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Abstract
Metal-binding proteins play important roles in structural stability, signaling, regulation, transport,
immune response, metabolism control, and metal homeostasis. Because of their functional and
sequence diversity, it is desirable to explore additional methods for predicting metal-binding
proteins irrespective of sequence similarity. This work explores support vector machines (SVM) as
such a method. SVM prediction systems were developed by using 53,333 metal-binding and 147,347
non-metal-binding proteins, and evaluated by an independent set of 31,448 metal-binding and
79,051 non-metal-binding proteins. The computed prediction accuracy is 86.3%, 81.6%, 83.5%,
94.0%, 81.2%, 85.4%, 77.6%, 90.4%, 90.9%, 74.9% and 78.1% for calcium-binding, cobalt-binding,
copper-binding, iron-binding, magnesium-binding, manganese-binding, nickel-binding, potassium-
binding, sodium-binding, zinc-binding, and all metal-binding proteins respectively. The accuracy for
the non-member proteins of each class is 88.2%, 99.9%, 98.1%, 91.4%, 87.9%, 94.5%, 99.2%, 99.9%,
99.9%, 98.0%, and 88.0% respectively. Comparable accuracies were obtained by using a different
SVM kernel function. Our method predicts 67% of the 87 metal-binding proteins non-homologous
to any protein in the Swissprot database and 85.3% of the 333 proteins of known metal-binding
domains as metal-binding. These suggest the usefulness of SVM for facilitating the prediction of
metal-binding proteins. Our software can be accessed at the SVMProt server http://
jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi.

Background
Metal-binding proteins play important roles in structural
stability and complex formation [1-5], gene expression
regulation and alteration [1,6-9], DNA processing [10],
signaling processes and cellular events [11], transport

[8,12,13], metabolism control [1,4,12,14], metal home-
ostasis [15,16], antibody recognition [17], and other
events such as cellular respiration, muscle movement, and
antioxidant defense [18]. Approximately 1/3 of structur-
ally-determined proteins are metal-bound[19], and large
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percentages of metals present in human body are bound
to proteins [4,20]. Identification of metal-binding pro-
teins and knowledge of metal-protein interactions is
important for elucidating the function and functional
mechanism of proteins and biological processes.

Metal-binding proteins have been identified by such
experimental approaches as absorbance spectroscopy[21],
gel electrophoresis [22], metal-affinity columns and shift
assay [23], chromatography [16], mass spectroscopy [22],
NMR [6], and combined spectroscopic studies [24]. How-
ever, some of these methods generally require a purified
or semi-purified target of interest, do not facilitate identi-
fication of unknown targets form complex protein mix-
tures, or require multi-step processes and very specialized
equipment, which limit their application ranges [23].
Therefore, there is a need to explore other methods
including computational approaches for facilitating the
identification of metal-biding proteins to complement
these experimental methods.

Several computational methods have been explored for
identifying and characterizing metal-binding proteins. In
many metalloproteins, the metal ions tightly bind to the
proteins and their metal-bound structures could be accu-
rately determined by x-ray crystallography [3,5,10,17].
Thus structural information has been used for predicting
metal-binding sites based on the detection of principal
liganding residues and metal-ligand complex architec-
tures [25,26], the use of common local structural parame-
ters [25], combination of sequence and structural profiles
[27], analysis of bond strength contributions [28], and the
computation of force fields [29,30]. But for those proteins
with loosely or temporarily bound metals, such as
enzymes that use metal ions as cofactors, the specific
metal binding sites are often poorly characterized or
unknown [6]. Therefore, sequence-based computational
methods appear to be useful for these types of proteins
and those without 3D structures. Apart from sequence
similarity methods, the recently explored sequence-based
methods include metal-binding sites sequence motifs
[31,32], multiple sequence alignments against known
metal-binding proteins[26], and neural networks of
sequence segments of amino acids of higher metal-bind-
ing propensity[33]. Moreover, combinatorial use of mul-
tiple structural, sequence alignments and annotation
methods has been found to be highly useful for improv-
ing prediction accuracy of metal-binding proteins[26].

Because of the sequence, structural and functional diver-
sity of metal-binding proteins [1-5,8,9,11-15,17], it is
desirable to explore additional methods that predict
metal-binding proteins directly from sequence or
sequence-derived properties. This work explored a statisti-
cal learning method, support vector machines (SVM), as

such an approach. SVM has been successfully used for pre-
dicting the functional classes of molecule-binding pro-
teins such as RNA-binding proteins [34,35], DNA-binding
proteins [35], lipid-binding proteins [36], and transport-
ers [37] from sequence-derived structural and physico-
chemical properties and irrespective of sequence
similarity. Metal-binding proteins involve a substantially
more diverse spectrum of proteins than most of the other
classes of proteins. For instance, the zinc-binding proteins
of 16,072 sequence entries belong to 765 Pfam [38]
domain families, while the EC2.7 enzymes and RNA-
binding proteins of similar number of sequence entries
(14,171 and 14,208) belong to 548 and 378 Pfam fami-
lies respectively. The diverse spectrum of proteins poses a
more critical test for constructing a SVM prediction sys-
tem.

Metal-binding proteins are diverse in sequence, structure,
and function[1-5,8,9,11-15,17]. Nonetheless, metal cati-
ons generally bind to centers of high hydrophilicity and
reduce the enthalpy of a system upon binding [30,39],
and metal ions bind to a shell of polar hydrophilic resi-
dues surrounded by a shell of non-polar residues [25]. The
binding sites of some metal-ligand complexes have spe-
cific structural architectures [25]. To some extent, these
metal binding features are similar to those of other mole-
cule-binding features of proteins such as RNA-binding
proteins, DNA-binding proteins and transporters that are
also diverse in sequence, structure and function whose
binding capability are mediated by certain structural and
physiochemical characteristics [36,40,41]. Therefore, it is
expected that SVM is also applicable to the prediction of
metal-binding proteins.

In this paper, we developed SVM prediction systems for
10 metal-binding classes and for all metal-binding pro-
teins. These classes are calcium-binding, cobalt-binding,
copper-binding, iron-binding, magnesium-binding, man-
ganese-binding, nickel-binding, potassium-binding,
sodium-binding and zinc-binding. In addition to the esti-
mate of the prediction accuracy by using an independent
set of proteins, the performance of our developed SVM
prediction systems was further evaluated by four addi-
tional tests to determine the usefulness of SVM for predict-
ing novel metal-binding proteins and the applicability of
other kernel functions. One is the evaluation of the pre-
diction accuracies when homologous proteins are consid-
ered as one. The second is the prediction of metal-binding
proteins non-homologous to any protein in Swissprot
database[42]. The third is to study whether the known
metal-binding domains can be predicted as metal-binding
by our SVM systems. The fourth is to study the perform-
ance of SVM with a different kernel function.
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Results and discussion
Overall prediction accuracy
The statistics of the datasets and prediction results of spe-
cific metal-binding classes and all metal-binding proteins
are given in Table 1. In this Table, TP, FN, TN FP, SE, and
SP stand for true positive (correctly predicted metal-bind-
ing proteins of specific class), false negative (specific class
of metal-binding proteins incorrectly predicted as non-
class-members), true negative (correctly predicted non-
class-members), false positive (non-class-members incor-
rectly predicted as specific class of metal-binding pro-
teins), the predicted sensitivity (accuracy for members in
each metal-binding class), and the predicted specificity
(accuracy for non-members of each metal-binding class).
The SE for the class of calcium-binding, cobalt-binding,
copper-binding, iron-binding, magnesium-binding, man-
ganese-binding, nickel-binding, potassium-binding,
sodium-binding, zinc-binding, and all metal-binding pro-
teins is 86.3%, 81.6%, 83.5%, 94.0%, 81.2%, 85.4%,
77.6%, 90.4%, 90.9%, 74.9% and 78.1% respectively. The
corresponding SP is 88.2%, 99.9%, 98.1%, 91.4%, 87.9%,
94.5%, 99.2%, 99.9%, 99.9%, 98.0%, and 88.0% respec-
tively.

A direct comparison with results from previous metal-
binding protein prediction studies may not be most
appropriate because of the differences in the protein
classes predicted, datasets, protein descriptors, prediction
methods and parameters. Nonetheless, a tentative com-
parison may provide some crude estimate regarding the
level of accuracy of our method with respect to those
achieved by other studies of metal-binding proteins. The
reported SEs of other studies are in the range of 87%~93%
for calcium-binding proteins [28] and 90~97% for all
metal-binding proteins [25,27,29,33]. Thus the corre-
sponding SEs of 93.8% and 78.9% of our SVM prediction

systems are comparable to those of other studies despite
of the use of a significantly higher number, and thus more
diverse range, of proteins in our studies.

The prediction accuracy of the non-members of each
metal-binding class appears to be better than that of the
members. The higher prediction accuracy for non-mem-
bers likely results from the availability of more diverse set
of non-members than that of members, which enables
SVM to perform a better statistical learning for recognition
of non-members. Based on the statistics provided on the
webpage of Pfam database [38], there are over 8,000 fam-
ilies of proteins, from which one can generate a diverse set
of non-members for each metal-binding class. Because of
the differences in the number of members and that of
non-members in each class, there is an imbalance
between each dataset. SVM based on an imbalanced data-
sets tends to produce feature vectors that push the hyper-
plane towards the side with smaller number of data [43],
which can lead to a reduced accuracy for the set either with
a smaller number of samples or of less diversity. This
might partly explain why the prediction accuracy for
members is generally lower than that for non-members. It
is however inappropriate to simply reduce the size of non-
members to artificially match that of members, since this
compromises the diversity needed to fully represent all
non-members. Computational methods for re-adjusting
biased shift of hyperplane are being explored [44]. Appli-
cation of these methods may help improving SVM predic-
tion accuracy in this and other cases involving unbalanced
data.

Prediction of novel metal-binding proteins
One particular application of SVM is the prediction of
novel metal-binding proteins that are non-homologous
to other proteins [45]. To test this capability, Swiss-Prot

Table 1: Statistics of the datasets and prediction accuracy of individual class of metal-binding proteins and that of all metal-binding 
proteins. The predicted results are given in TP (true positive), FN (false negative), TN (true negative), FP (false positive), sensitivity SE 
= TP/(TP + FN) (accuracy for class members), specificity SP = TN/(TN + FP) (accuracy for non-members), and overall accuracy Q = (TN 
+ TP)/(TP + FN + TN + FP). The number of members and non-members in the testing and independent evaluation sets is TP + FN or TN 
+ FP respectively

Metal-Binding Protein Classes Training set Testing set Independent evaluation set

positive negative positive negative positive negative Q(%)
TP FN TN FP TP FN SE(%) TN FP SP(%)

Calcium-binding 1816 4389 2055 245 8039 1906 1130 180 86.3% 6373 851 88.2% 87.9%
Cobalt-binding 568 2151 456 2 13407 10 360 81 81.6% 7809 7 99.9% 98.9%
Copper-binding 652 1999 417 109 13115 270 390 77 83.5% 7587 146 98.1% 97.3%
Iron-binding 3128 3428 4869 290 3992 675 1104 71 94.0% 6328 598 91.4% 91.7%
Magnesium-binding 2583 4023 2307 594 7267 115 3412 792 81.2% 5848 805 87.9% 85.3%
Manganese-binding 1608 3099 1146 217 10841 1086 1061 182 85.4% 7148 415 94.5% 93.2%
Nickel-binding 407 2001 95 2 13576 138 156 45 77.6% 7816 65 99.2% 98.6%
Potassium-binding 408 1845 489 10 13789 8 301 32 90.4% 7847 4 99.9% 99.6%
Sodium-binding 777 2010 338 1 13591 30 410 41 90.9% 7831 11 99.9% 99.4%
Zinc-binding 2731 6416 6610 569 5931 360 4616 1546 74.9% 6289 127 98.0% 86.7%
All metal-binding 5013 3101 11806 1015 4217 522 12070 3391 78.1% 4529 617 88.0% 80.6%
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database [42] was searched for metal-binding proteins
having no single homologous protein in the database
based on PSI-BLAST [46] results. A similarity E-value
threshold of 0.1 was used for homolog search to ensure
maximum exclusion of proteins that have a homolog.
Those proteins found in the SVM training sets are then
removed. As shown in Table 2, a total of 87 proteins are
found from this process, 58 or 66.7% of these proteins
were correctly predicted as metal-binding by our SVM
classification systems respectively. Therefore, our SVM
classification systems appear to show reasonably good
capability for predicting novel metal-binding proteins
based on the set of proteins tested. 9 of the 29 incorrectly
predicted novel metal-binding proteins are nucleic acid
binders. These include endonucleases Cfr10I, CviJI,
EcoRV, PvuII and BslI, transcription activators chrR and
rep2, meiosis-specific protein HOP1, protein suppressor
of variegation 3–7. One possible reason for the misclassi-
fication of these nucleic acid binding proteins is that spa-
tial conservation rather than sequence conservation plays
the dominant role in the formation of active site where
metal ions are clustered [47], which is more difficult to
predict than the classes of proteins with more apparent
sequence signatures.

Prediction of metal-binding proteins with specific 
structural characteristics
A number of metal-binding proteins contain metal-bind-
ing domains [31,48,49] or motifs [31,32]. Several families

of such metal-binding proteins have been documented,
and examples of these families are zinc finger family[50],
EF hand family[51], and Fer4 family[52]. These families
have distinguished structural features responsible for
metal-binding. Thus the performance of SVM prediction
of metal-binding proteins can be evaluated by examining
whether or not proteins containing one of these domains
or motifs can be correctly classified as metal-binding.

A search of protein family and sequence databases
showed that there are 2462, 780, and 534 metal-binding
protein sequences known to contain zinc finger, EF hand,
and Fer4 domain respectively. The majority of these
sequences are included in the training and testing set of all
metal-binding proteins. In the corresponding independ-
ent evaluation set, there are 890, 215, and 192 sequences
containing zinc finger, EF hand, and Fer4 domain respec-
tively. Most of these protein sequences were correctly clas-
sified as metal-binding by SVM. There are only 17, 8, and
6 misclassified sequences in the zinc finger, EF hand, and
Fer4 domain families respectively. Thus our results
showed the capability of our SVM prediction systems for
recognizing these metal-binding proteins.

Prediction performance for metal-binding domains
Some metal-binding proteins are known to contain mul-
tiple domains that include a metal-binding domain plus
one or more domains characterized by DNA binding, pro-
tein-protein interaction and other motifs [53-56]. Our

Table 2: Prediction results of novel metal-binding proteins by SVMProt, where "+" represents proteins correctly predicted as metal-
binding proteins, and "-" represents proteins incorrectly predicted as non-metal-binding proteins

Swiss-Prot 
AC

Prediction 
Status

Swiss-Prot 
AC

Prediction 
Status

Swiss- Prot 
AC

Prediction 
Status

Swiss-Prot 
AC

Prediction 
Status

P04390 - P20910 + P43589 - Q09824 -
O13826 - P22635 - P49412 + Q17374 +
O13862 + P23382 - P49659 + Q44009 +
O26638 + P23485 + P50534 + Q45488 +
O29031 + P23657 - P52283 - Q52982 -
O29156 + P23940 + P54355 + Q54450 +
O29747 - P24005 + P54657 + Q56X52 +
O42720 - P24059 + P56200 - Q59660 -
O67672 + P24282 - P80479 + Q6F4C6 +
O68557 + P26902 + P80509 - Q7Z2C4 +
O75448 + P28875 + P81040 + Q80874 +
O81916 + P31032 + P81242 - Q8GNT2 +
P03697 + P31178 + P81605 - Q8VYR2 +
P03825 + P32505 + P82604 + Q94702 +
P12258 + P33353 + P83310 - Q95QY7 -
P12608 - P33440 + Q00166 + Q9JJV3 +
P14229 + P34806 + Q00167 - Q9LAI0 -
P14633 + P39405 - Q00457 + Q9LIG0 +
P19729 + P40379 + Q03471 - Q9VL31 -
P19733 + P40685 - Q04580 - Q9WXE6 +
P20050 - P40962 + Q06200 + Q9ZAA8 +
P20193 - P40988 + Q08906 +
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SVM prediction systems were trained by using physico-
chemical properties derived from the entire protein
sequence. There is a need to evaluate how the inclusion of
all the other "extra" domains may affect the prediction
performance of our SVM systems. For such a purpose, our
SVM systems were tested to determine to which extent
they can predict known metal-binding domains as metal-
binding without having to include representatives of these
domains in our training sets. Metal-binding domains are
searched from the Pfam database [38] by using key word
of ten biological common metals- calcium, cobalt, cop-
per, magnesium, manganese, nickel, potassium, sodium
and zinc, followed by manual evaluation of the hits to
select those with such annotations as experimental proved
metal contained structure, metal chelating site, metal-
based functional site, as well as metal channel, trans-
porter, and carrier. A total of 333 distinct metal-binding
domains are selected from this process, which include 127
domains in multi-domain metal-binding proteins. It is
found that 85.3% and 81.1% of these are predicted as
metal-binding. Moreover, 82.5% of the 1368 multi-
domain metal-binding proteins in our independent set is
correctly predicted. Hence, the inclusion of "extra"
domains appears to have a limited effect on the perform-
ance of our developed SVM systems, which show certain
level of capability for predicting metal-binding domains
as well as metal-binding proteins.

SVM prediction performance by using a different kernel 
function
Apart from the Gaussian kernel function of sequence-
derived physicochemical properties used in this work, sev-
eral other kernel functions have been developed and
applied for SVM analysis of proteins and DNAs [57-59]. It
is of interest to test the usefulness of some of these kernel
functions for predicting metal-binding proteins. The
string-kernel function has been extensively used and it has
shown promising potential for protein and DNA studies
[57,58]. This kernel function is constructed by compari-
son of sequences of classes of proteins or DNAs and the
assignment of individual weights to amino acids or nucle-
otides to describe physicochemical or other characteristics
of the proteins and DNAs. In this work, this kernel func-
tion is used to develop three SVM systems for predicting
the class of nickel-binding proteins, potassium-binding
proteins, and sodium-binding proteins. Spectrum kernel
with mismatches[60] is used to generate the string-kernel
for each protein. Testing results by using the independent
set of proteins for each class show that the SE is 75.1%,
89.5% and 88.7%, and the SP is 99.0%, 98.7% and 97.8%
for each of these classes respectively. Thus comparable
prediction performance can be achieved by using string-
kernel SVM, which suggests the usefulness of this and
other kernel functions for SVM prediction of metal-bind-
ing proteins.

Comparison of SVM prediction performance with those of 
other methods
To compare the prediction performance of SVM with
those of other methods, our SVM classification system for
predicting zinc-binding proteins was used to scan the
human genome, and the predicted zinc-binding proteins
were compared with those predicted by one or combina-
tions of three other methods[26]. These methods have
been used for searching potential zinc-binding proteins in
human genome by means of (i) zinc-binding pattern
identification via structural comparison with all available
X-ray structural data, (ii) multiple sequence alignment
based on libraries of zinc-binding domains, and (iii) anal-
ysis of sequence annotations[26]. SVM predicted a total of
4,518 zinc-binding proteins compared to that of 3,207 by
at least one of the other three methods, 2,770 of which are
mutually predicted. The percentages of mutually pre-
dicted proteins are significantly higher for those proteins
predicted by using combinations of the other three meth-
ods. The numbers of proteins predicted by at least two and
three of the other methods are 2,430 and 1,684 respec-
tively, 2,256 and 1,615 of which are also predicted by
SVM. Therefore, SVM is capable of predicting most of the
zinc-binding proteins predicted by the combinations of
the other three methods. SVM appears to predict a higher
number of zinc-binding proteins than each of the other
three methods. Apart from the expected prediction error,
the reported problems of the other three methods associ-
ated with structurally uncharacterized, non-conserved,
unclearly annotated zinc-binding proteins[26] may also
contribute to the discrepancy between SVM and the other
methods. For example, two SVM predicted proteins that
are not predicted by the other three methods, forkhead
box protein P1 and TRAF-interacting protein, are anno-
tated as zinc-binding in GO and described to contain
ZINC_FINGER_C2H2_1 in PROSITE.

Contribution of feature properties to the classification of 
metal-binding proteins
In this work, a total of nine feature properties were used
to describe physicochemical characteristics of each pro-
tein, which have been routinely used for the prediction of
other molecular-binding proteins [61]. It has been
reported that, not all feature vectors contribute equally to
the classification of proteins, some have been found to
play relatively more prominent role than others in specific
aspects of proteins [62]. It is therefore of interest to exam-
ine which feature properties play more prominent role in
classification of metal-binding proteins.

In an earlier study, contribution of individual feature
property to protein classification is investigated by sepa-
rately conducting classification using each feature prop-
erty [36,40,41]. The same method was employed here. An
analysis on the classification of the group of all metal-
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binding proteins seems to suggest that, in order of prom-
inence, the hydrophobicity, solvent accessibility, polarity
and composition play more prominent role than other
feature properties. Hydrophobicity have been shown to
be important for metal-protein interactions such that
metal binding sites usually appear in clusters with hydro-
phobic environment. High-affinity metal binding sites in
some proteins are located at sequence segments with spe-
cific amino acid composition[63], and specific sequence
motifs have been used for predicting metal-binding pro-
teins[64,65]. It was also found that polarity and solvent
accessibility of the binding site influences the functional
properties of metal-binding proteins[66]. Therefore, our
prediction results are consistent with these experimental
findings.

Conclusion
SVM appears to be a potentially useful tool for the predic-
tion of metal-binding proteins of different classes. The
prediction accuracy may be further enhanced with the fur-
ther expansion of our knowledge about metal-binding
proteins particularly for those small metal-binding
classes, more refined representation of the structural and
physicochemical properties of proteins, and the improve-
ment of prediction algorithms such as the better treatment
of imbalanced dataset. The SVM-derived metal-binding
protein classification systems developed in this work can
be assessed, free of charge for academic use, at the SVM-
Prot server [67].

Methods
Selection of metal-binding and non-metal-binding proteins
All metal-binding proteins used in this study are collected
from a comprehensive search of Swiss-Prot database [42].
A total of 33295 metal-binding protein sequences were
obtained. Most of these proteins can be classified into one
of the 10 metal-binding classes, and the number of pro-
teins is 5426, 1467, 1645, 9462, 9688, 4214, 705, 1240,
1567 and 16072 in calcium-binding, cobalt-binding, cop-
per-binding, iron-binding, magnesium-binding, manga-
nese-binding, nickel-binding, potassium-binding,
sodium-binding and zinc-binding class respectively.
Some proteins were found to belong to more than one
class. The distribution of all these proteins in different
kingdoms and in top 10 host species is given in Table 3,
and that of the four largest classes of metal-binding pro-
teins is given in Table 4. From these two Tables one finds
that these proteins are from diverse range of species and
all species appear to be fairly adequately represented.

All distinct members in each class were used to construct
a positive dataset for the corresponding SVM prediction
system. A negative dataset, representing non-class mem-
bers, are selected by a well-established procedure
[45,68,69] such that all proteins are grouped into domain
families [38] and the representative proteins of those fam-
ilies un-related to the specific metal-binding class are used
as negative samples. Members in the other metal-binding
classes were included in the negative dataset if they are not
a member of the class being studied. These datasets are
divided into separate training, testing and independent
evaluation sets by the following procedure: First, proteins
were clustered into groups based on their distance in the

Table 3: Distribution of metal-binding proteins in different kingdoms and in top 10 host species of each kingdom. Not all protein 
sequences studied in this work are included because the host species information of some protein sequences is not yet available in the 
protein sequence database

Kingdom Viridae Eukaryota Bacteria Archaea

Number of proteins in 
kingdom

576 17040 13692 1618

List of top 10 species and 
number of proteins in each 
species

Bacteriophage T4 (12) Homo sapiens (2218) Escherichia coli (551) Methanococcus jannaschii (203)

Orgyia pseudotsugata 
multicapsid polyhedrosis virus 

(10)

Mus musculus (1850) Escherichia coli O157:H7 (264) Methanobacterium 
thermoautotrophicum(103)

Autographa californica nuclear 
polyhedrosis virus (9)

Rattus norvegicus (1013) Bacillus subtilis (250) Methanosarcina acetivorans (93)

Mimivirus (9) Arabidopsis thaliana (882) Salmonella typhimurium (229) Archaeoglobus fulgidus (92)
Variola virus (6) Saccharomyces cerevisiae (528) Escherichia coli O6 (212) Methanosarcina mazei (91)

Vaccinia virus (strain 
Copenhagen) (6)

Drosophila melanogaster (455) Haemophilus influenzae (205) Halobacterium salinarium (75)

Vaccinia virus (strain Western 
Reserve/WR) (6)

Caenorhabditis elegans (388) Shigella flexneri (197) Pyrococcus horikoshii (72)

Vaccinia virus (strain Ankara) 
(6)

Bos Taurus (334) Salmonella typhi (173) Pyrococcus abyssi (71)

Ictalurid herpesvirus 1 (5) Schizosaccharom yces pombe 
(314)

Mycobacterium tuberculosis 
(164) Synechocystis sp.

Pyrococcus furiosus (70)

African swine fever virus (strain 
BA71V) (5)

Gallus gallus (252) (strain PCC 6803) (163) Sulfolobus solfataricus (65)
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structural and physicochemical feature-space by using the
hierarchical clustering method. An upper-limit of the larg-
est separation of 20 was used to for each cluster. One rep-
resentative protein was randomly selected from each
group to form a training set that is sufficiently diverse and
broadly distributed in the feature space. One or up to 50%
of the remaining proteins in each group were randomly
selected to form the testing set. The selected proteins from
each group were further checked to ensure that they are
distinguished from proteins from other groups. The
remaining proteins were used as the independent evalua-
tion set, which are also of reasonable level of diversity.
Moreover, an analysis of the "similarity" proteins in each
cluster shows that the majority of the proteins in a cluster
are non-homologous. Thus, the testing and independent
evaluation sets are expected to have certain level of useful-
ness for performing their task of fine-tuning the parameter
of a SVM classification system and for evaluating its pre-
diction performance. The statistics of the members and
non-members of the datasets of each metal-binding class
is given in Table 1.

Derivation of structural and physicochemical properties 
from protein sequence
Construction of the feature vector for each protein is
based on the formula used in the prediction of RNA-bind-
ing proteins [69], protein-protein interaction[70], protein
fold recognition [62], and protein functional family pre-

diction [68]. Given the sequence of a protein, its amino
acid composition and the properties of every constituent
amino acid are computed and then used to generate this
vector. The computed amino acid properties include
hydrophobicity, normalized Van der Waals volume,
polarity, polarizability, charge, surface tension, secondary
structure and solvent accessibility [68].

For each of these properties, amino acids are divided into
three groups such that those in a particular group are
regarded to have approximately the same property. For
instance, amino acids can be divided into hydrophobic
(CVLIMFW), neutral (GASTPHY), and polar (RKEDQN)
groups. Three descriptors, composition (C), transition
(T), and distribution (D), are introduced to describe glo-
bal composition of each of these properties. C is the
number of amino acids of a particular property (such as
hydrophobicity) divided by the total number of amino
acids in a protein sequence. T characterizes the percent fre-
quency with which amino acids of a particular property is
followed by amino acids of a different property. D meas-
ures the chain length within which the first, 25%, 50%,
75% and 100% of the amino acids of a particular property
is located respectively.

A hypothetical protein sequence AEAAAEAEEAAAAAE-
AEEEAAEEAEEEAAE, as shown in Figure 1, has 16
alanines (n1 = 16) and 14 glutamic acids (n2 = 14). The

Table 4: Distribution of different classes of metal-binding proteins (calcium-binding, magnesium-binding, iron-binding, and zinc-
binding) in different kingdoms and in top 10 host species. Not all protein sequences studied in this work are included because the host 
species information of some protein sequences is not yet available in the protein sequence database

Calcium-binding Magnesium-binding Iron-binding Zinc-binding

Kingdom or 
species

No. of proteins Kingdom or 
species

No. of proteins Kingdom or 
species

No. of proteins Kingdom or species No. of proteins

Protein 
distribution in 

kingdom

Archaea 73 Archaea 262 Archaea 381 Archaea 1048

Bacteria 1092 Bacteria 2597 Bacteria 3743 Bacteria 6916
Eukaryota 3897 Eukaryota 1081 Eukaryota 5248 Eukaryota 6464

Viridae 343 Viridae 194 Viridae 29 Viridae 1466
Protein 

distribution in 
top 10 species

Homo sapiens 651 Homo sapiens 140 Arabidopsis 
thaliana

278 Homo sapiens 1121

Mus musculus 499 Mus musculus 129 Escherichia coli 214 Mus musculus 911
Rattus 

norvegicus
305 Arabidopsis 

thaliana
117 Homo sapiens 191 Rattus norvegicus 382

Arabidopsis 
thaliana

186 Rattus 
norvegicus

69 Mus musculus 185 Saccharomyces 
cerevisiae

380

Bos taurus 142 Escherichia coli 63 Rattus 
norvegicus

152 Arabidopsis thaliana 359

Gallus gallus 103 Saccharomyces 
cerevisiae

55 Drosophila 
melanogaster

124 Caenorhabditis 
elegans

255

Drosophila 
melanogaster

94 Bacillus subtilis 53 Methanococcus 
jannaschii

92 Drosophila 
melanogaster

237

Oryctolagus 
cuniculus

82 Escherichia coli 
O157:H7

45 Saccharomyces 
cerevisiae

88 Schizosaccharomyce
s pombe

221

Sus scrofa 65 Salmonella 
typhimurium

44 Escherichia coli 
O157:H7

87 Escherichia coli 172

Caenorhabditis 
elegans

64 Schizosaccharo
myces pombe

43 Bacillus subtilis 77 Methanococcus 
jannaschii

119
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composition for these two amino acids are n1 × 100.00/
(n1 + n2) = 53.33 and n2 × 100.00/(n1 + n2) = 46.67
respectively. There are 15 transitions from A to E or from
E to A in this sequence and the percent frequency of these
transitions is (15/29) × 100.00 = 51.72. The first, 25%,
50%, 75% and 100% of As are located within the first 1,
5, 12, 20, and 29 residues respectively. The D descriptor
for As is thus 1/30 × 100.00 = 3.33, 5/30 × 100.00 = 16.67,
12/30 × 100.00 = 40.0, 20/30 × 100.00 = 66.67, 29/30 ×
100.00 = 96.67. Likewise, the D descriptor for Es is 6.67,
26.67, 60.0, 76.67, 100.0. Overall, the amino acid compo-
sition descriptors for this sequence are C = (53.33, 46.67),
T = (51.72), and D = (3.33, 16.67, 40.0, 66.67, 96.67,
6.67, 26.67, 60.0, 76.67, 100.0) respectively. Descriptors
for other properties can be computed by a similar proce-
dure.

Overall, there are 21 elements representing these three
descriptors: 3 for C, 3 for T and 15 for D. The feature vec-
tor of a protein is constructed by combining the 21 ele-
ments of all of these properties and the 20 elements of
amino acid composition in sequential order.

There is some level of overlap in the descriptors for hydro-
phobicity, polarity, and surface tension. Thus the dimen-
sionality of the feature vectors may be reduced by
principle component analysis (PCA). Our own study sug-
gests that the use of PCA reduced feature vectors only
moderately improves the accuracy for some of the fami-
lies. It is thus unclear to which extent this overlap affects
the accuracy of SVM classification. It is noted that reason-
ably accurate results have been obtained using these over-
lapping descriptors in various protein classification
studies [62,68,70-72].

Support Vector Machines method
The algorithms of SVM and its applications to proteins are
extensively described in the literature [68,69,73]. Thus
only a brief description is given here. A linear SVM con-
structs a hyperplane that separates two different classes of
feature vectors with a maximum margin. One class repre-
sents metal-binding proteins and the other non-metal-
binding proteins. This hyperplane is constructed by find-
ing a vector w and a parameter b that minimizes ||w||2

which satisfies the following conditions: w · xi + b ≥ 1, for
yi = +1(positive class) and w · xi + b ≤ -1, for yi = -1 (nega-
tive class). Here xi is a feature vector, yi is the group index,
w is a vector normal to the hyperplane, |b|/||w|| is the per-
pendicular distance from the hyperplane to the origin,
and ||w||2 is the Euclidean norm of w.

A nonlinear SVM projects feature vectors into a high
dimensional feature space by using a kernel function such

as a Gaussian kernel function .

The linear SVM procedure is then applied to the feature
vectors in this feature space. After the determination of w
and b, a given vector x can be classified by using sign [(w
· x) + b], a positive or negative value indicates that the vec-
tor x belongs to the positive or negative class respectively.

The performance of SVM has been measured by the posi-
tive, negative and overall prediction accuracies Pp = TP/(TP
+ FN), Pn = TN/(TN + FP) and P = (TP + TN)/N, which cor-
respond to the accuracies for proteins of a metal-binding
class, non-members of the class, and all members and
non-members of the class respectively. Here TP, TN, FP,
and FN are the number of true positive (true member),
true negative (true non-member), false positive (false

K ei j
j ix x

x x
,

, /( ) =
−

2 22σ

The sequence of a hypothetic protein for illustration of derivation of the feature vector of a proteinFigure 1
The sequence of a hypothetic protein for illustration of derivation of the feature vector of a protein. Sequence index indicates 
the position of an amino acid in the sequence. The index for each type of amino acids in the sequence (A or E) indicates the 
position of the first, second, third, ... of that type of amino acid (The position of the first, second, third, ..., A is at 1, 3, 4, ...). A/
E transition indicates the position of AE or EA pairs in the sequence.
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member), and false negative (false non-member) respec-
tively, and N is the total number of proteins studied.

Authors' contributions
HH wrote the programs and implemented the study. LY
designed the web service. HL, CJ and BX performed the
data analysis. ZWC assisted in the study and revised the
paper.  YZ conceived of the study and wrote the manu-
script. All authors read and approved the final manu-
script.

Acknowledgements
This work was supported in part by grants from Ministry of Science and 
Technology China (2003CB715900, 2004CB720103), National Natural Sci-
ence Foundation of China (30500107, 30670953), and Science and technol-
ogy commission of Shanghai municipality (04DZ19850, 06PJ14972).

This article has been published as part of BMC Bioinformatics Volume 7, Sup-
plement 5, 2006: APBioNet – Fifth International Conference on Bioinfor-
matics (InCoB2006). The full contents of the supplement are available 
online at http://www.biomedcentral.com/1471-2105/7?issue=S5.

References
1. Wintz H, Fox T, Wu YY, Feng V, Chen W, Chang HS, Zhu T, Vulpe

C: Expression profiles of Arabidopsis thaliana in mineral defi-
ciencies reveal novel transporters involved in metal homeos-
tasis.  J Biol Chem 2003, 278(48):47644-47653.

2. Cox EH, McLendon GL: Zinc-dependent protein folding.  Curr
Opin Chem Biol 2000, 4(2):162-165.

3. Michel SL, Berg JM: Building a metal binding domain, one half
at a time.  Chem Biol 2002, 9(6):667-668.

4. de la Calle Guntinas MB, Bordin G, Rodriguez AR: Identification,
characterization and determination of metal-binding pro-
teins by liquid chromatography. A review.  Anal Bioanal Chem
2002, 374(3):369-378.

5. Yang W, Lee HW, Hellinga H, Yang JJ: Structural analysis, identi-
fication, and design of calcium-binding sites in proteins.  Pro-
teins 2002, 47(3):344-356.

6. Jensen MR, Petersen G, Lauritzen C, Pedersen J, Led JJ: Metal bind-
ing sites in proteins: identification and characterization by
paramagnetic NMR relaxation.  Biochemistry 2005,
44(33):11014-11023.

7. Wu H, Yang Y, Jiang SJ, Chen LL, Gao HX, Fu QS, Li F, Ma BG, Zhang
HY: DCCP and DICP: construction and analyses of databases
for copper- and iron-chelating proteins.  Genomics Proteomics
Bioinformatics 2005, 3(1):52-57.

8. Hantke K: Iron and metal regulation in bacteria.  Curr Opin
Microbiol 2001, 4(2):172-177.

9. Bouton CM, Pevsner J: Effects of lead on gene expression.  Neu-
rotoxicology 2000, 21(6):1045-1055.

10. Feng M, Patel D, Dervan JJ, Ceska T, Suck D, Haq I, Sayers JR: Roles
of divalent metal ions in flap endonuclease-substrate interac-
tions.  Nat Struct Mol Biol 2004, 11(5):450-456.

11. Carafoli E: Calcium signaling: a tale for all seasons.  Proc Natl
Acad Sci U S A 2002, 99(3):1115-1122.

12. Harris ED: Cellular copper transport and metabolism.  Annu
Rev Nutr 2000, 20:291-310.

13. O'Halloran TV, Culotta VC: Metallochaperones, an intracellular
shuttle service for metal ions.  J Biol Chem 2000,
275(33):25057-25060.

14. Vallee BL, Auld DS: Active-site zinc ligands and activated H2O
of zinc enzymes.  Proc Natl Acad Sci U S A 1990, 87(1):220-224.

15. Cobbett C, Goldsbrough P: Phytochelatins and metal-
lothioneins: roles in heavy metal detoxification and homeos-
tasis.  Annu Rev Plant Biol 2002, 53:159-182.

16. Papoyan A, Kochian LV: Identification of Thlaspi caerulescens
genes that may be involved in heavy metal hyperaccumula-
tion and tolerance. Characterization of a novel heavy metal
transporting ATPase.  Plant Physiol 2004, 136(3):3814-3823.

17. Zhou T, Hamer DH, Hendrickson WA, Sattentau QJ, Kwong PD:
Interfacial metal and antibody recognition.  Proc Natl Acad Sci U
S A 2005, 102(41):14575-14580.

18. Lieu PT, Heiskala M, Peterson PA, Yang Y: The roles of iron in
health and disease.  Mol Aspects Med 2001, 22(1–2):1-87.

19. Barondeau DP, Getzoff ED: Structural insights into protein-
metal ion partnerships.  Curr Opin Struct Biol 2004, 14(6):765-774.

20. Sandier A, Amiel C, Sebille B, Rouchaud JC, Fedoroff M, Soltes L:
Chromatographic method involving inductively coupled
plasma atomic emission spectrometric detection for the
study of metal-protein complexes.  J Chromatogr A 1997,
776(1):93-100.

21. Reed GH, Poyner RR: Mn2+ as a probe of divalent metal ion
binding and function in enzymes and other proteins.  Met Ions
Biol Syst 2000, 37:183-207.

22. Binet MR, Ma R, McLeod CW, Poole RK: Detection and charac-
terization of zinc- and cadmium-binding proteins in
Escherichia coli by gel electrophoresis and laser ablation-
inductively coupled plasma-mass spectrometry.  Anal Biochem
2003, 318(1):30-38.

23. Herald VL, Heazlewood JL, Day DA, Millar AH: Proteomic identi-
fication of divalent metal cation binding proteins in plant
mitochondria.  FEBS Lett 2003, 537(1–3):96-100.

24. Schnepf R, Haehnel W, Wieghardt K, Hildebrandt P: Spectroscopic
identification of different types of copper centers generated
in synthetic four-helix bundle proteins.  J Am Chem Soc 2004,
126(44):14389-14399.

25. Gregory DS, Martin AC, Cheetham JC, Rees AR: The prediction
and characterization of metal binding sites in proteins.  Pro-
tein Eng 1993, 6(1):29-35.

26. Andreini C, Banci L, Bertini I, Rosato A: Counting the zinc-pro-
teins encoded in the human genome.  J Proteome Res 2006,
5(1):196-201.

27. Sodhi JS, Bryson K, McGuffin LJ, Ward JJ, Wernisch L, Jones DT: Pre-
dicting metal-binding site residues in low-resolution struc-
tural models.  J Mol Biol 2004, 342(1):307-320.

28. Nayal M, Di Cera E: Predicting Ca(2+)-binding sites in proteins.
Proc Natl Acad Sci U S A 1994, 91(2):817-821.

29. Schymkowitz JW, Rousseau F, Martins IC, Ferkinghoff-Borg J, Stricher
F, Serrano L: Prediction of water and metal binding sites and
their affinities by using the Fold-X force field.  Proc Natl Acad Sci
U S A 2005, 102(29):10147-10152.

30. Khalili M, Saunders JA, Liwo A, Oldziej S, Scheraga HA: A united res-
idue force-field for calcium-protein interactions.  Protein Sci
2004, 13(10):2725-2735.

31. Ettema TJ, Huynen MA, de Vos WM, van der Oost J: TRASH: a
novel metal-binding domain predicted to be involved in
heavy-metal sensing, trafficking and resistance.  Trends Bio-
chem Sci 2003, 28(4):170-173.

32. Rigden DJ, Galperin MY: The DxDxDG motif for calcium bind-
ing: multiple structural contexts and implications for evolu-
tion.  J Mol Biol 2004, 343(4):971-984.

33. Lin CT, Lin KL, Yang CH, Chung IF, Huang CD, Yang YS: Protein
metal binding residue prediction based on neural networks.
Int J Neural Syst 2005, 15(1–2):71-84.

34. Birch PJ, Dekker LV, James IF, Southan A, Cronk D: Strategies to
identify ion channel modulators: current and novel
approaches to target neuropathic pain.  Drug Discov Today 2004,
9(9):410-418.

35. Cai YD, Lin SL: Support vector machines for predicting rRNA-,
RNA-, and DNA-binding proteins from amino acid sequence.
Biochim Biophys Acta 2003, 1648(1–2):127-133.

36. Lin HH, Han LY, Zhang HL, Zheng CJ, Xie B, Chen YZ: Prediction
of the functional class of lipid-binding proteins from
sequence derived properties irrespective of sequence simi-
larity.  J Lipid Res 2006, 47(4):824-831.

37. Lin HH, Han LY, Cai CZ, Ji ZL, Chen YZ: Prediction of trans-
porter family from protein sequence by support vector
machine approach.  Proteins 2006, 62(1):218-231.

38. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Grif-
fiths-Jones S, Howe KL, Marshall M, Sonnhammer EL: The Pfam
protein families database.  Nucleic Acids Res 2002, 30(1):276-280.

39. Frausto da Silva JJR, Williams RJP: The biological chemistry of the
elements: The inorganic chemistry of life.  New York: Oxford Uni-
versity Press; 1991. 
Page 9 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/7?issue=S5.
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13129917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13129917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13129917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10742185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12373380
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12373380
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12373380
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11948788
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11948788
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16101285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16101285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16101285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16144523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16144523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11282473
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11233751
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15077103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15077103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15077103
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11830654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10940336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10816601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10816601
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2104979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2104979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12221971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12221971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12221971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15516513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15516513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15516513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16195378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16195378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11207374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11207374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15582401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15582401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9286082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9286082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9286082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10693135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10693135
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12782028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12782028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12782028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12606038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12606038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12606038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15521758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15521758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15521758
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8433968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8433968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16396512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16396512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15313626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15313626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15313626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8290605
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16006526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16006526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15388862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15388862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12713899
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12713899
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12713899
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15476814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15476814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15476814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15912584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15912584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15081958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15081958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15081958
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12758155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12758155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16443826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16443826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16443826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16287089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16287089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16287089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752314


BMC Bioinformatics 2006, 7(Suppl 5):S13
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

40. Fierro-Monti I, Mathews MB: Proteins binding to duplexed RNA:
one motif, multiple functions.  Trends Biochem Sci 2000,
25(5):241-246.

41. Perez-Canadillas JM, Varani G: Recent advances in RNA-protein
recognition.  Curr Opin Struct Biol 2001, 11(1):53-58.

42. Bairoch A, Apweiler R: The SWISS-PROT protein sequence
database and its supplement TrEMBL in 2000.  Nucleic Acids Res
2000, 28(1):45-48.

43. Veropoulos K, Campbell C, Cristianini N: Controlling the sensitiv-
ity of Support Vector machines.  In Proceedings of the International
Joint Conference on Artificial Intelligence (UCAI99) Edited by: Dean T. Swe-
den: Morgan Kaufmann; 1999:55-60. 

44. Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS,
Ares M Jr, Haussler D: Knowledge-based analysis of microarray
gene expression data by using support vector machines.  Proc
Natl Acad Sci U S A 2000, 97(1):262-267.

45. Han LY, Cai CZ, Ji ZL, Cao ZW, Cui J, Chen YZ: Predicting func-
tional family of novel enzymes irrespective of sequence sim-
ilarity: a statistical learning approach.  Nucleic Acids Res 2004,
32(21):6437-6444.

46. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs.  Nucleic Acids Res 1997,
25(17):3389-3402.

47. Skirgaila R, Grazulis S, Bozic D, Huber R, Siksnys V: Structure-
based redesign of the catalytic/metal binding site of Cfr10I
restriction endonuclease reveals importance of spatial
rather than sequence conservation of active centre residues.
J Mol Biol 1998, 279(2):473-481.

48. Thickman KR, Davis A, Berg JM: Site selection in tandem arrays
of metal-binding domains.  Inorg Chem 2004, 43(25):7897-7901.

49. Ledwidge R, Patel B, Dong A, Fiedler D, Falkowski M, Zelikova J, Sum-
mers AO, Pai EF, Miller SM: NmerA, the metal binding domain
of mercuric ion reductase, removes Hg2+ from proteins,
delivers it to the catalytic core, and protects cells under glu-
tathione-depleted conditions.  Biochemistry 2005,
44(34):11402-11416.

50. Evans RM, Hollenberg SM: Zinc fingers: gilt by association.  Cell
1988, 52(1):1-3.

51. Grabarek Z: Structural basis for diversity of the EF-hand cal-
cium-binding proteins.  J Mol Biol 2006, 359(3):509-525.

52. Sweeney WV, Rabinowitz JC: Proteins containing 4Fe-4S clus-
ters: an overview.  Annu Rev Biochem 1980, 49:139-161.

53. Laity JH, Lee BM, Wright PE: Zinc finger proteins: new insights
into structural and functional diversity.  Curr Opin Struct Biol
2001, 11(1):39-46.

54. Barrera FN, Poveda JA, Gonzalez-Ros JM, Neira JL: Binding of the
C-terminal sterile alpha motif (SAM) domain of human p73
to lipid membranes.  J Biol Chem 2003, 278(47):46878-46885.

55. Chang S, ran Ma T, Miranda RD, Balestra ME, Mahley RW, Huang Y:
Lipid- and receptor-binding regions of apolipoprotein E4
fragments act in concert to cause mitochondrial dysfunction
and neurotoxicity.  Proc Natl Acad Sci U S A 2005,
102(51):18694-18699.

56. Chen MH, Ben-Efraim I, Mitrousis G, Walker-Kopp N, Sims PJ, Cin-
golani G: Phospholipid scramblase 1 contains a nonclassical
nuclear localization signal with unique binding site in impor-
tin alpha.  J Biol Chem 2005, 280(11):10599-10606.

57. Vishwanathan SVN, Smola AJ: Fast Kernels for String and Tree
Matching.  In Proceedings of Neural Information Processing Systems
2002 2002.

58. Ratsch G, Sonnenburg S, Scholkopf B: RASE: recognition of alter-
natively spliced exons in C.elegans.  Bioinformatics 2005,
21(Suppl 1):i369-i377.

59. Kuang R, Ie E, Wang K, Wang K, Siddiqi M, Freund Y, Leslie C: Pro-
file-based string kernels for remote homology detection and
motif extraction.  J Bioinform Comput Biol 2005, 3(3):527-550.

60. Leslie C, Kuang R, Eskin E: Inexact matching string kernels for
protein classification.  In Kernel Methods in Computational Biology
Cambridge: MIT Press; 2003:95-112. 

61. Han LY, Cai CZ, Lo SL, Chung MC, Chen YZ: Prediction of RNA-
binding proteins from primary sequence by a support vector
machine approach.  Rna 2004, 10(3):355-368.

62. Ding CH, Dubchak I: Multi-class protein fold recognition using
support vector machines and neural networks.  Bioinformatics
2001, 17(4):349-358.

63. Hunt JA, Ahmed M, Fierke CA: Metal binding specificity in car-
bonic anhydrase is influenced by conserved hydrophobic
core residues.  Biochemistry 1999, 38(28):9054-9062.

64. Rapisarda VA, Chehin RN, De Las Rivas J, Rodriguez-Montelongo L,
Farias RN, Massa EM: Evidence for Cu(I)-thiolate ligation and
prediction of a putative copper-binding site in the
Escherichia coli NADH dehydrogenase-2.  Arch Biochem Biophys
2002, 405(1):87-94.

65. Abbott JJ, Pei J, Ford JL, Qi Y, Grishin VN, Pitcher LA, Phillips MA,
Grishin NV: Structure prediction and active site analysis of the
metal binding determinants in gamma -glutamylcysteine
synthetase.  J Biol Chem 2001, 276(45):42099-42107.

66. Maglio O, Nastri F, Calhoun JR, Lahr S, Wade H, Pavone V, DeGrado
WF, Lombardi A: Artificial di-iron proteins: solution character-
ization of four helix bundles containing two distinct types of
inter-helical loops.  J Biol Inorg Chem 2005, 10(5):539-549.

67. SVMProt Server   [http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi]
68. Cai CZ, Han LY, Ji ZL, Chen X, Chen YZ: SVM-Prot: Web-based

support vector machine software for functional classification
of a protein from its primary sequence.  Nucleic Acids Res 2003,
31(13):3692-3697.

69. Cai CZ, Han LY, Ji ZL, Chen YZ: Enzyme family classification by
support vector machines.  Proteins 2004, 55(1):66-76.

70. Bock JR, Gough DA: Predicting protein – protein interactions
from primary structure.  Bioinformatics 2001, 17(5):455-460.

71. Cai YD, Liu XJ, Xu XB, Chou KC: Support Vector Machines for
predicting HIV protease cleavage sites in protein.  J Comput
Chem 2002, 23(2):267-274.

72. Cai YD, Liu XJ, Xu XB, Chou KC: Prediction of protein struc-
tural classes by support vector machines.  Comput Chem 2002,
26(3):293-296.

73. Burges CJC: A tutorial on support vector machine for pattern
recognition.  Data Min Knowl Disc 1998, 2:121-167.
Page 10 of 10
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10782096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10782096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11179892
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11179892
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10618406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10618406
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15585667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15585667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15585667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9642051
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9642051
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15578823
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15578823
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16114877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16114877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16114877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3125980
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16678204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16678204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6250442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6250442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11179890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11179890
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12954612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12954612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12954612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16344479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16344479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16344479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15611084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15611084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15611084
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16108083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16108083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16108083
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14970381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14970381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14970381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11301304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11301304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10413479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10413479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10413479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12176061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12176061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12176061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11527962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11527962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11527962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16091937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16091937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16091937
http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824396
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14997540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14997540
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11331240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11924738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11924738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11868916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11868916
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

