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Cross-modal search has become a research hotspot in the recent years. In contrast to traditional cross-modal search, social
network cross-modal information search is restricted by data quality for arbitrary text and low-resolution visual features. In
addition, the semantic sparseness of cross-modal data from social networks results in the text and visual modalities misleading
each other. In this paper, we propose a cross-modal search method for social network data that capitalizes on adversarial learning
(cross-modal search with adversarial learning: CMSAL). We adopt self-attention-based neural networks to generate modality-
oriented representations for further intermodal correlation learning. A search module is implemented based on adversarial
learning, through which the discriminator is designed to measure the distribution of generated features from intramodal and
intramodal perspectives. Experiments on real-word datasets from Sina Weibo and Wikipedia, which have similar properties to
social networks, show that the proposed method outperforms the state-of-the-art cross-modal search methods.

1. Introduction

With the rapid development of mobile networks and “we
media” [1], cross-modal information search [2] has become
a research hotspot. Users publish multimedia information
on social network platforms such as Weibo and Twitter,
where public opinion is expressed through natural language
and visual information. Cross-modal information search
meets users’ needs for data diversity, especially on social
networks. Various types of topics (e.g., news, tips, and
stories) occur in multimedia forms on social networks,
conveying valuable information for various users, including
common people, companies, and regulators.,emost direct
way to fulfill users’ diversified information needs is to
maximally mine the resemblance and correlations of the
information and present the content relevant to users’
queries [3, 4]. However, cross-modal correlation analysis
faces the basic challenge of bridging the heterogeneity gap
[5, 6] between different media, which is also a key issue for
cross-modal search.

Bridging the heterogeneity gap in multimodal data,
which feature different statistical characteristics, is the major
issue in analyzing and processing multimodal datasets with

intelligent technologies [7]. In general, some current re-
search addresses the problem by constructing multiple
nonlinear transformations [8] to build a common semantic
subspace for multimodal data through deep learning [9].
With the subspace, the nonlinear transformations are
learned to generate feature representations for correlation
maximization [10]. ,e representative classical methods are
canonical correlation analysis (CCA) [11] and variants such
as deep CCA (DCCA) [12]. With the development of tabular
learning and deep learning research, such strategic methods
have gradually been divided into two groups: real-valued
representations and binary-valued representations [13].
Other works focus on selecting relevant features that are,
then, adopted to construct correlations from multimodal
features to achieve cross-modal search through feature se-
lection and matching [14, 15]. ,e methods used according
to this strategy are designed to discover dense feature
clusters with high similarity learned by algorithms for cross-
modal data [16].

In addition, the semantic sparseness of cross-modal data
from social networks results in misleading content in both
the textual and visual modalities. Cross-modal data on social
networks present characteristics that reflect many aspects of
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real-world events in quality-restricted forms [14]. ,e
massive quantity of cross-modal data on social networks
provides an opportunity to uncover relations between events
and discover additional content related to the target event in
a variety of media. ,e forms and characteristics of social
network cross-modal data require many details of features
such as local correlations to be mined and learned by in-
telligent algorithms. To overcome the semantic sparseness of
cross-modal data from social networks, we adopt self-at-
tention [17] to discover the differential importance of local
semantic features according to the target topic throughout
the global representation sensors. Self-attention can be used
to assign weight values for different items in feature se-
quences to perceive significance. Li et al. [18] proposed a
positional self-attention with contention (PSAC) architec-
ture to capture long-range dependencies and position in-
formation. ,rough the application of self-attention to
perceive significance, PSAC significantly outperforms its
predecessor. Gao et al. [19] presented hierarchical LSTMs
with an adaptive attention method to perceive the spatial-
temporal attention for visual regions or frames to predict
related words. ,is method with adaptive attention out-
performs the previous state-of-the-art methods.

In this paper, we propose a cross-modal search method
for social network data that capitalizes on adversarial
learning. In addition, we adopt self-attention-based neural
networks to generate modality-oriented representations for
further inter-modal correlation learning. A search module is
implemented based on adversarial learning, through which
the discriminator is designed to measure the distribution of
generated features from intramodal and intramodal per-
spectives. ,e discrimination is deployed as a compound
neural network whose parameters are optimized under
union losses following the adversarial learning mechanism
to generate the most appropriate representations of cross-
modal data features. ,e contributions of the paper are
summarized as follows.

(i) We propose a supervised cross-modal adversarial
learning method integrated with self-attention. ,e
method generates cross-modal representations
following the original modality and topic label
distributions from the perspective of social network
data characteristics under the mechanism of self-
attention.

(ii) ,e proposed method incorporates local semantic
features distributed as word groups in texts and
blocks in images to maximize the cross-modal
correlations based on adversarial learning.

(iii) ,e part of the adversarial learning component in
the designed adversarial learning framework is used
effectively to rank the search results.

,e unstandardized writing conventions of user-gen-
erated text and the frequently low quality of user-submitted
images submitted on social networks result in semantic
sparseness. Semantic sparseness is the main obstacle to
cross-modal information search in social networks based on
global semantic features. Our proposed method, cross-modal

search with adversarial learning (CMSAL), integrates self-
attention to explore local semantic features expressing key
semantic features of the target topics. Words (in text) and
pixel blocks (in images) conveying target topics are the local
semantic features to be explored and mined. ,e generated
representations integrated with the local semantic features
constitute the semantic space for social network cross-modal
information search. ,e designed maximum losses are op-
timized based on adversarial learning to promote the effi-
ciency of the generated representations for cross-modal
search. ,e learning method is trained iteratively with the
representation-generating process from intramodal and in-
termodal perspectives. In classical generative adversarial
networks (GANs) [20], the optimal discriminator is useless in
most cases [21]. We reused the optimal intermodal and
intramodal restriction to provide ranked search results based
on distribution measures. In contrast to the existing methods,
this paper takes the semantic sparseness of social network
content into consideration for the specific task of cross-modal
information search.

2. Related Works

2.1. Social Network Cross-Modal Search. With the develop-
ment of information and mobile networks, social network
platforms are becoming the most important source for
multimedia data [22]. Cross-modal search strategies on
social networks can be classified into two main groups:
common semantic subspace learning and feature selection
and matching. For multimodal data from social networks
conveying more information [23], intelligent technologies
are needed to excavate latent correlations within massive
and complex cross-modal datasets from social networks. Cai
et al. [24] proposed a joint topic model to track and search
target social information based on cross-modal feature se-
quence analysis and learning. Fang et al. [25] proposed a data
transformation method to handle heterogeneous data for
cross-modal event analysis and searches in social networks.
Qing et al. [26] proposed an event and content search
method based on automatic identification and tracking from
a large amount of cross-modal data from social networks.
Lee et al. [27] provided a common search framework for
online social network hotspot events. ,e method nor-
malizes the data content of different media based on the
graph-based algorithm combination sorting event list for
content normalization. It unifies the stream-based media
data and the registration-based cross-media data, which
realizes the cross-media search for the target event. Zhang
et al. [28] studied the hierarchical information quad-tree
index structure based on spatiotemporal characteristics,
including temporal proximity, spatial proximity, and visual
relevance. ,e method is also used to solve cross-modal
search problems in social networks. Deng et al. [29] pro-
posed a deep hash network based on triplets for cross-modal
retrieval of social networks. ,e method uses a triple label to
describe the relative relationship between the three instances
as a supervisor to capture a more general semantic corre-
lation between cross-modal instances.
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Social network cross-modal search is related to the
traditional cross-modal search on multimedia representa-
tion extraction and correlation analysis. Furthermore, cross-
modal contents from social networks need to pay attention
to global and local semantic associations in semantic
sparseness, which is determined by the characteristics of the
social network data.,e emergence of GANs [20] provides a
series of methods for semantic extractions and represen-
tations under sparse semantic conditions that are gradually
applied to the field of cross-media search.

2.2. Adversarial Learning Cross-Modal Search. Recently,
GANs [20] have been widely used because of their ability to
learn and process visual and sequenced features. A series of
approaches have been proposed to reduce the gap between
different modalities based on adversarial learning of the
statistical characteristics of the transformed features. Fol-
lowing this strategy, He et al. [30] introduced a cross-modal
retrieval method based on unsupervised adversarial learn-
ing. ,e method constructed an adversarial learning feature
transformation for the statistical properties on cross-modal
search. Peng et al. [5] proposed a method for common cross-
modal representation based on GAN. ,rough well-learned
cross-modality representations, many applications such as
cross-modal similarity matching can be conducted. Gu et al.
[4] provided a GAN-based method incorporating corporate
generative models into cross-modality embedding for cross-
modal search.,emethod encouraged the textual features as
the basis to generate an image similar to the ground truth,
and vice versa for images to texts. Shang et al. [31] proposed
a dictionary learning-based cross-modal search method.,e
method used a dictionary learned as a feature a recon-
structor, cooperating with adversarial learning to mine
cross-modality statistical characteristics. Wen et al. [32]
proposed a cross-modal search method based on similarity
transferring. ,e method uses adversarial learning to build a
semantic structure in the common representation subspace
for preserving the semantic structure between unpaired
items across different modalities. Wang et al. [33] proposed
an adversarial learning retrieval method that imposed triplet
constraints for feature generation to minimize the hetero-
geneous gap of cross-modal data with the same semantic
labels. ,e greatest advantage of adversarial learning is
cross-modal synthesis. Gao et al. [34] presented a method
named the perceptual pyramid adversarial network (PPAN)
to synthesize photorealistic images and texts based on
adversarial learning. ,e method is composed of a generator
optimized with perceptual loss to obtain diverse images and
a discriminator for multiple purposes, such as semantic
consistency, image fidelity, and class invariance.

For other strategies, deep quantization and deep hashing
based on adversarial learning are also used for cross-modal
search. Yang et al. [35] proposed a method known as shared
predictive deep quantization (SPDQ). In this method, a
shared semantic subspace is defined for cross-modal fea-
tures. ,e method builds a joint deep network architecture
to exploit compact cross-modal representations.,emethod
preserves intramodal and intermodal similarities in an

efficient way. Deep hashing also follows the strategy to learn
compact binary code for cross-modal similarity computa-
tion efficiency. Li et al. [36] presented a self-supervised
adversarial hashing (SSAH) method. ,e method learns the
high-dimensional features and hash codes for cross-mo-
dality information through two adversarial networks. ,e
search similarity is maximized according to the semantic
relevance in a highly computationally efficient manner.

In contrast to traditional methods of latent semantic
subspace learning [37], cross-modal search based on GAN
or adversarial learning takes advantage of the capacity for
feature distribution construction and discrimination
learning [33]. ,ere are also many methods that adopt
adversarial learning for hashing to realize cross-modal
search [38, 39]. ,ese methods convert the matching
problem in cross-modal search to the Hamming distance
calculation based on the multimedia effective binary rep-
resentation. Such a calculation strategy improves the
matching efficiency of cross-modal search. However, in the
construction of binary representations, some semantic
features of the original multimedia are lost. ,e proposed
method in this paper focuses on local semantic feature
extraction based on self-attention [17] and adversarial
learning [20] to solve the problem of minimizing the het-
erogeneity gap for cross-modal data with the same semantic
labels.

3. The Proposed CMSAL Method

3.1. Problem Definition. In general, we define cross-modal
data as P � C1, C2, . . . , Cd􏼈 􏼉, 1≤ d≤D, meaning that there
are D topics in the data domain on the amount. For each
topic, related contents are expressed in the form of text and
images as Cd � t1, t2, . . . , tm, v1, v2, . . . , vn|ld􏼈 􏼉 (1≤m≤M,
1≤ n≤N). In each topic, there are M text instances and N
image instances conveying the related semantic information
to Cd labeled by ld. ,ere are some special cases for (M≥ 1,
N� 0) and (M� 0, N≥ 1), in which the problem degenerates
into the unimodal case. Another case is (M� 1,N� 1). In this
case, the situation agrees with most definitions in current
works.

Raw text and images are preprocessed into representa-
tion features by word embedding [40] and VGGNet [41],
according to themodality.,e presentation features for texts
and images are interfaces for further complex computing in
the learning procedure. Let Xd � xd,1

t , xd,2
t , . . . ,􏽮

xd,m
t , xd,1

v , xd,2
v , . . . , xd,n

v |yd} be the collection of cross-modal
original features (word embedding features for text and
CNN features for images) with the one-hot label vector yd for
topic d, in which xd,m

t represents the word embedding
feature for the m-th text entry under topic d.

For further correlation maximization learning, the
presentation features are explored to extract local features
that are sensitive to modality characteristics. ,e features
convey the same semantics in word groups and image blocks
represented as bd,k

t , meaning the k-th block word feature,
which is the same as bd,k

v with K blocks as an empirical value.
,e extraction process is defined as Sd

t (xd
t ; θt). xd

t �

bd,1
t bd,2

t , . . . , bd,k
t􏽮 􏽯 shortened as Sd

t for text representation
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features with the parameters of θt, while Sd
v (xd

v ; θv) · xd
v �

bd,1
v bd,2

v , . . . , bd,k
v􏽮 􏽯 shortened as Sd

v ) for image features with
the parameters of θv. Sd

t and Sd
v are the generation processes

interacting with the discriminator to optimize parameters
jointly by adversarial learning. A restriction is designed to
measure the distribution of Sd

t and Sd
v from intramodal and

intermodal aspects to guide the generation. Sd
t and Sd

v output
more appropriate representation features by episodes. ,e
general framework of the proposed method is illustrated in
Figure 1.

3.2. Constructions of Cross-Modal Representation Feature
Generation. Cross-modal representation feature genera-
tion is conducted to explore the local semantic relation-
ships between features from different modalities and
reconstruct the representations to reflect the relationships
in computational matrixes. ,e procedure is designed
under a supervised representation learning mechanism in
which self-attention is adopted. Taking text modality as an
example, ft, gt, and ht are the functions to transform the
original features (word features for text in fixed-size blocks)
into a subspace as follows:

ft bd,k
t􏼐 􏼑 � wf

t b
d,k
t ,

gt bd,k
t􏼐 􏼑 � wg

t b
d,k
t ,

ht bd,k
t􏼐 􏼑 � wh

t b
d,k
t ,

(1)

where bd,k
t means the k-th text block word embedding

feature of a text document on topic d. wf
t ,w

g
t , and wh

t are the
parameter vectors of ft, gt, and ht. Similarly, fv, gv, and hv

are the corresponding functions for the image modality with
the parameter vectors wf

v , w
g
v , and wh

v .
,e original features of the two modalities are cut into

fixed-size blocks. In general, we cut the original feature into
K blocks.,e blocks of original text features are composed of
word vectors, while the blocks of original image features
cover the CNN features of pixels. For example, the attention
between the i-th and the j-th blocks is calculated as follows:

βd,i,j
t �

exp ft bd,i
t􏼐 􏼑

T
gt bd,j

t􏼐 􏼑􏼒 􏼓

􏽐
K
j�1 exp ft bd,i

t􏼐 􏼑
T
gt bd,j

t􏼐 􏼑􏼒 􏼓

, (2)

where βd,i,j
t indicates the model attention parameter related

to the j-th feature block when generating the representation
features of the i-th block in the specific word embedding
feature of the corresponding text on topic d. Similar to image
modality, βd,i,j

v is used for images in CNN feature blocks. For
the i-th block of a specific text piece of content, the rep-
resentation features can be presented as follows:

oj
t � 􏽘

K

j�1
βd,i,j

t h bd,j
t􏼐 􏼑. (3)

,e representation features of a whole text about the
topic d can be presented as Sd

t � o1t , o2t , . . . , ok
t􏼈 􏼉, which is the

same as Sd
t � o1v, o2v, . . . , oK

v􏼈 􏼉. It is regarded as a global se-
mantic representation. ,e value of K is a hyperparameter

determined by experiences and data contexts. In the ex-
periment, we set the value of K according to the corre-
sponding original cross-modality features. Otherwise, the
value of K also determines the sizes of wf

t (wf
v ), w

g
t (w

g
v ), and

wh
t (wh

v) as parameters. However, it will have little impact on
the actual representations through cross-modal presentative
feature generation.

3.3. LearningMetric for the ProposedMethod. In this section,
we propose the generation and discrimination losses to train
the proposed CMSAL. ,e generation loss guides the rep-
resentation features generation and consists of a label loss
and a similarity loss. ,e label loss aims to minimize the
distribution difference between the representation features
and corresponding topic semantic labels. ,e similarity loss
is used to minimize the distance among the intermodal
samples about the same topic. ,ese two loss terms are
defined as the generation loss for guiding the representation
features generating procedure. ,e discrimination loss is
defined to distinguish modalities. ,e multiple losses are
collaborated into a minimax loss to optimize the generation
of representation features for appropriate cross-modal
search features.

3.3.1. 5e Generation Loss. ,e generation loss is decom-
posed into two loss terms: the label loss and the similarity
loss. ,e label loss ensures that the distributions generated
representation features following those of semantic topics.
,e loss is presented as

Llabel � −
1

M
􏽘

M

i�1
yi

tlog􏽢t St xi
t; θt􏼐 􏼑􏼐 􏼑 +

1
N

􏽘

N

j�1
yj

vlog􏽢t Sv xj
v; θv􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠,

yi
t � yj

v for i � j,

(4)

where yi
t and yj

v are the topic labels for corresponding
features in the form of a one-hot vector. ,e symbol 􏽢t is the
function to predict topic probability distribution for each
text or image term of the representation features. M and N
are the amounts of the original features for text and images,
respectively. As described in Section 3.1, we conduct the
collection based on M�N for a clear expression and
thinking. ,erefore, equation (4) can be further expressed as
follows:

Llabel � −
1

M
􏽘

M

i�1
yi

vlog􏽢t Sv xi
v; θv􏼐 􏼑􏼐 􏼑 + y

i
tlog􏽢t St xi

t; θt􏼐 􏼑􏼐 􏼑􏼐 􏼑,

yi
t � yi

v.

(5)

,e label loss guides the training of the parameters of θt
and θv to generate representation features following the
topic distribution of corresponding samples. ,e label loss is
the intramodal loss used to maintain the intramodal data
correlations. Based on the premise of M�N, the similarity
loss is defined as follows:
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Lsimilarity �
1

MN
􏽘

M

i�1
􏽘

N

j�1
yi

t − yj
v

����
����2 − St xi

t; θt􏼐 􏼑 − Sv xj
v; θv􏼐 􏼑

�����

�����2
􏼒 􏼓

2
.

(6)

,e similarity loss acts as the intermodal loss to maxi-
mize correlations between cross-modal samples with the
same topic distribution by closing the distance difference of
representation features and topic labels.

,e losses presented in equations (5) and (6) are the
basics to guide representation feature generation by su-
pervised learning for adjusting the parameters of the net-
works. As parts of the generation loss, the label loss and the
similarity loss are integrated by weighted summation pre-
sented as equation (9).

Lgeneration � αLlabel + βLsimilarity, (7)

where α and β represent the contribution weights of the
corresponding deviation values to the loss function, through
which the optimization of generation loss is directly affected
by the two empirical values.

3.3.2. 5e Discrimination Loss. ,e discrimination of the
method is the key component to realize cross-modal
adversarial learning. It aims to discriminate the modalities
for the constructions of representation features about the
same topic. We define the discrimination loss as follows:

Ldiscrimination � −
1

M
􏽘

M

i�1
mi log􏽢p Sv xi

v􏼐 􏼑; θp􏼐 􏼑􏼐

+ log 1 − 􏽢p St xi
t􏼐 􏼑; θp􏼐 􏼑􏼐 􏼑􏼑,

(8)

wheremi is the modality label as a one-hot vector and 􏽢p aims
to map the generated representation features into the mo-
dality discrimination space under the parameter θp. Dif-
ferent from the generation loss, the discrimination loss
promotes representation feature generation indirectly. ,e
generator will output more appropriate representation
features by parameter optimization and adversarial learning
with a discriminator.

3.4. 5e Adversarial Training Procedure. To ensure the
correlation maximum of cross-modal representation fea-
tures for the same topic distribution, cross-modal repre-
sentation feature generation and intermodal discrimination
interact with adversarial learning. We construct the mini-
max game [20] as follows:

θt, θv � argmin
θt ,θv,θp

Lgeneration θt, θv( 􏼁 − Ldiscrimination θp􏼐 􏼑􏼐 􏼑,

θp � argmax
θp

Lgeneration θt, θv( 􏼁 − Ldiscrimination θp􏼐 􏼑􏼐 􏼑,

(9)

where θt, θv, and θp are optimized values for the joint losses.
,e minimax game will minimize generation loss and
maximize the discrimination loss. ,e generation loss is
going to construct cross-modal representation features to
maximize relationships for the same semantic topic distri-
bution. ,e discrimination loss will distinguish modality
discrepancies. ,e parameters θp are fixed for optimizing θt
and θv during the minimization procedure, while θt and θv

are fixed for optimizing θp during the maximization
procedure.

Text modality
Word

embedding

Original
Text

features

Crossmodal presentative feature
generation

Modality oriented
selfattentaion

Original
Image 
features

Image
representative

features

Text representative
features

Image modality VGGNet

Semantic
classification

labels

Intramodal and intermodal restriction

Label loss
Distributions

measuring

Representation
distances

calculating
Similarity loss

Crossmodal
discriminator

Discrimination
loss

Discrimination feedback

Intermodal discrimination

ht

gt

ft

hv

gv

fv

Figure 1: ,e architecture of the proposed CMSAL method.
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3.5. 5e Matching Similarity for CMSAL. Based on the op-
timized parameters, the cross-modal representation features
constitute the correlation maximized representation space
for text word embedding features and image CNN features.
,e generated representation features from cross-modal
features are used to calculate similarities for cross-modal
matching to search. ,e L2-norm is used to calculate the
similarity presented as follows:

sim � St xi
t; θt􏼐 􏼑 − Sv xj

v; θv􏼐 􏼑
�����

�����2
. (10)

As presented in equation (6), the similarity calculation
is included in the similarity loss. ,e similarity calculation
is based on the optimized parameters θt and θv for ap-
propriate results. ,e matching algorithm is shown in
Algorithm 1.

Sorting and picking up the top K similarities are exe-
cuted as the evaluation scope with the corresponding
representation features. ,e corresponding content of the
representation features in a list is returned according to the
sorted top K similarities as the evaluation scope. ,e al-
gorithm outputs cross-modal search results according to
the query.,ematching similarities are calculated based on
the trained proposed method to obtain the most appro-
priate results.

4. Experiments and Analyses

Experiments on real-world datasets are conducted to verify
the effectiveness of the proposed method on cross-modal
search from social networks. ,e real-world datasets con-
sisted of text-image pairs collected from Sina Weibo.
Without loss of generality, the widely used Wikipedia [42]
and NUS-WIDE [43] cross-modal datasets are also used to
verify the effectiveness of the proposed method. In this
section, the effects of changing empirical hyperparameter
values and cross-modal search efficiency are shown and
analyzed.

4.1. Experimental Setup

4.1.1. Dataset Descriptions. ,e data collected from Sina
Weibo of 4735 text-image pairs are about four security event
topics from June 10, 2012, to September 7, 2016. ,ere are
2866 text-image pairs of 10 categories in the Wikipedia
dataset. In the NUS-WIDE dataset, there are 9000 text-
image pairs in 350 categories. Following the traditional
machine learning strategy, 70% of the data are used as a
training set, while the rest are used as a test set for the two
datasets.

4.1.2. Evaluation Metrics. ,e mean average precision
(MAP) for the top K and precision-scope curve are adopted
as evaluation metrics to measure the performance of the
proposed method. Following [33], MAP can be calculated as
follows:

AP(Q)@K �
􏽐

K
k�1 P(k)δ(k)

􏽐
K
k′�1 δ k′( 􏼁

, (11)

MAP@K �
􏽐

Q
q�1 AP(Q)@K

Q
. (12)

In equation (11), Q is the number of queries. K is the
amount of the contents to be searched for results. ,e top k
search precision is denoted as P(k), which is also adopted as
a measure for the search results for the scope K presented as
a precision-scope curve. ,e average precision is computed
in equation (11) as a component of equation (12).

4.1.3. Baselines. We compare the proposed CMSAL method
with state-of-the-art methods on the SinaWeibo dataset and
Wikipedia dataset. ,e selected methods are representative
from classical applications to adversarial learning, such as
JFSSL [44], CMDN [45], DCCA [12], ACMR [33], and CM-
GAN [5].

4.1.4. Parameter Learning Results and Analyses. We conduct
an experiment to show the impact of the empirical values α
and β in equation (6) for the searching performance, of
which the results will provide a basis for setting the empirical
values in return. MAP is used to evaluate the performance
while the empirical values vary. ,e evaluations of the two
datasets are presented in Figures 2–4.,e empirical values of
alpha and beta are the corresponding weight parameters for
the label loss and the similarity loss.

As shown in Figure 2, we evaluate the top 50 search
results based on computing MAP@50 for varying alpha and
beta on the Sina Weibo dataset. ,e MAP@50 value shows
different distributions with the common point that MAP@
50 obtains a better situation when beta� 0.1.,is means that
the similarity loss requires a smaller weight value than alpha
for a high MAP@50 evaluation. As shown in Figure 3, the
effects of empirical values for searching performance on the
Wikipedia dataset are smaller than those of the Sina Weibo
dataset. Different from Figure 2, there is less fluctuation of
MAP@50 varying the values of alpha and beta. ,e results
presented in Figure 3 also provide a reference for the alpha
and beta. Considering the situations of Figures 2 and 3,
empirical values can be set with a group of suitable values for
appropriate search results.

Figure 4 presents the empirical values impacting the
cross-modal search based on the NUS-WIDE dataset. ,e
numerical distribution is relatively flat, as in Figure 3 for the
NUS-WIDE dataset. ,e results show that the dataset
property has a direct impact on the empirical value as-
signment. Similar to the Wikipedia dataset, the semantics of
the cross-modal information NUS-WIDE dataset are more
obvious with less sparsity. Furthermore, the correspondence
of cross-modal data in NUS-WIDE is clearer by using simple
text content as a semantic label. ,erefore, the empirical
values impacting the image-to-text search performance of
MAP@50 in the NUS-WIDE dataset are greater than those
in the Wikipedia dataset.

6 Computational Intelligence and Neuroscience



,e proposed method sets the empirical values of alpha
and beta according to the dynamic evaluations as described.
,e learning process is inseparable from appropriate em-
pirical values. We incorporated appropriate values of
alpha� 1 and beta� 0.1 for image searches with text input
and alpha� 0.1 and beta� 0.1 text searches with image input
in both the Sina Weibo dataset and the Wikipedia dataset.
According to Figure 4, alpha� 0.1 and beta� 100 for image
searches with text input and alpha� 100 and beta� 10 for
text searches with image input will be appropriate for the
NUS-WIDE dataset.

4.2. Search Result Evaluations and Analyses

4.2.1. MAP Evaluations and Analyses. Based on the ap-
propriate values of alpha and beta for the learning process of
the proposed CMSAL method, evaluations for search results

are presented. In this section, we useMAP to show searching
performances for the top 5, top 20, and top 50 results of
CMSAL compared with the baseline methods. ,e evalua-
tions on the Sina Weibo dataset are shown in Table 1, while
those on the Wikipedia dataset are presented in Table 2. ,e
evaluations on the NUS-WIDE dataset are presented in
Table 3.

In Table 1, txt2img means entering a text query with the
target topic to search from images with the same topics
(img2txt means the reverse). As shown, the proposed
CMSAL method outperforms the selected baseline methods.
For CMSAL itself, the task of img2txt obtains better eval-
uations on MAP for the top 5 than those of the txt2img task.
,e reason for this situation is that original images contain
abundant semantic information that will be extracted and
represented appropriately. ,e extracted CNN features can
preserve and present the valuable local semantics in detail
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Figure 2: ,e empirical values impacting the cross-modal search based on the Sina Weibo dataset. (a) ,e empirical values impacting on
txt2img search performance of MAP@50 and (b) the empirical values impacting on img2txt search performance of MAP@50.

Input: Query setQ� {q1, q2, . . ., qT} about the target topic d; cross-modal presentative data features from social networks generated
by the networks with optimized parameters θt and θv: Sdoc � S1t , S2t , . . . , SM

t , S1v, S2v, . . . , SN
v ; θt, θv􏽮 􏽯

Output: Search result list.
(1) For q in the query set Q:
(2) Distinguish modality type of q
(3) Preprocessing q into corresponding features blocks as q � bd,1

t , bd,2
t , . . . , bd,k

t􏽮 􏽯 for q in text or q � bd,1
v , bd,2

v , . . . , bd,k
v􏽮 􏽯 for q in

images.
(4) Extracting representation features: Sq � o1t , o2t , . . . , oK

t ; θt􏽮 􏽯 based on the optimized parameters θt for q in text or Sq �

o1v, o2v, . . . , oK
v ; θv􏽮 􏽯 based on the optimized parameters θv.

(5) For s in the cross-modal representation features set Sdoc:
(6) Computing the similarity according to the query similarity� sim (Sq, s)
(7) End For
(8) End For

ALGORITHM 1: ,e matching algorithm of CMSAL.
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Figure 4: Empirical values impacting cross-modal search based on the NUS-WIDE dataset. (a) ,e empirical values impacting txt2img
search performance of MAP@50 and (b) the empirical values impacting img2txt search performance of MAP@50.
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Figure 3: Empirical values impacting cross-modal search based on the Wikipedia dataset. (a) ,e empirical values impacting on txt2img
search performance of MAP@50 and (b) the empirical values impacting on img2txt search performance of MAP@50.

Table 1: MAP evaluations on the Sina Weibo dataset.

Traditional-based DNN-based GAN-based
JFSSL CMDN DCCA ACMR CMGAN CMSAL

MAP@5
txt2img 0.6478 0.7183 0.3885 0.8653 0.8777 0.8898
img2txt 0.5351 0.5814 0.3251 0.7133 0.7257 0.9481
average 0.5915 0.6499 0.3568 0.7893 0.8017 0.919

MAP@20
txt2img 0.6128 0.6799 0.3583 0.8238 0.8362 0.8539
img2txt 0.5181 0.5843 0.3239 0.7071 0.7195 0.9412
average 0.5655 0.6321 0.3411 0.7655 0.7779 0.8975

MAP@50
txt2img 0.5197 0.5906 0.3213 0.7065 0.7189 0.8353
img2txt 0.5282 0.5729 0.3199 0.6992 0.7116 0.9293
average 0.5239 0.5817 0.3206 0.7029 0.7153 0.8823
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completely, while semantic units of text are simpler for the
same purpose. It will be more reliable when querying an
image, with more semantic information for searching text
with target semantics.

Table 2 shows MAP evaluations on the Wikipedia
dataset. Compared with Table 1, the evaluation values on the
Wikipedia dataset show lower values than those on the Sina
Weibo dataset (in Table 1). ,e Sina Weibo dataset contains

Table 2: MAP evaluations on the Wikipedia dataset.

Traditional-based DNN-based GAN-based
JFSSL CMDN DCCA ACMR CMGAN CMSAL

MAP@5
txt2img 0.2685 0.4406 0.5094 0.6225 0.6629 0.6563
img2txt 0.2151 0.3473 0.4125 0.4987 0.5391 0.5123
average 0.2418 0.3940 0.4609 0.5606 0.6010 0.5843

MAP@20
txt2img 0.2831 0.4264 0.4895 0.6109 0.6513 0.6463
img2txt 0.2209 0.3576 0.4102 0.4986 0.5390 0.5095
average 0.252 0.392 0.4498 0.5548 0.5951 0.5779

MAP@50
txt2img 0.2543 0.4146 0.4624 0.5732 0.6136 0.6315
img2txt 0.2178 0.3454 0.3956 0.4835 0.5239 0.5031
average 0.2361 0.3800 0.4290 0.5284 0.5687 0.5673

Table 3: MAP evaluations on the NUS-WIDE dataset.

Traditionally-based DNN-based GAN-based
JFSSL CMDN DCCA ACMR CMGAN CMSAL

MAP@5
txt2img 0.2464 0.4187 0.5110 0.6397 0.6872 0.8023
img2txt 0.2197 0.3313 0.4682 0.4838 0.4797 0.6329
average 0.1337 0.3908 0.5877 0.6884 0.6248 0.7474

MAP@20
txt2img 0.2511 0.5469 0.4792 0.6077 0.6245 0.6796
img2txt 0.2231 0.4965 0.5050 0.5284 0.5042 0.5887
average 0.2450 0.3699 0.4012 0.6249 0.5314 0.6640

MAP@50
txt2img 0.3015 0.4011 0.5670 0.6500 0.6301 0.6798
img2txt 0.1001 0.4700 0.3910 0.4801 0.5466 0.4836
average 0.2587 0.4697 0.5035 0.6621 0.6653 0.7976
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Figure 5: Precision-scope curves on the Sina Weibo dataset. (a) ,e precision-scope curve of the txt2img task and (b) the precision-scope
curve of the img2txt task.
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typical raw real-world data from various users, including
casual written text and low-resolution images, which pro-
vide sparse cross-modal semantics. As expected, the results
on the Sina Weibo dataset achieved higher evaluation values
than the results on theWikipedia dataset.,e reason for this
situation is that semantic features in the Sina Weibo dataset
are relatively concentrated and prominent.

As shown in Table 3, the proposed CMSAL method
outperforms the selected standard methods. MAP

evaluations on the NUS-WIDE dataset are smaller than
those on the Sina Weibo dataset. ,e main reason is that the
characteristics of the NUS-WIDE dataset are different from
those of the Sina Weibo and Wikipedia datasets. On the
NUS-WIDE dataset, images are labeled with relatively
simple text content, which clarifies the correspondence
between text and images. In addition, in terms of image data
quality, the NUS-WIDE dataset has simplified semantic
information as public datasets. ,erefore, the MAP
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Figure 6: Precision-scope curves on the Wikipedia dataset. (a) ,e precision-scope curve of the txt2img task and (b) the precision-scope
curve of the img2txt task.
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Figure 7: Precision-scope curves on the NUS-WIDE dataset. (a) ,e precision-scope curve of the txt2img task and (b) the precision-scope
curve of the img2txt task.
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evaluations of search results on the NUS-WIDE dataset are
closer to those on Wikipedia datasets.

4.2.2. Precision-Scope Evaluations and Analyses. As preci-
sion-scope curves are an indispensable form of evaluation for
information search experiments, precision-scope curves of the
proposed method CMSAL, and all the selected baseline
methods. ,e experimental results on the Sina Weibo,
Wikipedia, andNUS-WIDE datasets are shown in Figures 5–7.

As shown in Figures 5 and 6, the proposed CMSAL
method shows a better performance than any of the other
methods. In general, the measures of all the methods show
similar trends with a small numerical gap. Similar to MAP
evaluations, GAN-based methods achieve better perfor-
mances than deep neural network- (DNN-) based methods
which rely on targeted adversarial learning integrated with the
advantages of DNNs. ,e classical DCCA method shows the
worst values of the evaluation working in concert with MAP
evaluations. ,e processing of nonlinear mapping and ca-
nonical correlation analysis learning is relatively independent
for DCCA. However, the GAN-based method overcomes the
disadvantages of traditional and DNN-based methods. ,e
proposed method conducts appropriate representation fea-
ture generation to maximize correlations in adversarial
learning. ,e results of the precision-scope curves demon-
strate the effectiveness of the proposed method.

Figure 7 presents evaluations of precision-scope curves
on the NUS-WIDE dataset for the tasks of searching for
images from text input and searching for text from image
input. As presented in Figure 7, the proposed CMSAL
method outperforms other selected baseline methods. In
addition, the precision-scope curves of CMSAL on the NUS-
WIDE dataset outperform those on the Sina Weibo and
Wikipedia datasets. ,e reason is that the cross-modal
content in the NUS-WIDE dataset is simple and clear. As the
semantic labels of images, the text has clear semantic fea-
tures; thus, the tasks of text-to-image and image-to-text
search show good computing properties in local semantic
mining and matching for CMSAL.

5. Conclusions

In this paper, we propose a cross-modal search method for
social network cross-modal data based on adversarial
learning (CMSAL). ,e proposed method integrates self-
attention based on adversarial learning to realize the cross-
modal search for the social network. ,e method explores
cross-modal semantic features from the perspective of global
representations of images and texts for a specific topic.
,rough adversarial learning, the method reconstructs
representations for cross-modal matching. ,e designed
adversarial learning framework is effectively used to rank the
search results. Experimental results validate the effectiveness
of the proposed method.

Data Availability
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