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directly to the VN. The two systems are complementary: the VOR 
compensates for higher frequencies while the OKR compensates 
for the lower velocities (Collewijn, 1989).

Both the VOR and OKR are adaptive, meaning that the mapping 
of stimulus to appropriate eye response can be tuned to match 
changing response properties of the eye and its supporting tissues 
(usually collectively called the “plant”) or changes in the sensi-
tivity of the sensory organs (Blazquez et al., 2004; Boyden et al., 
2004; Andreescu et al., 2005; Gittis and du Lac, 2006). Changes in 
either plant response properties, sensory sensitivity, or environ-
mental changes in the relationship of vision and vestibular input 
to movement will change the appropriate mapping from stimulus 
to response and thus the system must change the mapping so that 
retinal slip continues to be appropriately compensated. There is 
ample evidence that the fl occulus, a small section of the cerebellar 
cortex is critical in this plasticity (e.g. Lisberger et al., 1984). The 
Purkinje cells (P-cells) of the fl occulus project only to the VN. There 
are sites of plasticity both at the level of the parallel fi bre synapses 
to these P-cells, as well as at the P-cell/VN synapses (Raymond 
et al., 1996; Boyden et al., 2004). In addition, the cerebellum has an 
important role in ongoing performance beyond its role in plasticity: 
the performance of the OKR decreases dramatically after fl occular 
lesions (Takemori and Cohen, 1974; Zee et al., 1981), while the VOR 
is less affected (Waespe et al., 1983; Van Neerven et al., 1989).

THE STATE PREDICTING FEEDBACK CONTROLLER
There has been a long history of using models based on the prin-
ciples of control theory to describe the control of eye movements 
generally and CEM in particular. Starting with the seminal work 

COMPENSATORY EYE MOVEMENTS
Compensatory eye movements (CEM) is a general term for a number 
of different refl exes that keep an image fi xed on the retina during 
movements of the body and the head (e.g. Delgado-Garcia, 2000). 
As such, these eye movements have a specifi c and well-defi ned 
goal: to prevent movement of the visual image on the retina, often 
called retinal slip, during fi xation. The circuitry of the CEM system 
(Figure 1) is different from the circuitry for other eye movements 
such as saccades, although all the eye movement systems converge 
in the oculomotor nuclei of the brainstem (Buttner-Ennever and 
Buttner, 1992). For horizontal eye movements these are the abdu-
cens nucleus (Ab) and the nucleus prepositus hypoglossi (NPH). 
All CEM-related input to these brainstem structures comes from 
the Vestibular Nuclei (VN).

The optokinetic refl ex (OKR) is a closed loop system that 
directly responds to retinal slip, generating eye movements with the 
 direction and magnitude of measured retinal slip. Afferents from 
the retina project directly to the Accessory Optic System (AOS). 
The AOS, in turn projects to the VN and the cerebellum, through 
the Nucleus Reticularis Tegmenti Pontis (NRTP; Gerrits et al., 1984; 
Langer et al., 1985; Glickstein et al., 1994). The OKR has a response 
delay of about 80 ms (e.g Winkelman and Frens, 2006), mostly 
because of the inherent delay involved in visual processing (Graf 
et al., 1988). In keeping with this, the OKR is only responsive to 
low velocity stimuli.

For compensation of higher velocity stimuli, the CEM system 
depends on the vestibulo-ocular refl ex (VOR) which uses vestibular 
input to estimate head movement and generate oppositely directed 
eye movements. Vestibular afferents from the labyrinth project 
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of David Robinson (for review Robinson, 1981), this tradition has 
generally posited a neural implementation of an inverse model that 
maps stimuli to command signals (Skavenski and Robinson, 1973). 
An inverse model, literally speaking, is a control process that inverts 
the plant; that is, the plant converts control signals into motion, 
so an inverse model converts desired motion into the appropriate 
control signals (Jordan and Rumelhart, 1992; Figure 2A).

The cerebellar fl oculus is thought by many to implement a form 
of inverse model (Kawato and Gomi, 1992, and see also Lisberger, 
2009, for review of these ideas in relation to the smooth pursuit 
system). While this idea has many adherents, there are also alterna-
tive proposals. Perhaps most famously, Llinás (1988) proposed that 
the cerebellum is involved in adjusting movement timing to facili-
tate coordination, rather than in generating compensatory move-
ment commands. Similar ideas have been put forward recently. 
Specifi cally, Jacobson et al. (2008) argued that synchrony and oscil-
latory activity in the inferior olive are compatible with a cerebellar 
timing  mechanism driven by olivary harmonics. D’Angelo and De 
Zeeuw (2009) in contrast, focus on the temporal dynamics of the 
cerebellar granular layer. A somewhat more eclectic model that also 
focuses on timing is Braitenberg’s model of the cerebellum as a system 
for generating sequences of movement in precise time relationship 
(Braitenberg et al., 1997). While each of these models can legitimately 
claim to explain important data, there is no doubt that the inverse 
model understanding of the cerebellum in CEM is the most widely 
accepted. We will not consider the other models in developing our 
own ideas below. The controversy about timing models and adap-
tation models of the cerebellum has been going on for a long time 
(Miles and Lisberger, 1981; Ivry and Keele, 1989; Simpson et al., 

1996). There are those who believe the two different approaches are 
mutually compatible (Mauk et al., 2000). It is not our intention, in 
any case, to take on this issue.

The inverse model framework can be contrasted with a for-
ward model (Wolpert and Miall, 1996; Todorov and Jordan, 2002; 
See Figure 2B) which simulates the activity of the plant: it converts 
the current state and the control signals into a prediction of what 
the plant will actually do. The bottom line is: inverse models output 
motor commands and forward models output estimates of state.

The focus on a neural inverse model of the oculomotor plant 
refl ected a perspective that the central problem in oculomotor con-
trol is producing the appropriate motor commands once the goal 
is given. Researchers in other motor systems – notably arm move-
ments – followed in the footsteps of the pioneering work in oculo-
motor research and focused on the inverse model problem and the 
question of how appropriate motor commands are generated, given 

FIGURE 1 | The horizontal compensatory eye movement (CEM) system. 

Generally, this is described as two separate refl exes. The optokinetic refl ex 
(OKR) uses visual input from the retina to stabilize the eye while the 
vestibulo-ocular refl ex (OKR) responds to vestibular information from the 
labyrinth. This fi gure emphasizes the distinction between sensory feedback 
(black) and motor signals (red).Blue and purple represent central stages of 
processing, and are added for comparison with other fi gures. Cblm: cerebellar 
cortex; AOS/NRTP: accessory optic system and nucleus reticularis 
tegmentum pontis; VN: vestibular nucleus; NPH: neuclus prepositus 
hypoglossi; OMN/AB: oculomotor nucleus and abducens.

A

B

FIGURE 2 | (A) Inverse and (B) forward models. The plant takes motor 
commands and produces movement. The inverse model inverts this process, 
producing the motor commands that are appropriate for a given movement. A 
forward model mimics this process, estimating the movement that will be 
produced by the plant.
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a particular desired movement. This approach was reinforced by 
the explanatory power of hypothesized desired trajectories (Flash 
and Hogan, 1985; Uno et al., 1989), and the apparent tendency of 
subjects to correct movements (Shadmehr and Mussa-Ivaldi, 1994; 
Donchin et al., 2003).

However, the possibility that a forward model also plays a role 
has been hypothesized for a long time (e.g. Wolpert and Miall, 
1996; Kawato, 1999). One recent radical proposal has been that 
the system does not work with either a “desired trajectory” or an 
inverse model (Todorov, 2004). Under this approach, the problem 
of predicting the results of motor commands is no less central 
than the problem of generating those motor commands in the 
fi rst place. The reason such state prediction is so important is 
because it allows stable feedback control. Feedback control is the 
use of the measured or predicted state of the system to gener-
ate ongoing motor commands. This form of control can be sim-
pler and more fl exible than open-loop control. However, control 
becomes unstable when it depends on delayed or noisy feedback. 
Since sensory systems are both slow and noisy, this is inevitably 
a problem in physiological motor control. A forward model can 
be faster and less noisy than the full sensory loop. However, pre-
dictions of the state must be combined with actual sensory feed-
back in order for the control loop to remain robust in the face of 
unpredicted perturbations.

Thus, the framework (which we will call the state-predicting 
feedback control, SPFC, framework) is built out of three essential 
building blocks (Figure 3; Todorov, 2004; Shadmehr and Krakauer, 
2008). The forward model takes the current estimate of state and 
the motor commands and produces an initial prediction. The state 
estimator combines this prediction with actual sensory feedback 
to produce a better estimate of the current state. The feedback 
 controller uses the current estimate of state in order to decide what 

motor commands to generate. It either replaces or incorporates the 
inverse model on which the tradition of Robinson had focused. 
We propose that this framework is an appropriate description of 
CEM control and that it can be mapped onto CEM physiology in 
a manner that is consistent with experimental evidence.

How could such a computational scheme be implemented 
in the known anatomy and physiology of CEM? The boxology 
of Figure 3 doesn’t necessarily refl ect separate neural stages or 
nuclei. Nevertheless, Shadmehr and Krakauer (2008) have recently 
proposed that neural structures involved in the control of arm 
 movements can, in fact, be mapped onto the control structure 
described by these boxes. They suggest that motor cortex, in com-
bination with the basal ganglia, implements a feedback controller 
implementing a control policy that maximizes successful perform-
ance. They support this using data from patients with Parkinson’s 
disease (Mazzoni et al., 2007), and hemiparesis (Raghavan et al., 
2006). State estimation is hypothesized to occur in parietal cortex 
based on fi ndings in patients with parietal lesions (Wolpert et al., 
1998). Finally, on the basis of the cerebellar role in in-fl ight adjust-
ment of saccades (Quaia et al., 2000) and anticipatory postural 
adjustments (Nowak et al., 2007), they claim the forward model is 
implemented in the cerebellum.

Since the CEM system is located in brain stem nuclei and the 
cerebellum, and neither motor cortex nor parietal cortex is instru-
mental, our effort to ascribe computational functions to physi-
ological correlates in the CEM will necessarily produce different 
results. We will argue that, for CEM, the most suitable mapping 
would be that the oculomotor nuclei and integrators (Robinson’s 
“inverse plant”) combine to form a feedback controller. The cer-
ebellar cortex (and not the whole cerebellum) generates a forward 
model, and the VN combine forward model output with current 
inputs to produce the state estimate.

THE FEEDBACK CONTROLLER
The feedback controller maps current estimate of state onto the 
appropriate motor command. In the language of control system 
experts, this could be approximated as a transformation

u L xn n n= ( )ˆ
 

(1)

where u
n 
is a vector of length k

u
 describing the motor commands at 

the nth time step. In our case, this would be the command driving 
the ocular musculature; each element of u

n 
represents the activa-

tion directed at a single muscle. x̂n is a vector of length k
x
 describing 

our current estimate of state; the elements of x̂n refl ect variables 
like estimated eye position, eye velocity, and possibly include esti-
mated head position and velocity and even desired eye position 
and velocity. Of course, both the state and the motor vectors could, 
in reality, be even more complicated. L

n 
is a function which maps 

each state onto the appropriate motor command. This mapping 
need not be linear or fi xed in time. The point is that the feedback 
controller implements a function, L, that translates its input, an 
estimated state vector, ˆ ,x  into its output, the motor command 
vector, u.

By defi nition, the output of a controller is motor command 
so whatever produces the motor commands must necessarily be 
implementing a controller. In our case, motor command is the 

FIGURE 3 | The SPFC framework proposes that a feedback controller is 

optimized to produce motor commands that achieve task goals. In order 
to do this effectively, it uses an estimate of the current situation that is derived 
from a combination of feedback from the sensory system and forward model 
estimation that depends on efferent copy.
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activity that drives the muscles, and the motoneurons of the 
Abducens Nucleus are the output of the feedback controller, at 
least for horizontal motion. A subtler question regards whether 
any other related nuclei are also included.

In CEM, the controller must know the desired fi xation point and 
it must receive an estimate of the current eye position. It calculates 
the vectorial difference between these two and generates motoneu-
ron activity which will move the eye in the direction indicated 
by this vector. The brainstem circuit that traditionally constitutes 
the inverse plant meets these requirements (Buttner-Ennever and 
Buttner, 1992; Glasauer, 2007), even though there is debate on how 
the computation in the plant is achieved (see below). The issue of 
its input, a state estimate, will be discussed below.

The traditional view is that a displacement or velocity input is 
directly fed to the abducens output neurons that project to the eye 
muscles. In order to overcome the low-pass fi lter properties of the 
plant, an integrated version of this input is linearly added to the direct 
projection. The so-called oculomotor integrators are responsible for 
this indirect pathway (e.g. McFarland and Fuchs, 1992; Moschovakis, 
1997). Recent work on the NPH, the putative horizontal integrator, 
undermines this view since neurons in the NPH are found to encode 
the whole motor command, u, rather than only the integrated part 
(Green et al., 2007; Ghasia et al., 2008), as shown in Figure 4. This 
makes the distinction between the NPH and the abducens unclear. 
One possibility, suggested by Green et al. is that NPH output serves 
feedback purposes. Indeed, on the basis of the fi nding that NPH 
feedback encodes “motor commands,” Green et al. propose that the 
feedback is updating a cerebellar forward model (see Figure 3).

In both the Ab and the NPH, the CEM circuit is shared with the 
other eye movement systems (i.e. saccades and smooth pursuit). 
This fi ts the role of feedback controller, since the efference copy 
needed by the forward model should contain all oculomotor output 
in order to produce an optimal estimate of state (see below).

THE FORWARD MODEL
The Forward model updates our previous estimate of state. That 
is, we can use a forward model to generate an estimate about cur-
rent state from our earlier estimate and our knowledge of system 
dynamics. We assume, for the purpose of simplicity, that the actual 
dynamics of the system can be described as linearly combining 
previous state and motor command:

x Ax Bun n n n+ = + +1 �  (2)

x is the actual state, whose estimate is discussed above (x̂n). Both x 
and x̂n have the same size, but the latter is the brain’s estimate and 
the former is the actual quantity. A is a k

x
 × k

x
 matrix, B is a k

x
 × k

u 

matrix, and �
n
 is a noise term. Under this assumption, the forward 

model estimate would be generated from the previous estimate 
using a similar equation

ˆ ˆ ˆ ˆ
,x Ax BuFM n n n+ = +1  

(3)

where Â
 
and B̂

 
represent the forward model’s estimates of system 

dynamics. Notice that in this formulation, which is commonly used, 
the estimate of state used to calculate the forward model is not the 
same as the estimate produced by the forward model in the previ-
ous step. That is, we have ˆ

,xFM n+1 on the left side of the equation 
but x̂n on the right hand side. What we mean by this is that we 
may improve the estimate generated by the forward model (for 
instance, by incorporating information from sensory inputs) before 
we use it in the forward model’s next step. This idea is demonstrated 
graphically in Figure 3.

One point requires clarifi cation. The fi gure shows sensory input 
(black line) reaching the cerebellum in addition to the current 
estimates of state (purple) and efferent copy (red). This is drawn 
to refl ect the realities described in Figure 1, which shows that sen-
sory input does reach the cerebellar cortex. This includes retinal 
input from AOS (which is routed through the inferior olive and 
climbing fi bers) and NRTP (which comes through mossy fi bers). 
It also includes proprioceptive information. Part of the visual 
input, especially the part arriving through AOS, may play a role in 
adaptation processes discussed below. On the other hand, sensory 
input that has a direct effect on cerebellar activity is not entirely 
consistent with Eq. 3. It may nevertheless be consistent with the 
cerebellum producing a predictive estimate of state based on all 
the available information.

We assume that the forward model has no knowledge of the 
random fl uctuations in the state represented by the noise term. 
However, we expect the forward model to be plastic. That is, if the 
state prediction of the forward model is consistently wrong the 
model should change. The cerebellar cortex appears to have all of 
these characteristics.

It has been amply demonstrated that the cerebellum receives 
efference copy from many motor systems. Specifi cally, the cortical 
area responsible for CEM, the fl occulus, receives direct projections 
from the NPH (Sato et al., 1983; Langer et al., 1985; McCrea and 
Baker, 1985). Furthermore, it receives a strong input from the VN 
(Sato et al., 1983; Langer et al., 1985; Gerrits et al., 1989; Barmack 
et al., 1993), and we will argue later that this is the most likely 
candidate for a state estimator.
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gain and phase. NPH and Ab activity were taken from (Green et al., 2007).
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The key issue in claiming that cerebellar cortex produces a for-
ward model is to show that the output uses efference copy to gen-
erate an estimate of state. This, we believe, is demonstrated by one 
important fi nding. Figure 5 shows that spike triggered averaging 
(STA) of the eye velocity reveals that the neural activity does not 
predict or follow the movement with a large latency. Rather, the 
correlation peaks at a latency close to zero, or even slightly negative 
(Winkelman and Frens, 2007). Because the activity does not precede 
the eye movement, it cannot be causing it. Thus, fl occular output is 
not part of the controller signal. Similarly, because it does not follow 
the eye movement, it cannot refl ect purely sensory information. 
The fl occulus thus processes efferent copy to produce an output 
that represents the current state faithfully, which is exactly what 
one expects from the forward model.

THE STATE ESTIMATOR
Ultimately, state estimation requires combining two sources of 
information about the current state. The fi rst source of informa-
tion is the forward model, and the second source is sensory input. 
In our case, the latter includes vestibular, visual and possibly also 
proprioceptive inputs.

We can formalize the relationship between state and sensory 
input using the equation

y H xn n n= ( ) + �
 

(4)

y
n
 is a vector of length k

y
 whose components refl ect all the differ-

ent inputs from the head and eye. �
n
 is a noise term refl ecting the 

fact that the activity in our sensory system is not a faithful repre-
sentation of the state. The function H is meant to characterize the 
process of sensation.

In engineering applications, these two sources of information 
about state – the forward model and sensation or observation – are 
often combined using a Kalman fi lter

ˆ ˆ ˆ ˆ
,x x K y H xn n n n n+ += + − ( )⎡⎣ ⎤⎦1 1FM  

(5)

The Kalman fi lter uses the forward model’s estimate of the next 
state, ˆ ,,xFM n+1  as a basis for the combined estimate. The forward 
model estimate is modifi ed by the “sensory prediction error,” 
y H :n n− ˆ ( ˆ )x  the difference between the actual observation, y

n
, 

and the observation expected from our current estimate of state, 
ˆ ( ˆ ).H xn  The matrix K

n
, of size k

x
 × k

y
, is called the Kalman gain and 

it quantifi es both the way different sensors are relevant to different 
aspects of state and the relative reliability of sensation and forward 
model estimation.

In Box 1, we also explain how sensory delays lead to alternative 
formulations for state estimation. Whatever the details of the cal-
culation by which state is estimated, a number of essential points 
can be made regarding its physiological and behavioral correlates. 
First, sensory estimation is a combination of internal predictions 
and currently available sensory information. Second, the way those 
two sources of information are combined should refl ect their reli-
ability: if sensory input is noisy, then the system should rely more 
on the forward model and vice versa. Third, the input/output 
relations of the system give us insight into the specifi c calculation 
being performed.

The state estimator receives input from the sensory organs and 
the forward model. Its output should be a state estimate that refl ects 
more recent sensory input than the forward model.

If we accept that the fl occulus generates a forward model, then 
the input requirements are met by the VN. All fl occular output 
is directed to the VN, and sensory information about the head 
and eye converges here. As a matter of fact, the VN are quite inap-
propriately named. Vestibular information is just one of their 
many inputs.

One key study that has looked into the exact properties of the 
output of the VN is Stahl and Simpson (1995). The neurons of 
the VN can be divided into two groups. They fi rst receive input 
from the fl occulus (FTNs) while the rest, 80% of the neurons in 
the VN, do not (non-FTNs). The two groups of neurons have 
distinctly different behaviors, as seen in Figure 6. The fi ring of 
the non-FTNs predicts (with almost zero lead) the fi ring of the 
neurons in the Abducens Nucleus. This, in combination with the 
fact that all non-FTNs project to the Abducens Nucleus, suggests 
that the non-FTNs might be a good candidate for the estimate 
of state that actually drives the feedback controller. The relation-
ship of the FTNs to sensory (vestibular) input, motor output 
(Abducens Nucleus) and actual eye movement is more complex. 
First, the FTNs lead the non-FTNs, suggesting that they are the 
fi rst step in a two step computation, or perhaps an earlier step 
in a complex computation. Roughly 60% do not project to the 
midbrain Stahl and Simpson (1995). Second, the relationship of 
FTN activity to actual eye movement is better in the dark than 
in the light, consistent with the idea that FTN activity refl ects the 
predictions of a forward model which has a greater infl uence on 
the controller when sensory input is compromised. This sugges-
tion is reinforced by the fact that the difference between light and 
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FIGURE 5 | Timing of cerebellar activity. (A) Shows a simple spike triggered 
average of eye velocity in response to white noise optokinetic stimulation. The 
white noise stimulus was provided by a panaromic projector system and 
consisted of a hexagonal matrix of green patches that were rotated coherently 
around the animal according to a three dimensional gaussian white noise 
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showing activity that more or less coincides with the movement (Winkelman 
and Frens, 2007).
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BOX 1 | The Kalman fi lter and sensory delays

The Kalman fi lter model is popular in engineering applications in 
part because it is possible, in certain circumstances, to calculate 
the optimal value for the Kalman gain, Kn, and, for this value, the 
estimate produced is as close as possible to the true value of the 
state. Indeed, properly speaking, Eq. 5 describes a Kalman fi lter only 
when the function H(x) is linear and the value of the gain is set to 
the Kalman gain. However, in the fi eld of motor control the term is 
often used more loosely.

The Kalman fi lter updates the estimate of state produced by the 
forward model, ˆ ,xFM  using the discrepancy between our prediction 
of sensory feedback, ˆ ( ˆ ),H x  and the actual sensory feedback, y. This 
discrepancy is often called the sensory prediction error. One concern 
in using the Kalman fi lter as a model of the activity of the VN is that 
there is no evidence that VN actually calculates anything like the 
sensory prediction error.

In Eq. 5, two different estimates of state are used, ˆ ˆ .,x xFM  n n+1 and  
A true Kalman fi lter, uses only one of these estimates, ˆ .,xFM n+1  That 
is:

ˆ ˆ ˆ, ,x x K y Hxn n n n n+ + + += + −( )1 1 1 1FM FM    
(6)

This is because the true Kalman fi lter doesn’t include  sensory 
delay. In that case, the Kalman fi lter can be rewritten as a 
weighted average:

ˆ ˆ ˆ
,x I K H x K yn n n n n+ + += −( ) +1 1 1FM    

(7)

with I signifying the identity matrix. This version of the equation 
calculates a weighted average of prediction ( ˆ ,xFM n+1) and sensation 
(yn+1) and does not calculate a sensory prediction error (y Hxn n+ +−1 1ˆ ,FM ). 
This means that a network that calculates a state estimate based on 
optimal mixing for forward model prediction and noisy sensory data 
does not need to calculate a sensory prediction error. While this may 
not make any difference computationally, it does make a difference in 
terms of our physiological predictions. Eqs 6 and 7 imply a different 
sort of synaptic connectivity.

It is interesting to consider solutions to the delay problem. If 
feedback is delayed by d time steps, then y Hxn d n− − ˆ ˆ  would compare 
predictions about the current state with sensory information from a 
while ago (we assume for this discussion that sensation H  is linear). 
One class of solutions which includes the Smith predictor (Wolpert 
and Miall, 1996) is to compare the delayed sensation, yn−d, to a 
delayed state estimate. In the brain, we do not have delay  registers, 
but we can estimate the past state from the current one, or, for 
that matter from the output of the forward model, ˆ ˆ ˆ ,,x Rxn d n− += FM 1  
where R̂ performs backwards linear estimation of the state such 
as estimating previous position from current position and velocity. 
Since d is substantial (around 100 ms), the estimating backward 
using the current output of the state estimate, ˆ ,xn  is relatively similar 

to using the current output of the forward model, ˆ ,,xFM n+1  since both 
are relatively similar compared to ˆ .xn d−  This leads us to a modifi ed 
Kalman fi lter 

ˆ ˆ ˆ ˆ ˆ, ,x x K y HR xn+ + − += + − ′( )1 1 1FM FMn n n d n
 

(8)

that can also be written as a weighted average

ˆ ˆ ˆ ˆ ,x I HR x K yn n n n d+ + −= − ′( ) +1 1FM
 

(9)

We have simulated this process using a Kalman fi lter tracking a 
particle driven by a sinusoidal force with a frequency of 2 Hz, using 
a time step of 10 ms. The “normal” fi lter receives the noisy sensory 
data with 0 delay; the “buffered” fi lter receives the sensory data 
with a 100 ms delay, but keeps track of the last 10 estimates of state 
and updates them as the delayed sensory information arrives; the 
“linear estimator” follows Eq. 8. It is clear from Figure B1 that the 
linear estimator performs nearly as well as the buffered version in 
this case. The sum squared error of the buffered Kalman fi lter is 
12 times greater than a fi lter without delay while that of the linear 
estimation fi lter is 15 times greater. This shows that a reasonable 
state estimator can be developed that is based primarily on weighted 
averages of the forward prediction and sensation, even in cases of 
signifi cant delay. We suggest that the vestibular nucleus has the 
characteristics necessary for generating such an estimate.
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dark nearly disappears when target velocity and acceleration are 
increased (the target oscillates at a higher frequency) because in 
these situations, the vestibular input is much more reliable than 
visual input, and so the importance of the forward model would 
not be different in the light and the dark.

Finally, the notion that these neurons carry the full 3D properties 
of the eye movement, while the actual motor command itself does 
not, suggests that the VN carries an estimate of state rather than a 

motor command (Ghasia et al., 2008). This picture can be further 
complicated by a consideration of coordinate systems. Roy and Cullen 
(2004) show that activity of vestibular neurons – that normally refl ects 
gaze shifts – is suppressed during gaze shifts involving active head 
movements. This is consistent with the idea that the vestibular nucleus 
activity refl ects the activity of a forward model incorporating efferent 
copy of commands to the neck muscles. It also has important reper-
cussions for the coordinate system of representation. Cancellation of 
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vestibular nucleus activity during active head movements suggests 
that vestibular nucleus activity refl ects the position of the eyes in the 
head rather than the position of eyes in extrinsic space.

ADAPTATION
Only one more point needs to be made on the theoretical level. This 
concerns the issue of adaptation. In many control systems, the plant, 
the environment and the sensory system are not really fi xed in time. 
For instance, in the case of eye movements, the physiological fl uc-
tuations in muscle strength change the effects of motor commands 
and putting on glasses (which change visual magnifi cation and have 
different characteristics in different parts of visual space) or contact 
lenses (which change the weight of the eye) can change the way move-
ments of the eye affect visual input. In such situations, the control-
ler must adapt to changes in the plant. Generally, this may require 
adaptation of all three major components of the system. It is pos-
sible that the different forms of adaptation happen simultaneously: 
the forward model changes in response to sensory prediction error; 
the sensory prediction optimally re-weights sensation and prediction; 
the feedback controller adjusts the motor commands associated with 
the current state. Adaptation in nervous circuitry is generally sup-
ported by neural plasticity. Thus, we must be clear, when we discuss 
physiological correlates, to specify where we think plasticity may 
be taking place, and which neurons carry the signals that drive the 
plasticity and in what coordinates these signals are represented.

The mechanisms of plasticity of the cerebellar cortex have been 
well studied. The most widespread hypothesis is that climbing fi bre 
(CF) projections (that produce Purkinje cell complex spikes) encode 
errors that modify the PF-PC synapses through LTD (Ito, 1986, 2006; 
Simpson et al., 1996). There is evidence for other forms of plasticity 
as well (Hansel et al., 2001; Coesmans et al., 2004). Nonetheless, 
many researchers accept the role of the CF as a teacher signal.

If we accept that CF activity carries some form of error signal 
that drives plasticity, we must face the question of what sort of error 
it really carries. Until recently, CF projection to the fl occulus was 
thought to contain retinal slip signals. This would be appropriate 
if the fl occulus was calculating an inverse model. On the other 
hand, such a signal is not optimal for modifying a forward model 
(FM). Adaptation in a forward model should reduce  discrepancies 
between the estimated and the actual state; it should adapt in 
response to an error that refl ects such discrepancies. Consequently 
the CF should report unexpected retinal slip rather than any retinal 
slip (See Figure 7 for an example). Such signals have been found 
in the fl occulus (Frens et al., 2001; Winkelman and Frens, 2006), 
as well as in the visual pathways projecting to the Inferior Olive 
(Ilg and Hoffmann, 1991, 1996).

Plasticity in the VN (Pugh and Raman, 2006, 2009), guided by 
the cerebellar projection may be the mechanism underlying the 
weighting required for the optimal state estimation proposed in 
Box 1. In a recent paper, Beraneck et al. (2008) showed that early 
recovery of the VOR from labyrinthectomy is cerebellar inde-
pendent while later recovery is cerebellar dependent. Of course, 
this argues strongly for non-cerebellar mechanisms of plasticity 
in the CEM system. Additionally, it allows our model to make a 
prediction. Beraneck et al. suggest that the early, non-cerebellar 
recovery refl ects plasticity in the vestibular nucleus. Our model 
suggests that this may result from a reweighting of the different 
inputs to the state estimator. Indeed, our model makes a strong 
prediction: the early stage of recovery from VOR will not depend 
on calculations related to the forward model while the later stage 
will have such a dependence.
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FIGURE 7 | Complex spike (CS) Modulation as a result of sinusoidal 

optokinetic stimulation. In (A) the stimulus was an oscillating pattern. In 
(B) the same pattern moved transparently over a static background. The 
behavior of the animal varied with the relative luminances of the moving 
and the static pattern. The frequency of the fi tted sine wave equals the 
frequency of the stimulus (0.1 Hz). Note that the modulation in (A) and (B) 
is virtually identical, as are the CEM made by the animal (gain 0.60 and 
0.58, respectively). Consequently the predicted slip (caused by the eye 
movement over the static pattern) is not refl ected in the CS (Frens 
et al., 2001).
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not be used in this system. Nevertheless, (1) Ghasia et al. (2008) do 
suggest that many neurons in the vestibular nucleus represent state, 
and (2) if the vestibular nucleus is implementing an inverse model 
and the fl occulus is implementing a forward model, it is unclear 
where state and prediction should be combined.

Our model is also different from the one used by Shadmehr 
and Krakauer to describe reaching movements (Shadmehr and 
Krakauer, 2008). Shadmehr and Krakauer suggest that the output 
of the deep cerebellar nuclei (DCN) refl ects the output of a forward 
model (x̂FM). This is necessary in their scheme because they propose, 
based on evidence from errors in reaching movements, that the 
parietal cortex calculates an estimate of state, and thus they propose 
that the forward model output from the cerebellum should drive 
this estimate of state. One might say that the DCN is considered the 
output of the forward model because it more directly projects to 
the cortex, although the role of the ventrolateral thalamus – which 
relays the DCN projection to cortex – is not considered in their 
framework. In our system, the VN seem to be located appropriately 
to combine forward model prediction based on efferent feedback 
with delayed sensory information. The VN are analogues of the 
DCN. Thus, in our system, it is not the cerebellum but specifi cally 
the cerebellar cortex which generates a forward model prediction. 
This difference between our hypothesis and that of Shadmehr and 
Krakauer might arise for a number of reasons as both models are 
speculative. Shadmehr and Krakauer did not consider the cerebellar 
cortex and DCN separately or ascribe any role at all to the thalamus 
relay station. Our model is more comprehensive, primarily because 
we are considering a simpler system. However, it is possible that 
the computation carried out by the cerebellum in the two systems 
is different and both models are correct.

One important aspect of the Shadmehr and Krakauer analysis of 
the reaching movement system has to do with the role they ascribe 
to the basal ganglia in determining the mapping of estimated state 
to motor command. Their framework explicitly uses the language 
of optimal feedback control, popularized in our fi eld by Todorov 
(2004). In optimal feedback control, the controller produces a com-
mand which will lead to the best possible combination of task 
success and energy conservation. In different tasks or with dif-
ferent weight attached to energy conservation, the controller will 
map states onto motor commands differently. In the scheme put 
forward by Shadmehr and Krakauer, the role of the basal ganglia 
is to work with the motor cortex to learn to produce such optimal 
motor commands. There is no equivalent of the basal ganglia in 
the CEM system, and it is quite possible that the CEM does not 
implement an optimal controller: the CEM system is a refl ex system 
and the cost function may be very consistent relative to the costs 
associated with reaching movements in different tasks.

Another way in which our model differs from previous theories is 
that we explicitly reject the widespread hypothesis that state estima-
tion is computed using a Kalman fi lter (see Box 1). Rather, it seems 
that the VN calculation of current state refl ects a process with two or 
more stages, where fl occular target neurons perform a fi rst stage of 
estimation and are then integrated into the broader calculation. The 
use of a forward model is useful when sensory signals are either noisy 
or have a large delay. The latter is specifi cally the case for the retinal 
slip signals that drive the visual  component of CEM (the OKR), which 
have a delay of 80 ms, whereas the vestibular afferents have a delay of 

We were not able to fi nd any studies of addressing the  possibility 
of plasticity in the Ab or NPH. However, gaze stability is affected 
by VOR adaptation, and one reasonable explanation for this would 
be adaptation of the gain of the oculomotor integrator (Tiliket 
et al., 1994).

DISCUSSION
We propose that CEM are generated by a SPFC framework where 
specifi c functional roles can be ascribed to specifi c nuclei in the 
CEM circuitry. The strength of the SPFC framework has been dem-
onstrated by many groups (Wolpert and Miall, 1996; Todorov and 
Jordan, 2002; Shadmehr and Krakauer, 2008). Recently, it has also 
been applied to describe eye movements (Glasauer, 2007; Ghasia 
et al., 2008). Because the physiology and anatomy underlying CEM 
is relatively well known, we are able to describe this mapping in 
more detail and with more precision than was possible in a similar 
attempt to describe the control of reaching movements (Shadmehr 
and Krakauer, 2008). The timing and nature of the signals that can 
be recorded in the fl occulus, the VN, and the brainstem structures 
support our hypothesis. Also, plasticity in the fl occulus and in the 
VN and the purported olivary error signals can be understood in 
terms of this framework.

Our model can be contrasted with the classical approach, where 
the output of the cerebellum is an inverse model (Kawato and Gomi, 
1992). The difference in the role played in the cerebellar output is, 
perhaps, the most salient difference between the two approaches, 
but there are other differences as well. For instance, the classical 
approach does not explain the separate function of the three dif-
ferent areas – fl occulus, vestibular nucleus, and brainstem motor 
nuclei – that generate a cascading series of motor commands. In 
contrast, the SPFC framework ascribes clear and distinct functions 
to each of these areas.

However, making an experimental distinction between the 
output of a forward model and the output of an inverse model 
can be quite diffi cult. Work by Kawato’s group has shown that 
position, velocity and acceleration regress onto fi ring rate with a 
combined r2 of above 0.7 (Shidara et al., 1993). This has been widely 
regarded as evidence that the cerebellum implements an inverse 
model. However, in follow up work, the Kawato group disavows 
this idea and claims that the fl occular output cannot represent the 
main part of the motor command to the eyes (Gomi et al., 1998). 
Perhaps the two most convincing arguments in this respect come 
from our group and that of Dora Angelaki, as described above. 
Both of these lines of reasoning argue in favor of the forward 
model interpretation.

Our model enjoys a family resemblance with previously pre-
sented schemes, notably the Shadmehr and Krakauer (2008) model 
of reaching movement control and the Green et al. (2007) model for 
CEM. However, there are also key differences between our model 
and the others. Perhaps the most notable difference between our 
model and the Green et al. model is their suggestion that the ves-
tibular nucleus implements an inverse model. One key issue in this 
regard is whether the output of the vestibular nucleus describes 
the upcoming motor command or the current estimate of state. 
Because CEM do not obey Listing’s law, the use of the representation 
of violation of Listing’s law (as was used to great effect in Ghasia 
et al., 2008) to separate motor commands from state estimates can-
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only a few ms. This may explain why lesions of the fl occulus primarily 
affect the OKR, and only infl uence the plasticity of the VOR, but not 
its performance (Waespe et al., 1983; Van Neerven et al., 1989).

Although the CEM circuit is well studied, there are still many 
holes in our knowledge. For instance, the projections of the VN 
are only beginning to be understood. It is known that different VN 
neurons project to the brain stem and to the fl occulus. Perhaps the 
VN calculates two different state estimates or perhaps its projection 
forward to the brain stem motor nuclei includes partial calculation 
of the motor command. Resolving this issue will need to wait until 
more data is available.

Also the fi nding that there are neurons at two levels of signal 
processing that strongly resemble the fi ring of the Abducens (the 
non-FTNs in the VN, Stahl and Simpson, 1995, and the cells in 
the NPH Green et al., 2007) requires further experimentation, for 
instance during eye movements that are mechanically perturbed.

Plasticity in the Abducens Nucleus or NPH is a key prediction 
of this model. An SPFC framework cannot successfully adapt to 
changes in the plant unless the feedback controller can adapt. 
Since recent fi ndings have obscured the functional difference 
between Abducens Nucleus and NPH (Green et al., 2007; Ghasia 
et al., 2008), one tempting hypothesis is that NPH serves as the 
adaptive component of the feedback controller. However, this is 
only speculation until some data on plasticity in the two nuclei 
becomes available.

Similarly, the difference between foveate and afoveate species 
should be addressed. Foveate species have smooth pursuit, which 
they can use to voluntarily reduce retinal slip. In the afoveate rabbit, 
for instance, in an experimental paradigm, where the visual envi-
ronment rotates along with a vestibular stimulus, the VN modulate 
only at high frequencies, along with the actual eye movement (Stahl 
and Simpson, 1995). In the (foveate) primate, this  correlation is less 
robust (Miles, 1974; Waespe and Henn, 1978), since the smooth 
pursuit system can modify the eye movements. Thus, the VN appear 
to represent an estimate of the eye state faithfully in the rabbit 
(because CEM are the only eye movements present), but this rela-
tion is harder to study in primates, since CEM and SP are harder 
to distinguish.

In sum, we believe that the SPFC model for the CEM accounts 
for the available data on the anatomy and physiology of the brain 
areas involved. It solves important conundrums, especially the tim-
ing of the activity of P-cells involved in CEM. While the model 
remains speculative, it seems to us to be the most reasonable basis 
for continued exploration of the neural mechanisms involved in 
stabilizing the eye during fi xation.
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