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Background. Pulmonary fibrosis is a chronic progressive fibrosis interstitial lung disease that is characterized by inflammatory
infiltration and fibrotic changes. 5-Hydroxytryptamine (5-HT) is an important regulatory factor in inflammation,
immunomodulation, and fibrosis. The aim of this study was to investigate the role of 5-HT in bleomycin- (BLM-) induced
pulmonary fibrosis through wild-type C57BL/6 (WT) and TPH1 knockout (KO) mouse experiments. Methods. The mice were
grouped as follows: WT control group, KO control group, WT BLM group, and KO BLM group. Mice were administrated
bleomycin hydrochloride through intratracheal instillation to induce pulmonary fibrosis. Mice were sacrificed 0, 7, 14, and 21
days after modeling, and bronchoalveolar lavage fluid (BALF) and lung tissues were collected to determine the severity of
fibrotic changes. Results. The results showed that the weight loss of mice in the WT BLM group was more severe than that in
the KO BLM group. H&E and Sirius Red staining revealed that 5-HT markedly aggravated histological damage and fibrotic
changes in the lung. Significantly lower levels of hydroxyproline, Ashcroft fibrosis score, total BALF protein and cells, BALF
tumor necrosis factor- (TNF-) α and interleukin- (IL-) 6, TNF-α and IL-6 mRNA, malondialdehyde (MDA), and
myeloperoxidase- (MPO-) positive cells in the lung tissues, and fibrosis-associated proteins were discovered in the mice from
the KO BLM group compared with the WT BLM group. Conclusion. 5-HT aggravated pulmonary fibrosis mainly by promoting
the inflammation, exudation of proteins and cells, oxidative stress, and upregulation of fibrosis-associated genes in the lung tissues.

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a type of progressive
and irreversible chronic fibrotic interstitial lung disease with
only 2–3-year survival once diagnosed [1]. Progressive dys-
pnea and a dry irritating cough are the major clinical presen-
tations [2]. Although the exact molecular mechanisms that
cause IPF progression are not fully illustrated, the commonly
accepted pathogenesis involves inflammatory injury to the
alveolar epithelium, excessive extracellular matrix (EMC)
deposition, persistent proliferation and accumulation of
fibroblasts, abnormal repair and remodeling of lung tissue,
and so on [3, 4]. The available medical therapeutic options

for IPF are poorly effective. Corticosteroids and anti-inflam-
matory, antioxidative stress, immunomodulatory agents, as
well as antifibrotic agents, only have partial effects but fail
to produce invertible benefits [5–7]. Thus, exploring the pre-
cise mechanisms and designing relative targeted drugs are
urgent for the conquest of IPF.

Serotonin, also known as 5-hydroxytryptamine (5-HT),
is a small monoamine molecule derived from tryptophan.
The central 5-HT synthesized by tryptophan hydroxylase 2
(TPH 2) is involved in the regulation of cognition, mood,
aggression, mating, feeding, and sleep. The peripheral 5-HT
synthesized by TPH1 regulates platelet aggregation, bone
development, immune responses, and inflammatory reaction
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[8, 9]. Previous studies indicated that serotonin played essen-
tial roles infibrosis lesions, including adventitiafibrosis during
the pulmonary arterial hypertension process, liver fibrosis,
dermal fibrosis, and postoperative intra-abdominal adhesion
(PPA) formation [10–13]. However, few studies have looked
at the role of 5-HT in pulmonary fibrosis, while indirect evi-
dence showed that elevated 5-HT levels in serum, bronchoal-
veolar lavage fluid (BALF), and lung homogenates could be
observed in pulmonary fibrosis mice [14, 15]. This study used
TPH1 knockout (deficiency of peripheral 5-HT) and wild-
type C57BL/6 (sufficiency of peripheral 5-HT) mice to
investigate the role of 5-HT in bleomycin-induced pulmonary
fibrosis, which may allow 5-HT as a biomarker of early detec-
tion of pulmonary fibrosis and a potential therapy target.

2. Materials and Methods

2.1. Experimental Animals. The studywas conducted by using
male TPH1knockout (KO)mice andmalewild-typeC57BL/6
(WT) mice (4–5 weeks old, weighing 20–25 g) (Animal
Feeding Center of Xi’an Jiaotong University Health Science

Center). All the mice were housed in a specific pathogen-free
facility with a standard animal diet and water ad libitum. All
animal procedures were reviewed, approved, and supervised
by the Institutional Animal Care and Use Committee of the
Ethics Committee of Xi’an JiaotongUniversityHealth Science
Center, China. The bleomycin was purchased from Sigma-
Aldrich (Saint Louis, MO, USA).

2.2. Study Design. The prepared mice were anesthetized by
intramuscular injection of chloral hydrate (10mg/kg, 4%).
Then, the mice were treated with a cannula inserted into the
trachea and down into the lungs. A drug was slowly instilled
into the lungs by this cannula. The mice were grouped as fol-
lows: (1) WT control group, (2) KO control group, (3) WT
BLM group, and (4) KOBLM group. Intratracheal instillation
of bleomycin hydrochloride (2UI/kg, dissolved in 0.5ml 0.9%
sterile saline) was performed to induce pulmonary fibrosis in
the WT BLM and KO BLM groups. Meanwhile, the mice in
WT andKO control groups were treated with an intratracheal
instillation of equivalent saline. To ensure sufficient distribu-
tion of the drug, 0.5ml air was injected twice after

Table 1: The inflammatory score system.

Score Description

0 No infiltration of inflammatory cells

1 Occasionally by vein and bronchus cuff inflammatory cells infiltration

2 The majority of vein, peribronchial infiltration of inflammatory cells, inflammatory cell layer 1~5
3 The majority of vein, peribronchial infiltration of inflammatory cells, inflammatory cell layer is greater than 5

Table 2: The fibrotic score system.

Score Description

0 No pulmonary fibrosis

1 Mild pulmonary fibrosis, the affected area was less than 20%

2 Moderately pulmonary fibrosis, involvement of area of 20%~50%
3 Severe pulmonary fibrosis, the affected area was more than 50%, the alveolar structure disorder

Table 3: The Ashcroft fibrosis score system.

Score Description

0 Normal lung; no fibrotic burden at the flimsiest small fibers in some alveolar walls

1
Lung structure: alveoli partly enlarged and rarefied, but no fibrotic masses was present; alveolar septa: isolated

gentle fibrotic changes (septum≤ 3× thicker than normal)

2
Lung structure: alveoli partly enlarged and rarefied, but no fibrotic masses; alveolar septa: clearly fibrotic
changes (septum> 3× thicker than normal) with knot-like formation but not connected to each other

3
Lung structure: alveoli partly enlarged and rarefied, but no fibrotic masses; alveolar septa: contiguous fibrotic

walls (septum> 3× thicker than normal) predominantly in the whole microscopic field

4 Lung structure: single fibrotic masses (≤10% of microscopic field); alveolar septa: variable

5
Lung structure: confluent fibrotic masses (>10% and ≤50% of microscopic field), lung structure severely damaged

but still preserved; alveolar septa: variable

6
Lung structure: large contiguous fibrotic masses (>50% of microscopic field), lung architecture mostly not preserved;

alveolar septa: variable, mostly not exist

7 Lung structure: alveoli nearly obliterated with fibrous masses but still up to five air bubbles; alveolar septa: nonexistent

8 Lung structure: alveoli nearly obliterated with fibrous masses but still up to five air bubbles; alveolar septa: nonexistent
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intratracheal instillation. Six mice per group were used in this
study. The body weight of the mice was calculated every
day. On days 0, 7, 14, and 21, the animals were sacrificed
after being anesthetized with isoflurane gas to determine
the fibrotic changes.

2.3. Histological Examination and Scoring. After the mice
were sacrificed at a specified point in time, the lung tissues
were removed, fixed in 10% formalin solution, and embed-
ded in paraffin. Serial sections (5μm) were obtained and sub-
jected to by hematoxylin and eosin (H&E) and Sirius Red
staining to evaluate the lung pathology and fibrotic changes.
The morphological results were assessed blindly by two
pathologists. The inflammatory score, fibrotic score, and
Ashcroft fibrosis score were calculated according to the cri-
teria presented in Tables 1–3.

2.4. Hydroxyproline Quantification. Twenty-one days after
bleomycin or saline administration, the lung tissues from all
groups were collected to determine the hydroxyproline levels.
Hydroxyproline levels were determined using hydroxyproline
assay kits (Nanjing Jiancheng Bioengineering Institute).

2.5. Bronchoalveolar Lavage Fluid (BALF) Analysis. Broncho-
alveolar lavage fluid (BALF) was collected by 3 washes with
1ml 0.9% saline by tracheal intubation in mice. The superna-
tants of BALF homogenates were collected to detect the total
cell counts and proteins as previously described [16].

2.6. Enzyme-Linked Immunosorbent Assays (ELISA). The
BALF TNF-α and IL-6 levels were detected by using TNF-α
and IL-6 ELISA kits (Dakewe, Shenzhen, China).

2.7. Measurement of Oxidative Stress. The malondialdehyde
(MDA), superoxide dismutase (SOD), and glutathione
(GSH) levels in the lung tissues were measured using activity
assay kits (Nanjing Jiancheng Bioengineering Institute).

2.8. RNA Isolation and Quantitative Reverse Transcription
Polymerase Chain Reaction (qRT-PCR) Analysis. Total lung
tissue RNAs from all groups were isolated by adopting
RNAfast200 Kits (Fastagen Biotech, Shanghai, China).
PrimeScript RT reagent kits were adopted to perform reverse
transcription (TaKaRa Biotechnology, Dalian, China). The
mRNA expression was detected in triplicate and standard-
ized by comparison with 18S. The relative levels were calcu-
lated using the comparative-Ct method (ΔΔCt method).
The primers used in the study were as follows: TNF-α: for-
ward 5′-AAGCCTGTAGCCCACGTCGTA-3′ and reverse
5′-AGGTACAACCCATCGGCTGG-3′; IL-6: forward 5′-
TCCATCCAGTTGCCTTCTTG-3′ and reverse 5′-TTCC
ACGATTTCCCAGAGAAC-3′; and 18S: forward 5′-AAAC
GGCTACCACATCCAAG-3′ and reverse 5′-CCTCCAATG
GATCCTCGTTA-3′.

2.9. Immunofluorescence Staining. Serial lung sections pre-
treated with proteinase K were incubated using a monoclonal
rabbit anti-MPO antibody (Santa Cruz Biotechnology Inc.,
CA) diluted 1 : 400 in PBS. Then, stained sections were
washed and incubated with an Alexa Fluorophore 488 nm

donkey anti-rabbit antibody at 1 : 300 in PBS for 90min and
counterstained with 4′-6-diamidino-2-phenylindole (DAPI).
The results were detected using an inverted Leica CTR 6000
fluorescence microscope and Leica Application Suite
Advanced Fluorescence software (Leica UK, Milton Keynes).

2.10. Western Blotting. Lung proteins were separated by 10%
SDS-PAGE electrophoresis and transferred onto nitrocellu-
lose membranes. The membranes were incubated with
mouse antibody collagen I, TGF-β1, and β-actin after block-
ing with 10% skim milk at room temperature for 3 h. After
washing with PBS, the membranes were further incubated
with secondary antibody for 1.5 h. Immune-reactive protein
bands were detected by the diaminobenzidine method. The
relative density of protein expressions was quantitated by
ImageJ software (https://imagej.nih.gov/ij/). Protein levels
were standardized by comparison with β-actin.

2.11. Statistical Analysis. All the data were expressed as
mean ± SD. The t-test or one-way ANOVA was applied to
analyze the difference between groups. P < 0 05 represented
a significant difference. GraphPad Prism software 6.0
(version 6.0, GraphPad Software Inc., La Jolla, CA, USA)
was used for data statistics and statistical mapping.

3. Results

3.1. 5-HT Worsened Body Weight Loss Induced by Bleomycin
in Mice. The weight of mice from the WT and KO control
groups increased gently from day 0 to day 21 after the exper-
iment. However, the WT BLM group mice injected with
bleomycin showed a significant loss of body weight until
day 7 and gradually increased from day 7 to day 21. In
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Figure 1: Effect of 5-HT on weight loss induced by bleomycin in
mice. Intratracheal instillation of bleomycin (BLM) hydrochloride
was performed to induce pulmonary fibrosis in wild-type C57BL/6
(WT) and TPH1 knockout (KO) mice. The changes in body
weight of mice from the WT and KO control, WT BLM, and KO
BLM groups were examined over the 21-day study period. All data
were expressed as mean ± SD, n = 6. ∗P < 0 05 and ∗∗P < 0 01
versus the WT BLM group.
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contrast, the KO BLM group mice displayed less weight loss,
especially during day 0 to day 14. There was a significant
decrease in body weight in the WT BLM group mice when
compared with the KO BLM group on day 7 (P < 0 001)
and day 14 (P < 0 05), respectively (Figure 1).

3.2. 5-HT Aggravated Bleomycin-Induced Pulmonary Fibrosis
in Mice. Histological examination (H&E staining) of the
lungs from both WT BLM and KO BLM groups mice dis-
played remarkable lung parenchymal fibrotic lesions and
inflammatory infiltration when compared with the WT and
KO control groups on days 7, 14, and 21 (Figure 2(a)). How-
ever, WT BLM group mice were more susceptible to bleomy-
cin toxicity, as evidenced by a higher inflammatory response
score (Figure 2(b)). Meanwhile, Sirius Red staining showed
that more collagenous fiber formation was observed in the
WT BLM group mice on days 14 and 21, which was also con-
firmed by fibrotic scoring (Figures 2(c) and 2(d)).

3.3. 5-HT Promoted Collagen Deposition Induced by
Bleomycin in Mice. The hydroxyproline level and Ashcroft
fibrosis score are positively related to the degree and severity
of pulmonary fibrosis [17]. Thus, hydroxyproline levels in
lung tissues and Ashcroft fibrosis scores were calculated on
day 21 to determine the role of 5-HT in pulmonary fibrosis.
As shown in Figure 3(a), mice from the KO BLM group
exhibited a significant reduction in hydroxyproline levels
compared with the WT BLM group. Meanwhile, WT BLM
group mice had a higher Ashcroft fibrosis score, which
reflected more severe fibrotic lesions (Figure 3(b)).

3.4. 5-HT Increased Exudation of Proteins and Cells Induced
by Bleomycin in Mice. The total BALF proteins contain lami-
nin, procollagen 1, procollagen 3, and so on, and the BALF
cells mainly include alveolar macrophages, lymphocytes, and
neutrophils. They all play important roles in the development
and progression of pulmonary fibrosis [18]. Total BALF
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Figure 2: Histological examination of the effect of 5-HT on bleomycin-induced pulmonary fibrosis. Intratracheal instillation of bleomycin
(BLM) hydrochloride was performed to induce pulmonary fibrosis in wild-type C57BL/6 (WT) and TPH1 knockout (KO) mice. The mice
in the WT BLM and KO BLM groups were sacrificed on days 7, 14, and 21, and histological examination was performed by (a) H&E
staining and (c) Sirius staining. The (b) inflammatory score and (d) fibrotic score were calculated to determine the severity of
inflammation and fibrosis. All data were expressed as mean ± SD, n = 6. ∗P < 0 05 and ∗∗P < 0 01 versus the WT BLM group.
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proteins and cell counts in different experimental groups were
examined on days 7, 14, and 21. The total BALF proteins and
cell counts in the WT control and KO control groups fluctu-
ated at a fixed value. Total BALF proteins were decreased sig-
nificantly in KO BLM groupmice on days 7 and 21 compared
with theWTBLMgroup (Figure 4(a)). Meanwhile, compared
with the KO BLM group, more total BALF cell counts were
observed on days 7, 14, and 21 in WT BLM group mice
(Figure 4(b)).

3.5. 5-HT Increased Inflammatory Reaction Induced by
Bleomycin in Mice. BALF TNF-α and IL-6 levels were
detected to ascertain the severity of inflammation in all
groups. Significant increases in BALF TNF-α and IL-6 levels
were observed 21 days after bleomycin administration in
both WT BLM and KO BLM groups mice. However, the
KO BLM group mice displayed lower BALF cytokine levels

than the WT BLM group mice did (Figures 5(a) and 5(b)).
Moreover, we isolated lung RNAs and measured the mRNA
levels of TNF-α and IL-6 in all groups by qRT-PCR. The
results showed that lower transcriptional levels of TNF-α
and IL-6 were detected in KO BLM group mice in compari-
son to WT BLM group mice (Figures 5(c) and 5(d)).

3.6. 5-HT Increased Neutrophil Infiltration and Oxidative
Stress Induced by Bleomycin in Mice. Some evidence suggests
that neutrophil infiltration and oxidative stress play signifi-
cant roles in pulmonary fibrosis [19, 20]. The lung tissues
were collected on day 21 to detect these indexes. Immunoflu-
orescence staining of MPO was performed to determine the
neutrophil infiltration. The results showed that MPO was
mainly distributed in the cytoplasm and subsequently the cell
nucleus (green fluorescence) after bleomycin administration.
The immunofluorescence staining of MPO was much more
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Figure 4: Effect of 5-HT on protein and inflammatory cell infiltrations in BALF induced by bleomycin in mice. Intratracheal instillation of
bleomycin (BLM) hydrochloride was performed to induce pulmonary fibrosis in wild-type C57BL/6 (WT) and TPH1 knockout (KO) mice.
The mice in the WT and KO control, WT BLM, and KO BLM groups were sacrificed on days 7, 14, and 21, and bronchoalveolar lavage fluids
(BALF) were collected to determine the (a) total BALF proteins and (b) total BALF cell counts. All data were expressed as mean ± SD, n = 6.
∗P < 0 05 and ∗∗P < 0 01 versus the WT BLM group.
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Figure 3: Effect of 5-HT on collagen deposition induced by bleomycin in mice. Intratracheal instillation of bleomycin (BLM) hydrochloride
was performed to induce pulmonary fibrosis in wild-type C57BL/6 (WT) and TPH1 knockout (KO) mice. The mice in the WT and KO
control, WT BLM, and KO BLM groups were sacrificed on day 21, and lung tissues were collected to determine the (a) hydroxyproline
levels and the (b) Ashcroft fibrosis score based on histological examination. All data were expressed as mean ± SD, n = 6.
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positively stained in WT BLM group mice (Figure 6(a)).
The quantification of MPO-positive cells showed the same
result (Figure 6(b)). The MDA, SOD, and GSH levels in
the lung tissues, which reflected the oxidative stress and
antioxidant ability, were also measured. Significantly lower
MDA levels and higher SOD and GSH levels were observed
in the KO BLM group compared with the WT BLM group
(Figures 6(c)–6(e)).

3.7. 5-HT Promoted Expression Levels of Fibrosis-Related
Genes Induced by Bleomycin in Mice. Collagen I and TGF-
β1 are involved in the development of pulmonary fibrosis
and are also the markers of lung remodeling. The lung tissues
from all groups were collected on day 21 to detect the expres-
sion levels of these fibrosis-related genes. The Western blot
results showed that collagen I and TGF-β1 were much more
expressed in the WT BLM group than in the KO BLM
group, which was also confirmed by intensity quantitation
(Figures 7(a)–7(c)).

4. Discussion

Idiopathic pulmonary fibrosis is a chronic fibrotic interstitial
lung disease that is a huge health burden worldwide [21].
Despite the rapid progress achieved in the understanding of
pulmonary fibrosis pathogenesis, the precise mechanisms
remain unclear. Bleomycin is a classical antineoplastic drug
that is also commonly applied for pulmonary fibrosis model-
ing in rodents. Intratracheal administration of bleomycin
directly induces cellular DNA strand break, oxidative stress
and inflammation, fibroproliferation, and collagen produc-
tion [22]. In the present study, we exhibited direct experimen-
tal results demonstrating that wild-type C57BL/6 mice
(sufficiency of peripheral 5-HT) were more susceptible to
bleomycin-induced pulmonary fibrosis compared with
TPH1 knockout mice (deficiency of peripheral 5-HT). Lung
tissues fromWT BLM group mice exhibited more severe his-
tological lesions, collagen deposition, inflammatory reactions,
oxidative stress, and higher expression of fibrosis-related
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Figure 5: Effect of 5-HT on inflammatory reaction induced by bleomycin in mice. Intratracheal instillation of bleomycin (BLM)
hydrochloride was performed to induce pulmonary fibrosis in wild-type C57BL/6 (WT) and TPH1 knockout (KO) mice. The mice in the
WT and KO control, WT BLM, and KO BLM groups were sacrificed on day 21. Bronchoalveolar lavage fluids (BALF) were collected to
determine the BALF (a) tumor necrosis factor- (TNF-) α and (b) interleukin- (IL-) 6 levels. Lung tissues were collected to detect the
transcriptional level of (c) TNF-α and (d) IL-6 mRNA by quantitative reverse transcription polymerase chain reaction (qRT-PCR)
analysis. All data were expressed as mean ± SD, n = 6.
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genes, whichpresented direct evidence that 5-HTcould aggra-
vate bleomycin-induced pulmonary fibrosis. Indirect clews
pointed that serotonin levels in lung homogenates increased
significantly during bleomycin-induced pulmonary fibrosis,
andblockageof 5-HT2Aand5-HT2Breceptors could alleviate
the fibrotic changes [14] Pulmonary fibrosis is characterized
pathologically by ECM accumulation and pulmonary archi-
tecture remodeling. It is associatedwith unbalanced processes,
including proliferation and apoptosis of fibroblasts and accu-
mulation and breakdown of ECM [20]. Although the detailed
cellular and modulatory mechanisms of these processes are
complicated and still not well illuminated, collagen deposi-
tion, inflammation, and oxidative stress are three acknowl-
edged factors evolving pulmonary fibrosis [23, 24]. Collagen
deposition is the characteristic pathological change in fibrosis
disease. In the study, we found that more positive Sirius Red
staining, more hydroxyproline levels, higher fibrotic scores,
and Ashcroft fibrosis scores in the lung tissues from WT
BLM group mice were observed. All these results indicated
that 5-HT could increase collagen deposition in pulmonary
fibrosis. In addition to lung fibrosis, the 5-HT system could
also stimulate increased hepatic stellate cell proliferation and
collagen deposition in liver fibrosis, the production of ECM
in dermal fibroblasts, and the production of fibrin formation

in PPA formation [11–13]. To study the related molecular
mechanisms, we detected the expression of collagen 1 and
TGF-β1, which are the key proteins in the fibrogenic system.
The results showed that 5-HT could significantly increase
these protein expressions. TGF-β1 is regarded as the most
important fibrogenic cytokine that is mainly expressed in
fibroblasts, epithelial, and endothelial cells [25]. Preclinical
and clinical studies have shown that TGF-β1 is significantly
upregulated during the progression of fibrotic diseases by
stimulating the production of ECM proteins [26, 27]. Chen
et al. found that 5-HT could promote adventitia fibrosis
through the TGF-β1/Smad3 pathway [10]. In our previous
study, we also found that 5-HT could promote TGF-β1
expression in PPA formation [13].

Neutrophils play an important role in lung parenchyma
damage not only in acute lung injury but also in chronic pul-
monary fibrosis [28, 29]. Clinical evidence showed that more
neutrophils and higher neutrophil elastase, MPO, and colla-
genase levels could be observed in IPF patients [30, 31]. More
neutrophil infiltration and MPO staining were detected in
the bleomycin-treated rodents based on the histological
study [32]. Our study showed that more MPO staining was
observed in WT BLM group mice, which could be concluded
that 5-HT might promote neutrophil infiltration and MPO
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Figure 6: Effect of 5-HT on neutrophil infiltration and oxidative stress induced by bleomycin in mice. Intratracheal instillation of bleomycin
(BLM) hydrochloride was performed to induce pulmonary fibrosis in wild-type C57BL/6 (WT) and TPH1 knockout (KO) mice. The mice in
theWT and KO control, WT BLM, and KO BLM groups were sacrificed on day 21. Lung tissues were collected to perform immunofluorescent
staining to detect the location of (a) myeloperoxidase (MPO) and the calculation of (b) MPO positively stained cells. Meanwhile, the lung (c)
malondialdehyde (MDA), (d) superoxide dismutase (SOD), and (e) glutathione (GSH) levels were examined to determine the severity of
oxidative stress. All data were expressed as mean ± SD, n = 6.
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release. Duerschmied et al. discovered that 5-HT could pro-
mote the recruitment of neutrophils to sites of acute inflam-
mation in mice [33]. Jang et al. also found that 5-HT could
promote MPO expression in mouse liver from cholestatic
injury induced by bile duct ligation [34]. Our previous study
also proved that 5-HT could promote neutrophil infiltration
and MPO release in the lung and liver tissues affected by
abdominal sepsis [35].

Pulmonary fibrosis is thought to be a chronic inflamma-
tory disease of the lung parenchyma. Histological analysis
results show that massive inflammatory cells, including lym-
phocytes, macrophages, and neutrophils, accumulate in pul-
monary fibrosis-affected lung tissues. In addition, high serum
and BALF inflammation-related cytokines are observed in
rodents and IPF patients [23]. TNF-α is a powerful proin-
flammatory cytokine that promotes the infiltration of inflam-
matory cells and the proliferation of fibroblasts. IL-6 is a
downstream cytokine that may modulate pulmonary inflam-
mation and fibrosis directly. Increased TNF-α and IL-6 levels
in serum and BALF are associated with lung fibrosis [36]. In
our study, we found that BALF TNF-α and IL-6 levels and
lung TNF-α and IL-6 mRNA were markedly increased in
the WT BLM group mice, indicating that 5-HT might pro-
mote the production of cytokines in pulmonary fibrosis.
The differences in the inflammatory components between
WT BLM and KO BLM groups were even more evident than
fibrosis scores. The reason was that inflammatory reaction
played a key role in the development of pulmonary fibrosis,

and 5-HT could affect the fibrosis denouement through the
inflammation process. The role of 5-HT in the modulation
of inflammation and the immune systemcanbe acquired from
the review written by Shajib and Khan [8]. In our previous
studies, we also found that 5-HT could increase the produc-
tion of TNF-α and IL-6 in MODS, sepsis, and PPA formation
[13, 35, 37]. Moreover, our results also showed that 5-HT
might aggravate the toxic effect of bleomycin on the capillary
endothelium and alveolar epithelium and thus promote exu-
dation of proteins and cells which were reflected by the high
BALF proteins, cells, and cytokine levels. We speculated that
5-HT might promote the exudation of proteins and cells
through bleomycin-induced inflammation reactions in the
lung could contribute pulmonary fibrosis finally.

Imbalance between the excessive generation of ROS and
the disability of antioxidant causes oxidative stress, which
plays a major role in pulmonary fibrosis. Remarkable eleva-
tion of oxidant burden and disability of antioxidant are
observed in lung fibrosis [24]. In this study, we demonstrated
that 5-HT did affect the antioxidant/oxidant balance and
exacerbate oxidative stress in bleomycin-induced lung fibro-
sis. The role of 5-HT in oxidative stress has been well studied.
Nocito et al. found that 5-HT mediated oxidative stress and
mitochondrial toxicity in a murine model of nonalcoholic
steatohepatitis [38]. Our previous data showed that 5-HT
could increase the production of ROS in septic lung and
liver tissues and decrease the SOD and GSH levels in
PPA tissues [13, 35].
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Figure 7: Effect of 5-HT on fibrosis-related gene expression levels induced by bleomycin in mice. The mice in the WT and KO control, WT
BLM, and KO BLM groups were sacrificed on day 21.Western blotting was adopted to detect the expression of (a) collagen I and transforming
growth factor- (TGF-) β1 in the lung tissues. The band intensities of (b) collagen I and (c) TGF-β1 were analyzed. All data were expressed as
mean ± SD, n = 6.
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In conclusion, our preclinical study using TPH1 knock-
out and wild-type C57BL/6 mice demonstrated that 5-HT
markedly exacerbated bleomycin-induced lung fibrosis. The
potential mechanisms might be that 5-HT could facilitate
collagen deposition, inflammation, and oxidative stress dur-
ing pulmonary fibrosis. These findings indicated that 5-HT
could be a biomarker of pulmonary fibrosis and might be a
therapeutic target in the future.
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