current architecture of the hardware supports modifying the
ribosomes’ levels to simulate degradation as the number of
ribosomes is a software-controlled parameter of the hardware
that can be dynamically changed throughout the simulation.
Regarding the mRNA molecules’ degradation, to support the
degradation feature, the enabled signals (that already exist in
hardware) for the hardware-mRNA modules should be routed
to the software interface. This is a simple hardware change that
can allow the software algorithm to impact the mRNAs’
degradation by randomly disabling mRNA molecules according
to the desired heuristic. However, one challenge related to this
aspect is related to the lack in experimental measurements of the
half-lives of mRNAs and ribosomes.

■ METHODS

Source of the Data and the Parameters of the Models.
The parameters of the model (initiation rates, elongation rates,
mRNAs codons’ list with various lengths, and total number of
ribosomes) were based on ref 9 and are inferred from ribo-seq
experiments. The parameters there were inferred by fitting the
biophysical model to the ribo-seq data of all mRNAs of E. coli.
The number of mRNAs in S. cerevisiae is from ref 60 and that in
E. coli is from ref 43, the number of ribosomes in S. cerevisiae is
from ref 42 and that for E. coli is from ref 61, and D (ribosome
size) for E. coli is from ref 62 and that for S. cerevisiae is from ref
63. Our model does not directly consider operon structures in
the case of E. coli. This structure specifically affects the initiation
rate to coding regions inside the transcript as it is a combination
of “direct” initiation and reinitiation (after translation
termination or the previous coding region54).
While current time < simulation time:

(1) For each mRNA, get the last ribosome’s release time
(2) Update the free ribosomes’ counter
(3) If no ribosomes are free at the current time:

a. Advance current time to min (mrnai.release time)
b. Continue

(4) For each mRNA, get the ribosome’s request time
(5) If none of the mRNAs are requesting at current time:

a. Advance current time to (mrnai.request time)
b. Continue

(6) Randomly grant ribosomes to the requesting mRNAs
with respect to the amount of currently available
ribosomes

a. For each receiving mRNA object, calculate the new
time vector

However, we do model the right initiation rate to each coding
region since it was inferred by fitting the biophysical model to
the ribo-seq data of all the mRNAs of E. coli, which reflect both
components (direct initiation and reinitiation).
In the case of comparison of the translation rates from our

models and PA, since we are limited to 1024 mRNA molecules
in the current FPGA, in each organism, we chose the genes that
are with the highest levels in the cell and replicated each gene
type with proportion to the cellular mRNA level of that specific
gene.

Software Model Pseudocode. Following is a pseudocode
for the time-event vector calculation of each mRNA molecule
upon receiving a new ribosome:

t_list[0] = current time + ribosome initialization delay
for i in [1..L−D):
(1) blocking time of previous ribosome =

max(0, prev_t_list[i+D] − t_list[i−1])
(2) translation time = mRNA codon delay [i]
(3) t_list[i] = t_list[i−1] + (1) + (2)

for I in [L−D:L):
(1) t_list[i] = t_list[i−1] + mRNA codon delay [i]

t_list[M+D] = t_list[L+D−1] + diffusion time
Here, L is the length (in codons) of the mRNAmolecule,D is

the minimal distance between consecutive ribosomes and
t_list[i] is the absolute time in milliseconds for finishing the
ith step of the current ribosome.
The global scheduler keeps track of the generated time vectors

of all mRNAs to determine the exact times in which ribosomes
are allocated to specific mRNAs, ribosomes are freed, and
proteins are generated. Following is a pseudocode of the global
software scheduler.
For this pseudocode, we get the following execution time

distribution shown in Table 1.
The Global Ribosomes’ Pool Arbiter Local Release

Counter. As previously mentioned, the round-robin arbiter
iterates over all mRNAs, and therefore, it takes exactly m clock
cycles to return to the same mRNA molecule. During that time,
ribosome release events may occur. To take that into
consideration, we added a release counter for each mRNA
release signal. The size of this counter can be determined as
follows: Given the minimal codon’s delay as dminimal and D as
before, it follows that the maximal number of release events
during the arbiter’s iteration is given by

Table 1. Execution Time Distribution in the Case of the Global Scheduler

section (1) (2) (3) (4) (5) (6) (6a)

execution time (%) 19.1% 0.5% 9.6% 7.5% 0.5% 0.2% 60.7%

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00415
ACS Synth. Biol. 2021, 10, 3489−3506

3500

pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Figure 9.Methods section graphs. (A)Number of consecutive Bernoulli (with P = 1/512) experiments needed for at least two success events withmiss
probability lower than 1 × 10−5. (B) 16 bit matrices for generating random numbers in hardware. (C) Utilization of the allocated hardware ribosomes

using different arbiters and different allocation methods: max, each mRNA has l
D

i hardware ribosomes; truncated, each mRNA has

()min ,l
D

total hardware ribosomes
num mRNAs

i ribosomes; weighted, the total amount of hardware ribosomes is distributed by a weight function. (D) Local mRNA

data arbiter size in LUTs as a function of the number of hardware ribosomes; number of mRNAs that are free to receive new ribosomes as a function of
time. (E) FPGA floor planningin pink rectanglesguiding the placer to place the arbiter around the right and top edges.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00415
ACS Synth. Biol. 2021, 10, 3489−3506

3501

https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?fig=fig9&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

óm
D d

1
minimal

E.coli,512 mRNAs

×
=

Ä

Å

ÅÅÅÅÅÅÅÅÅ

É

Ñ

ÑÑÑÑÑÑÑÑÑ
For the uniform arbiter, the number of release events that can

occur until the arbiter reaches the same mRNA is different.
First, let us calculate the number of clock cycles that the

arbiter takes to reach the same mRNA molecule. Here, this
number is not a constant (as in the round-robin case) but a
random variable. As shown, the arbiter randomizes an index
from 0 to m with probability close to

m
1 , as it is designed to be

uniform.
Thus, we have a list of independent identical distributed (iid)

Bernoulli experiments with a probability of
m
1 , and we ask what

number of experiments is required to receive two success events

with high probability. Having E experiments ()e Berni m
1{ }∼ ,

we get

p e p e

m
m

E m
m m

m
m

m E

2 1 2

1
1

1
1 1

1
(1)

(1)

i

E

i
i

E

i

E E

E

E

1 1

1

1

∑ ∑≥ = − <

= − − − −

= − − + −

= =

−

−

i

k
jjjjjj

y

{
zzzzzz

i

k
jjjjjj

y

{
zzzzzz

i
k
jjj

y
{
zzz

i
k
jjj

y
{
zzz
i
k
jjj

y
{
zzz

i
k
jjj

y
{
zzz

For 512 mRNAs, we get (see Figure 9A)

p e 2 1
511
512

E
511
512

1
512i 1

E

i

E E 1

∑ ≥ = − −
=

−i

k
jjjjjj

y

{
zzzzzz

i
k
jjj

y
{
zzz

i
k
jjj

y
{
zzz

i
k
jjj

y
{
zzz

Consequently, the maximal number of release events during
the arbiter’s iteration is now with overflow probability perror

E

D d
7283

9 83
9

p e p
p e

(2)

minimal
E. coli, 512 mRNAs, 1

i
E

i1 error

error
5

|

×
| =

×
=

∑ ≥ <
=

=
−

Å

Ç

ÅÅÅÅÅÅÅÅÅÅ

Ñ

Ö

ÑÑÑÑÑÑÑÑÑÑ

Å
Ç
ÅÅÅÅÅÅÅÅ

Ñ
Ö
ÑÑÑÑÑÑÑÑ

which requires a 4 bit counter for each mRNA molecule.
Uniform Random Number Generators (URNG). There

exist plenty of hardware URNG implementations,64−69 some of
which are optimized specifically for FPGAs.64−66 Since we wish
to keep the URNG logic as compact as possible, the URNG
suggested in ref 65 is the most relevant implementation for our
need. There are two types of URNGs: true-URNGs and
pseudorandom URNGs (PRNGs). True-URNGs are more
relevant for cryptographic usages where high quality of
unpredictable random sequences should often be generated.
True-URNGs are often based on physical randomness that is
generated through various methods64 and are rather complex.
However, for our usage, PRNGs are sufficient.
By following the method suggested in ref 65, we had to come

up with two matrices that operate on a state register to generate
the random number

x Ax

o Bx
i i

i i

1 =

=
+l

moo
n
oo

Where xi is the internal state register (with dimension n), oi is the
output of the PRNG in the ith clock cycle (with dimension m),
and A n n∈ × and B m n∈ × are generation matrices. By
choosing the right A n n∈ × matrix, the sequence {xi} can have

a cycle of 2n − 1. In Ultrascale+ chips, each LUT has six entries.
Therefore, for having an LUT-efficient matrix multiplication of
Axi, we should keep the number of ones in A n n∈ × rows below
6. We also wish to make sure that all bits in the state register take
place in the calculation of the next state. The authors in ref 65
considered software-efficient algorithms for generating adequate
matrices as n grows. For our case, small matrices of up to n = 32
suffice, and for their generation, we used the following simplified
algorithm.
For illustration, for n = 16, we get the matrices shown in

Figure 9B. It is easy to see that each row or contains at most six
ones.
while True:

A 0n n n n=× ×

(1) for i from 0 to n:
a. k = randomize number of LUT inputs from 4 to 6
b. indices = randomly choose k indices from 0 to k−1
c. A[indices] = 1

(2) A_sum = sum A rows
(3) If 0 in A_sum (make sure all state bits effect the next

state):
a. Continue

(4) Calculate xi + 1 = Axi for i from 0 to 2n − 1
(5) If |set({xi})| < 2n − 1 (check if A generates a full cycle):

a. Continue
(6) Return A

The same approach was used for B mxn∈ . By using this
approach, we were able to generate two A16 × 16 matrices (to
operate on a 32-bit state register) and one B9 × 32 matrix that
produces a random sequence with P = 0.992. For reference, we
get P = 0.8 for random sequences of the same length generated
by the “random” package in Python. The main reason for this
improvement is that Python (for instance) randomizes large
integers, while the approach here is tuned for small integers.
Apart from generating a high-quality uniform stream, this

PRNG is quite efficient: {A0, A1} × xi requires 32 LUTs and
B9 × 32xi requires only 9 LUTs. As the state register here is
advanced separately as two concatenated state registers (one for
each matrix) when the first state is advanced only after 2n − 1
steps of the second state, an extra 16 bit counter is required.

Parallel Model Hardware Ribosomes’ Buffer Size. The
maximal theoretical number of active ribosomes operating on

the same ith mRNA of length Li simultaneously is given by
L
D

i
Å
Ç
ÅÅÅÅÅ

Ñ
Ö
ÑÑÑÑÑ.

Therefore, the average number of hardware ribosomes needed

for m mRNA molecules is given by
ó

mE m35L
D

E.coli
i =

Ä
Ç
ÅÅÅÅÅÅ
Å
Ç
ÅÅÅÅÅ

Ñ
Ö
ÑÑÑÑÑ
É
Ö
ÑÑÑÑÑÑ .

By implementing that design, we were able to fit into the
FPGA 128 mRNAs at 200 MHz. Here, as opposed to the
iterative model, the bottleneck is the LUT utilization and (not
the BRAM utilization) as the ribosomes occupy most of the
FPGA and are composed of the state machine shown in Figure
4C.
In real E. coli cells, there are approximately between 20,000 to

50,000 ribosomes and 4100 mRNA molecules.9 Keeping that
ratio when modeling 512 mRNA molecules with 2048
ribosomes, we get the ribosome hardware utilization histogram
shown in Figure 9C. The ribosome hardware utilization is the
maximal number of simultaneously active ribosomes out of the
available hardware ribosomes for the specific mRNA. That
shows that the hardware ribosomes that consume the most

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00415
ACS Synth. Biol. 2021, 10, 3489−3506

3502

pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

FPGA resources are barely utilized. That is not surprising since

the number of ribosomes in a cell is much lower than i
m L

D1
i∑ =

Å
Ç
ÅÅÅÅÅ

Ñ
Ö
ÑÑÑÑÑ.

Moreover, in Figure 9D, we can see that as the mRNA has more
hardware ribosomes, its data arbiter consumesmore LUTs. That
is due to the wide multiplexer in the arbiter that chooses the
codon index that is used for the mRNAROM input (as shown in
Figure 3C). In Figure 9D, we can also see the global round-robin
arbiter LUT utilization for reference.
Keeping that in mind, we next investigated a different method

to distribute the hardware ribosomes between the mRNA
modules. By summing the maximal number of active ribosomes
for all 512 mRNAs in a cell with 2048 ribosomes, the number of
hardware ribosomes will be

mRNA max(active ribosomes) 2900
i

m

1
i∑ ≈

=

That means that if we could predict that number, only 2900
hardware ribosomes would be needed for an accurate 512
mRNAs operating with 2048 cell ribosomes. As mentioned, our
hardware can accommodate 4096 hardware ribosomes. For 512
mRNAs and 2048 cell ribosomes, the maximal number of
simultaneous active ribosomes is 2048. The question is how to
distribute the 4096 available hardware ribosomes between the
512 mRNAs in such a way that each mRNA, even at its most
occupied moment, does not miss any ribosomes granted by the
arbiter.
We first tried the following approach: Assuming 2048

ribosomes are distributed uniformly among 512 mRNAs, the
average amount of active ribosomes on each mRNA should be
around 4; so if we double that in hardware-ribosomes permRNA
(as we could fit 4096 hardware ribosomes in a single chip), each
mRNA, with high probability, will not saturate its hardware
ribosomes.
As shown in Figure 9C, that leads to 96 mRNAs that saturate

their hardware ribosomes for the round-robin arbiter (80 for the
uniform arbiter). To further improve that, we seek to find a
weight function that can predict the utilization of hardware
ribosomes. The factors that should be taken into consideration
are:

(1) mRNA length−As it is longer, it is more probable to have
more active ribosomes.

(2) Codon translation time−As it takes longer for a ribosome
to move along the mRNA, it is more probable to have
more active ribosomes.

(3) Entry time−As the initiation delay plus the time it takes a
ribosome to clear the mRNA 5′ end by moving D codons
is longer, the mRNA is expected to request ribosomes at a
lower rate.

Taking those parameters into account, we assigned each
mRNA the following weight:

w
L

log
codon delay

init codon delay
i

i c D
c L

i c
c D

1
1

i

=
× ∑

+ ∑
=
=

=
= −

i

k

jjjjjj
y

{

zzzzzz

Where initi is the initialization time of the ith mRNA. Here, we
used the logarithm to smoothen the weights. By assigning those
weights, with available HR hardware ribosomes (4096 in the
case of Ultrascale+), the buffer size of the ith mRNA is given by

r
w

w
HRi

i

i
=

∑

By applying this approach, we were able to reduce the number
of mRNAs that saturate their hardware ribosomes to 57 for the
uniform arbiter (see Figure 9C). See the Discussion section for
ideas on improving that even further.
Finally, consider the case in which we wish to synthesize a

single mRNAmolecule and inject it into an existing cell (such as
E. coli). In that case, we might wish to model intracellular
interactions of thousands of different variants of that molecule
while the rest of the cell remains the same. That use case is highly
relevant, for instance, in the process of vaccination development.
As the software simulation can run for months, enumerating
over thousands of variants, the hardware model becomes quite
attractive. In that case, a long simulation can first reveal the
actual utilization of each mRNA molecule in the cell. Then, the
utilization can be translated to the allocation number of
hardware ribosomes for the cell mRNAs. By doing so, we will
be able to fit even more mRNA molecules without hardware
saturation in a single FPGA since as shown above, for 512
mRNAs and 2048 ribosomes in the cell, we only need 2900
hardware ribosomes (and we can fit 4096).

Improving Memory Usage of the Iterative Model. To
store the codon’s delay list for each mRNA molecule, we first
used a map between the codon’s index to its delay for simplicity.
The utilization report revealed that on average, each mRNA
module uses one BRAM for the codons’ delay ROM. We found
that we can reduce its size by replacing it by two concatenated
ROM memories as follows.
The first ROM maps each codon index to the codon’s code.

Each codon consists of three nucleotides, and each nucleotide
can contain one of four possibilities. For coding the nucleotides,
only 2 bits are required (four possibilities). Therefore, each
codon can be coded using 6 bits.
The second concatenated ROM maps a codon’s code to the

codon’s average translation delay (for the deterministic model
the average suffices).
By using the original, single-ROM method, we get

NDbitsROM 2i
L

single ROM method
log i2| | = ×⌈ ⌉

Where NDbits denotes the maximal width in bits of the codons’
delay (15 bits for E. coli) and Li denotes the length of the ith
mRNAmolecule. We use 2⌈log2Li⌉ instead of Li since in the case of
BRAMs, one cannot use a fraction of BRAM that is not a power
of 2.
By using the double-ROM method, we get

NDbitsROM 2 6 bits 64i
L

double ROM method
log i2| | = × + ×⌈ ⌉

Also, the codon code to codon delay table can be
implemented as NDbits 6-input LUTs (15 LUTs in E. coli), as
LUT is basically a ROM with a 6 bit address and one output bit.
That is important as the bottleneck here is the BRAMs and not
the LUTs.
Therefore, the average improvement by implementing the

double-ROM method is given by

ó

E

NDbits
p mRNA

ROM
ROM

6 64 ()

2

1.85

i

i
L

double ROM method

single ROM method

1

log

1

E. coli

i2
∑

| |
| |

= +
×

=

−

⌈ ⌉

−

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
i

k
jjjjjj

y

{
zzzzzz

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00415
ACS Synth. Biol. 2021, 10, 3489−3506

3503

pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

System Complexities. It is important to keep the system
operation simplified as possible for non-engineer users. For that,
we compiled a Linux operating system for the Zynq ARM
processor and wrote a device driver to communicate with the
memory-mapped registers.
As Python is a more approachable coding language than

Verilog (the language in which the hardware is developed), we
decided to run a Jupyter Notebook server using Xilinx PYNQ.
The server can be connected via a browser. The optimization
algorithms shown in this paper where coded in Python and run
on this Jupyter server on the CPU cores of the Zynq chip.
Apart from optimizing memory and LUT utilization as shown

above, we had to take further steps in order to squeeze the design
into a single FPGA at 200 MHz.
First, to ease the router’s task, we had to use floor planning to

direct the placer to the general on-chip locations to which it
should place different logic blocks (see Figures S28 and S32). In
Figure 9E, we can see, for example, that we directed the placer to
place the uniform arbiter on the upper right corner of the chip.
That is because it should be connected to all mRNAs but not to
the ARM processor that appears on the bottom left corner.
Next, the bigger number ofmRNAmolecules grows, the wider

the multiplexers of the arbiter get. For 1024 mRNAs, we had to
pipeline the multiplexers (at the cost of extra clock cycles) to
meet the timing constraints (see Figures S21 and S31).
Also, to grant the ribosomes to the mRNAs in large amounts,

we avoided the demultiplexer altogether and replaced it with an
index of the current served mRNA that is routed to all mRNA
molecules.
Moreover, to further improve timing, we used two different

clocks as shown in Figure 6B. For configuration and result
readback, we used the slow 100MHz clock as communication is
not the bottleneck. For the model itself, we kept the 200 MHz
clock to avoid performance degradation.
Finally, we have many buses and signals that should reach all

mRNA molecules (mRNA configuration signals from the ARM
processor and the served mRNA index from the global arbiter,
for example). To help the router’s convergence, we had to
duplicate some of those high fanout nets and their logic at the
cost of area (see Figure S30).

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415.

Additional information about the presented hardware
architectures, system complexities encountered in the
proof-of-concept, details about the RTL hardware
modules, detailed analysis of a previous work done in
Tuller’s lab, some conclusions that led to the architectures
presented in this paper (PDF)

■ AUTHOR INFORMATION

Corresponding Author
Tamir Tuller−Department of Biomedical Engineering, Tel Aviv
University, Tel Aviv 69978, Israel; orcid.org/0000-0003-
4194-7068; Email: tamirtul@tauex.tau.ac.il

Authors
David Shallom − School of Electrical Engineering, Tel Aviv
University, Tel Aviv 69978, Israel

Danny Naiger − Department of Biomedical Engineering, Tel
Aviv University, Tel Aviv 69978, Israel

Shlomo Weiss − School of Electrical Engineering, Tel Aviv
University, Tel Aviv 69978, Israel

Complete contact information is available at:
https://pubs.acs.org/10.1021/acssynbio.1c00415

Author Contributions
D.S., D.N., S.W., and T.T. wrote the paper and developed the
method.

Notes
The authors declare no competing financial interest.
The code developed and used in this study can be downloaded
from https://www.cs.tau.ac.il/~tamirtul/mRNA-HW.

■ ACKNOWLEDGMENTS

This work was partially supported by a grant from the Israeli
Ministry of Science, Technology, and Space as well as the Zimin
Institute for Engineering Solutions Advancing Better Lives. The
authors thank Zohar Zafrir, Yoram Zarai, and Nicolas Lynn for
helpful discussions.

■ REFERENCES
(1) You, T.; Stansfield, I.; Romano, M. C.; Brown, A. J.; Coghill, G. M.
Analysing GCN4 translational control in yeast by stochastic chemical
kinetics modelling and simulation. BMC Syst. Biol. 2011, 5, 131.
(2) Zhao, Y. B.; Krishnan, J. mRNA translation and protein synthesis:
an analysis of different modelling methodologies and a new PBN based
approach. BMC Syst Biol 2014, 8, 25.
(3) Marshall, R.; Noireaux, V. Quantitative modeling of transcription
and translation of an all- E. coli cell-free system. Sci. Rep. 2019, 9, 11980.
(4) von der Haar, T. Mathematical and Computational Modelling of
Ribosomal Movement and Protein Synthesis: an overview. Comput.
Struct. Biotechnol. J. 2012, 1, No. e201204002.
(5) Dong, J. J.; Schmittmann, B.; Zia, R. K. P. Towards a Model for
Protein Production Rates. J. Stat. Phys. 2007, 128, 21−34.
(6) Cook, L. J.; Zia, R. K. P.; Schmittmann, B. Competition between
multiple totally asymmetric simple exclusion processes for a finite pool
of resources. Phys. Rev. E Stat., Nonlinear, Soft Matter Phys. 2009, 80,
No. 031142.
(7) Zur, H.; Tuller, T. Predictive biophysical modeling and
understanding of the dynamics of mRNA translation and its evolution.
Nucleic Acids Res. 2016, 44, 9031−9049.
(8) Sabi, R.; Tuller, T. Modelling and measuring intracellular
competition for finite resources during gene expression. J. R. Soc.,
Interface 2019, 16, 20180887.
(9) Levin, D.; Tuller, T. Whole cell biophysical modeling of codon-
tRNA competition reveals novel insights related to translation
dynamics. PLoS Comput. Biol. 2020, 16, No. e1008038.
(10) Han, Y.; Zhang, F. Heterogeneity coordinates bacterial multi-
gene expression in single cells. PLoS Comput. Biol. 2020, 16,
No. e1007643.
(11) Karr, J. R.; Sanghvi, J. C.; et al. A whole-cell computational model
predicts phenotype from genotype. Cell 2012, 150, 389−401.
(12) Brackley, C. A.; Romano, M. C.; Thiel, M. The Dynamics of
Supply andDemand inmRNATranslation. PLoS Comput. Biol. 2011, 7,
No. e1002203.
(13) Cook, L. J.; Zia, R. K. P. Feedback and fluctuations in a totally
asymmetric simple exclusion process with finite resources. J. Stat. Mech.
Theory Exp. 2009, 2009, P02012.
(14) Greulich, P.; Ciandrini, L.; Allen, R. J.; Romano, M. C. Mixed
population of competing totally asymmetric simple exclusion processes
with a shared reservoir of particles. Phys. Rev. E 2012, 85, No. 011142.
(15) Cook, L. J.; Zia, R. K. P. Competition for finite resources. J. Stat.
Mech. Theory Exp. 2012, 2012, P05008.

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00415
ACS Synth. Biol. 2021, 10, 3489−3506

3504

https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00415/suppl_file/sb1c00415_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00415/suppl_file/sb1c00415_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00415/suppl_file/sb1c00415_si_001.pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.1c00415/suppl_file/sb1c00415_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tamir+Tuller"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4194-7068
https://orcid.org/0000-0003-4194-7068
mailto:tamirtul@tauex.tau.ac.il
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+Shallom"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Danny+Naiger"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shlomo+Weiss"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00415?ref=pdf
https://www.cs.tau.ac.il/%7Etamirtul/mRNA-HW
https://doi.org/10.1186/1752-0509-5-131
https://doi.org/10.1186/1752-0509-5-131
https://doi.org/10.1186/1752-0509-8-25
https://doi.org/10.1186/1752-0509-8-25
https://doi.org/10.1186/1752-0509-8-25
https://doi.org/10.1038/s41598-019-48468-8
https://doi.org/10.1038/s41598-019-48468-8
https://doi.org/10.5936/csbj.201204002
https://doi.org/10.5936/csbj.201204002
https://doi.org/10.1007/s10955-006-9134-7
https://doi.org/10.1007/s10955-006-9134-7
https://doi.org/10.1103/PhysRevE.80.031142
https://doi.org/10.1103/PhysRevE.80.031142
https://doi.org/10.1103/PhysRevE.80.031142
https://doi.org/10.1093/nar/gkw764
https://doi.org/10.1093/nar/gkw764
https://doi.org/10.1098/rsif.2018.0887
https://doi.org/10.1098/rsif.2018.0887
https://doi.org/10.1371/journal.pcbi.1008038
https://doi.org/10.1371/journal.pcbi.1008038
https://doi.org/10.1371/journal.pcbi.1008038
https://doi.org/10.1371/journal.pcbi.1007643
https://doi.org/10.1371/journal.pcbi.1007643
https://doi.org/10.1016/j.cell.2012.05.044
https://doi.org/10.1016/j.cell.2012.05.044
https://doi.org/10.1371/journal.pcbi.1002203
https://doi.org/10.1371/journal.pcbi.1002203
https://doi.org/10.1088/1742-5468/2009/02/P02012
https://doi.org/10.1088/1742-5468/2009/02/P02012
https://doi.org/10.1103/PhysRevE.85.011142
https://doi.org/10.1103/PhysRevE.85.011142
https://doi.org/10.1103/PhysRevE.85.011142
https://doi.org/10.1088/1742-5468/2012/05/P05008
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

(16) Mather, W. H.; Hasty, J.; Tsimring, L. S.; Williams, R. J.
Translational cross talk in gene networks. Biophys. J. 2013, 104, 2564−
2572.
(17) Chu, D.; von der Haar, T. The architecture of eukaryotic
translation. Nucleic Acids Res. 2012, 40, 10098−10106.
(18) Haas, R.; Zelezniak, A.; Iacovacci, J.; Kamrad, S.; Townsend, S. J.;
Ralser, M. Designing and interpreting ‘multi-omic’ experiments that
may change our understanding of biology. Curr. Opin. Syst. Biol. 2017,
6, 37−45.
(19) Karr, J. R.; Takahashi, K.; Funahashi, A. The principles of whole-
cell modeling. Curr. Opin. Microbiol. 2015, 27, 18−24.
(20) Kent, R.; Dixon, N. Contemporary Tools for Regulating Gene
Expression in Bacteria. Trends Biotechnol. 2020, 38, 316−333.
(21) Sarvari, P.; Ingram, D.; Stan, G.-B. A Modelling Framework
Linking Resource-Based Stochastic Translation to the Optimal Design
of Synthetic Constructs. Biology 2021, 10, 37.
(22) Zur, H.; Cohen-Kupiec, R.; Vinokour, S.; Tuller, T. Algorithms
for ribosome traffic engineering and their potential in improving host
cells’ titer and growth rate. Sci. Rep. 2020, 10, 21202.
(23) Shakiba, N.; Jones, R. D.; Weiss, R.; Del Vecchio, D. Context-
aware synthetic biology by controller design: Engineering the
mammalian cell. Cell Syst. 2021, 12, 561−592.
(24) Marchisio, M. A.; Stelling, J. Computational design tools for
synthetic biology. Curr. Opin. Biotechnol. 2009, 20, 479−485.
(25) Gorochowski, T. E. Agent-based modelling in synthetic biology.
Essays Biochem. 2016, 60, 325−336.
(26) Borkowski, O.; Ceroni, F.; et al. Overloaded and stressed: whole-
cell considerations for bacterial synthetic biology. Curr. Opin. Microbiol.
2016, 33, 123−130.
(27) Purcell, O.; Jain, B.; Karr, J. R.; Covert, M. W.; Lu, T. K. Towards
a whole-cell modeling approach for synthetic biology. Chaos 2013, 23,
025112.
(28) Masson, S. L.; Laflaquiere, A.; Bal, T.; Masson, G. L. Analog
circuits for modeling biological neural networks: design and
applications. IEEE Trans. Biomed. Eng. 1999, 46, 638−645.
(29) Madec, M.; Lallement, C.; Haiech, J. Modeling and simulation of
biological systems using SPICE language. PLoS One 2017, 12,
No. e0182385.
(30) Daniel, R., Woo, S. S., Turicchia, L.; Sarpeshkar, R. Analog
transistor models of bacterial genetic circuits. in 2011 IEEE Biomedical
Circuits and Systems Conference (BioCAS) 333−336; IEEE: 2011.
(31) Teo, J. J. Y.; Woo, S. S.; Sarpeshkar, R. Synthetic Biology: A
Unifying View and Review Using Analog Circuits. IEEE Trans. Biomed.
Circuits Syst. 2015, 9, 453−474.
(32) Teo, J. J. Y.; Sarpeshkar, R. The Merging of Biological and
Electronic Circuits. iScience 2020, 23, 101688.
(33) Hanna, H. A.; Danial, L.; Kvatinsky, S.; Daniel, R. Cytomorphic
Electronics With Memristors for Modeling Fundamental Genetic
Circuits. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 386−401.
(34) Nelson, J.; Refai, M. Design of a hardware arbiter for multi-
microprocessor systems. Microprocess. Microsyst. 1984, 8, 21−24.
(35) Michael, S. Simple Priority Arbiters: Allocating Resources in
Embedded Systems with VHDL and Logisim. All About Circuits; 2019.
(36) Hasasneh, N.; Bell, I.; Jesshope, C. Scalable and Partitionable
Asynchronous Arbiter for Micro-threaded Chip Multiprocessors.
International Conference on Architecture of Computing Systems; 2006,
3894, DOI: 10.1007/11682127_18.
(37) Toe, A. Design and Verification of a Round-Robin Arbiter -
Thesis. International Conference on Architecture of Computing Systems;
Springer: Berlin, Heidelberg,. 2018.
(38) Zheng, S. Q.; Yang, M. Algorithm-Hardware Codesign of Fast
Parallel Round-Robin Arbiters. Parallel Distrib. Syst. IEEE Trans. On
2007, 18, 84−95.
(39) Rigaud, J.-B.; Quartana, J.; Fesquet, L.; Renaudin, M. Modeling
and Design of Asynchronous Priority Arbiters for On-Chip
Communication Systems. SOC Design Methodologies; Springer: 2001,
313−324.

(40) Shin, E. S., Iii, V. J. M.; Riley, G. F. Round-robin Arbiter Design
and Generation. 15th International Symposium on System Synthesis;
243−248 (2002).
(41) Gualerzi, C. O.; Pon, C. L. Biochemistry 1990, 29, 5881−5889.
(42) Warner, J. R. The economics of ribosome biosynthesis in yeast.
Trends Biochem. Sci. 1999, 24, 437−440.
(43) Bartholomäus, A.; Frdyunin, I.; et al. Bacteria differently regulate
mRNA abundance to specifically respond to various stresses. Philos.
Trans. R. Soc. Math. Phys. Eng. Sci. 2016, 374, 20150069.
(44) Lane, N.; Martin, W. The energetics of genome complexity.
Nature 2010, 467, 929−934.
(45)Mahalik, S.; Sharma, A. K.; Mukherjee, K. J. Genome engineering
for improved recombinant protein expression in Escherichia coli.
Microb. Cell Factories 2014, 13, 177.
(46) Buttgereit, F.; Brand, M. D. A hierarchy of ATP-consuming
processes in mammalian cells. Biochem. J. 1995, 312, 163−167.
(47) Russell, J. B.; Cook, G.M. Energetics of bacterial growth: balance
of anabolic and catabolic reactions. Microbiol. Rev. 1995, 59, 48−62.
(48) Gorochowski, T. E.; Avcilar-Kucukgoze, I.; Bovenberg, R. A. L.;
Roubos, J. A.; Ignatova, Z. A Minimal Model of Ribosome Allocation
Dynamics Captures Trade-offs in Expression between Endogenous and
Synthetic Genes. ACS Synth. Biol. 2016, 5, 710−720.
(49) Ceroni, F.; Algar, R.; Stan, G.-B.; Ellis, T. Quantifying cellular
capacity identifies gene expression designs with reduced burden. Nat.
Methods 2015, 12, 415−418.
(50) Gustafsson, C.; Minshull, J.; et al. Engineering genes for
predictable protein expression. Protein Expression Purif. 2012, 83, 37−
46.
(51) Renda, B. A.; Hammerling, M. J.; Barrick, J. E. Engineering
reduced evolutionary potential for synthetic biology. Mol. BioSyst.
2014, 10, 1668−1678.
(52)Weiße, A. Y.; Oyarzuń, D. A.; Danos, V.; Swain, P. S. Mechanistic
links between cellular trade-offs, gene expression, and growth. Proc.
Natl. Acad. Sci. 2015, 112, 1038−1047.
(53) Cardinale, S.; Arkin, A. P. Contextualizing context for synthetic
biology–identifying causes of failure of synthetic biological systems.
Biotechnol. J. 2012, 7, 856−866.
(54) Gunisǒvá, S.; Hronová, V.; Mohammad, M. P.; Hinnebusch, A.
G.; Valásěk, L. S. Please do not recycle! Translation reinitiation in
microbes and higher eukaryotes. FEMS Microbiol. Rev. 2018, 42, 165−
192.
(55) Alam, H., Zhang, T., Erez, M.; Etsion, Y. Do-It-Yourself Virtual
Memory Translation. Proceedings of the 44th Annual International
Symposium on Computer Architecture; 457−468 (2017).
(56) Tanenbaum, A. S. Structured computer organization. Book -
Pearson Prentice Hall; 428−452 (2006).
(57) Markovic, P.; Mujkovic, V. FPGA to ASIC conversion design
methodology with the support for fast retargetting to different CMOS
implementation technologies. in 2000 22nd International Conference on
Microelectronics. Proceedings (Cat. No.00TH8400); vol. 2 703−706
(2000).
(58) Kamal, R.; Nehra, V. FPGA to ASIC Conversion − An SOC
Level Approach. Int. J. Comput. Inf. Syst. 2012, 4.
(59) Ehliar, A.; Liu, D. An ASIC perspective on FPGA optimizations.
International Conference on Field Programmable Logic and Applications;
218−223 (2009).
(60) Zenklusen, D.; Larson, D. R.; Singer, R. H. Single-RNA counting
reveals alternative modes of gene expression in yeast. Nat. Struct. Mol.
Biol. 2008, 15, 1263−1271.
(61) Bremer, H.; Dennis, P. P. Modulation of Chemical Composition
and Other Parameters of the Cell at Different Exponential Growth
Rates. EcoSal Plus 2008, 3, 1.
(62) Zhang, S.; Goldman, E.; Zubay, G. Clustering of low usage
codons and ribosome movement. J. Theor. Biol. 1994, 170, 339−354.
(63) Ingolia, N. T.; Ghaemmaghami, S.; Newman, J. R. S.; Weissman,
J. S. Genome-Wide Analysis in Vivo of Translation with Nucleotide
Resolution Using Ribosome Profiling. Science 2009, 324, 218−223.
(64) Majzoobi, M., Koushanfar, F.; Devadas, S. FPGA-Based True
Random Number Generation Using Circuit Metastability with

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00415
ACS Synth. Biol. 2021, 10, 3489−3506

3505

https://doi.org/10.1016/j.bpj.2013.04.049
https://doi.org/10.1093/nar/gks825
https://doi.org/10.1093/nar/gks825
https://doi.org/10.1016/j.coisb.2017.08.009
https://doi.org/10.1016/j.coisb.2017.08.009
https://doi.org/10.1016/j.mib.2015.06.004
https://doi.org/10.1016/j.mib.2015.06.004
https://doi.org/10.1016/j.tibtech.2019.09.007
https://doi.org/10.1016/j.tibtech.2019.09.007
https://doi.org/10.3390/biology10010037
https://doi.org/10.3390/biology10010037
https://doi.org/10.3390/biology10010037
https://doi.org/10.1038/s41598-020-78260-y
https://doi.org/10.1038/s41598-020-78260-y
https://doi.org/10.1038/s41598-020-78260-y
https://doi.org/10.1016/j.cels.2021.05.011
https://doi.org/10.1016/j.cels.2021.05.011
https://doi.org/10.1016/j.cels.2021.05.011
https://doi.org/10.1016/j.copbio.2009.08.007
https://doi.org/10.1016/j.copbio.2009.08.007
https://doi.org/10.1042/EBC20160037
https://doi.org/10.1016/j.mib.2016.07.009
https://doi.org/10.1016/j.mib.2016.07.009
https://doi.org/10.1063/1.4811182
https://doi.org/10.1063/1.4811182
https://doi.org/10.1109/10.764940
https://doi.org/10.1109/10.764940
https://doi.org/10.1109/10.764940
https://doi.org/10.1371/journal.pone.0182385
https://doi.org/10.1371/journal.pone.0182385
https://doi.org/10.1109/TBCAS.2015.2461446
https://doi.org/10.1109/TBCAS.2015.2461446
https://doi.org/10.1016/j.isci.2020.101688
https://doi.org/10.1016/j.isci.2020.101688
https://doi.org/10.1109/TBCAS.2020.2966634
https://doi.org/10.1109/TBCAS.2020.2966634
https://doi.org/10.1109/TBCAS.2020.2966634
https://doi.org/10.1016/0141-9331(84)90004-8
https://doi.org/10.1016/0141-9331(84)90004-8
https://doi.org/10.1007/11682127_18
https://doi.org/10.1007/11682127_18
https://doi.org/10.1007/11682127_18?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/TPDS.2007.253283
https://doi.org/10.1109/TPDS.2007.253283
https://doi.org/10.1016/S0968-0004(99)01460-7
https://doi.org/10.1098/rsta.2015.0069
https://doi.org/10.1098/rsta.2015.0069
https://doi.org/10.1038/nature09486
https://doi.org/10.1186/s12934-014-0177-1
https://doi.org/10.1186/s12934-014-0177-1
https://doi.org/10.1042/bj3120163
https://doi.org/10.1042/bj3120163
https://doi.org/10.1128/mr.59.1.48-62.1995
https://doi.org/10.1128/mr.59.1.48-62.1995
https://doi.org/10.1021/acssynbio.6b00040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.6b00040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssynbio.6b00040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nmeth.3339
https://doi.org/10.1038/nmeth.3339
https://doi.org/10.1016/j.pep.2012.02.013
https://doi.org/10.1016/j.pep.2012.02.013
https://doi.org/10.1039/C3MB70606K
https://doi.org/10.1039/C3MB70606K
https://doi.org/10.1073/pnas.1416533112
https://doi.org/10.1073/pnas.1416533112
https://doi.org/10.1002/biot.201200085
https://doi.org/10.1002/biot.201200085
https://doi.org/10.1093/femsre/fux059
https://doi.org/10.1093/femsre/fux059
https://doi.org/10.1038/nsmb.1514
https://doi.org/10.1038/nsmb.1514
https://doi.org/10.1128/ecosal.5.2.3
https://doi.org/10.1128/ecosal.5.2.3
https://doi.org/10.1128/ecosal.5.2.3
https://doi.org/10.1006/jtbi.1994.1196
https://doi.org/10.1006/jtbi.1994.1196
https://doi.org/10.1126/science.1168978
https://doi.org/10.1126/science.1168978
https://doi.org/10.1007/978-3-642-23951-9_2
https://doi.org/10.1007/978-3-642-23951-9_2
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Adaptive Feedback Control. in Cryptographic Hardware and Embedded
Systems − CHES, 6917, 17−32 (2011), 1, DOI: 10.1007/978-3-642-
23951-9_2.
(65) Thomas, D. B.; Luk, W. High Quality Uniform RandomNumber
Generation Using LUT Optimised State-transition Matrices. J VLSI
Sign Process Syst Sign Image Video Technol 2007, 47, 77−92.
(66) Justin, R.; Mathew, B. K.; Abe, S. FPGA Implementation of High
Quality Random Number Generator Using LUT Based Shift Registers.
Procedia Technol. 2016, 24, 1155−1162.
(67) Haggui, S., Rouissi, F., Mlayeh, Y.; Tlili, F. Gaussian random
number generator design based on double non-uniform segmentation.
in 2015 IEEE International Conference on Electronics, Circuits, and
Systems (ICECS); 629−632 (2015).
(68) Zulfikar, Z. Generating Non-uniform Random Numbers Using
Residue and Rejection Methods. Thesis - Syiah Kuala University (2009).
(69) Schryver, C., Schmidt, D., de et al. A New Hardware Efficient
Inversion Based Random Number Generator for Non-uniform
Distributions. International Conference on Reconfigurable Computing
and FPGAs 190−195 (2010).

ACS Synthetic Biology pubs.acs.org/synthbio Research Article

https://doi.org/10.1021/acssynbio.1c00415
ACS Synth. Biol. 2021, 10, 3489−3506

3506

https://doi.org/10.1007/978-3-642-23951-9_2
https://doi.org/10.1007/978-3-642-23951-9_2?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/978-3-642-23951-9_2?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s11265-006-0014-9
https://doi.org/10.1007/s11265-006-0014-9
https://doi.org/10.1016/j.protcy.2016.05.069
https://doi.org/10.1016/j.protcy.2016.05.069
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

