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Tetracycline-inactivating enzymes from
environmental, human commensal, and pathogenic
bacteria cause broad-spectrum tetracycline
resistance
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Tetracycline resistance by antibiotic inactivation was first identified in commensal organisms
but has since been reported in environmental and pathogenic microbes. Here, we identify and
characterize an expanded pool of tet(X)-like genes in environmental and human commensal
metagenomes via inactivation by antibiotic selection of metagenomic libraries. These genes
formed two distinct clades according to habitat of origin, and resistance phenotypes were
similarly correlated. Each gene isolated from the human gut encodes resistance to all tet-
racyclines tested, including eravacycline and omadacycline. We report a biochemical and
structural characterization of one enzyme, Tet(X7). Further, we identify Tet(X7) in a clinical
Pseudomonas aeruginosa isolate and demonstrate its contribution to tetracycline resistance.
Lastly, we show anhydrotetracycline and semi-synthetic analogues inhibit Tet(X7) to prevent
enzymatic tetracycline degradation and increase tetracycline efficacy against strains
expressing tet(X7). This work improves our understanding of resistance by tetracycline-
inactivation and provides the foundation for an inhibition-based strategy for countering
resistance.
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reservoirs of antibiotic-resistance genes (ARGs), and are the

likely evolutionary progenitors of much clinical resistance! =>.
Nonpathogenic bacteria from habitats as varied as soils and healthy
human guts have exchanged multidrug-resistance cassettes with
globally distributed human pathogens®. With widespread antibiotic
use in clinical and agricultural settings, there is strong selective
pressure for pathogens to acquire resistance genes with novel
activities and substrate specificities from environmental resis-
tomes®. The discovery and characterization of environmental
resistance genes with novel activities before they are acquired by
pathogens can help lessen their potential clinical impact and
inspire proactive approaches to address emerging resistance early
in antibiotic development and improve understanding of the
ecology, evolution, and transmission of resistance genes across
habitats®’. Furthermore, understanding the evolutionary origins,
genetic contexts, and molecular mechanisms of antibiotic resis-
tance is critical to devising strategies to curb the spread of resistant
organisms and their ARGs, and for sustainable development of
new antimicrobial therapies.

While tetracycline resistance most frequently occurs via efflux
or ribosomal protection®, enzymatic detoxification of tetracycline
was first reported in 1988%10. This mechanism of resistance,
originally detected in the commensal Bacteroides fragilis, has
since been identified in broader commensals, environmental
microorganisms, and pathogens. In 2015, we substantially
expanded the catalog of “tetracycline destructases” by identifying
a family of tetracycline-inactivating enzymes, (Tet(47)-Tet(55)),
from functional selections of environmental metagenomes!l.
Based on sequence homology to these soil-derived enzymes, we
identified an additional enzyme, Tet(56), as a previously
uncharacterized tetracycline resistance determinant in Legionella
longbeachae. These enzymes are structurally and functionally
homologous to Tet(X)!2, the flavin-dependent monooxygenase
(FMO) originally discovered in Bacteroides fragilis'3. Recently, we
described the structural details of two complementary inhibitory
mechanisms for the soil-derived tetracycline-inactivating
enzymes: competitive inhibition by blockade of substrate binding,
and mechanistic inhibition by restraining FAD cofactor dynam-
ics12. In 2019, two plasmid-encoded variants of Tet(X), named
Tet(X3) and Tet(X4), were discovered in Enterobacteriaceae and
Acinetobacter strains isolated from animal and human sources.
The Tet(X3)- and Tet(X4)-containing plasmids were widely dis-
persed, transferable, and stable in human pathogens, and con-
ferred high levels of resistance (up to 128-fold increase) against all
tetracycline antibiotics, including latest-generation tigecycline,
eravacycline, and omadacycline, in antibiotic susceptibility assays
and murine infection models!*!°. Given that tetracycline anti-
biotics have been used clinically for seven decades and are cur-
rently widely deployed in agricultural settings!®, it is likely that
anthropogenic emissions have driven spread of Tet(X)-like FMOs
that now threaten the clinical efficacy of next-generation tetra-
cycline antibiotics.

In human pathogens, tetracycline resistance was thought until
recently to occur almost exclusively by ribosomal protection or
antibiotic efflux®. Eravacycline and omadacycline were developed,
in part, because the synthetic scaffold modifications of the D-ring
overcome these traditional clinical resistance mechanisms, similar
to tigecycline. It is noteworthy that tigecycline was approved by
the FDA in 2005 and saw somewhat limited use until the
appearance of infections caused by multidrug-resistant (MDR)
Gram-negative bacteria, including carbapenem-resistant Enter-
obacteriaceae!” and recalcitrant ventilator-associated pneumo-
nia!8, complicated urinary tract infections, and complicated intra-
abdominal infections!®. Tet(X) and homologs conferring resis-
tance to tigecycline, eravacycline, omadacycline, and all other

Benign environmental microbes are ancient and diverse

classes of tetracycline antibiotics have now been discovered to be
present in carbapenem and colistin-resistant MDR organisms
harboring the blaypyy.; and mcr-1 genes, respectively, creating a
scenario of pan-antibiotic resistance emerging in Gram-negative
pathogens!415, The widespread distribution of tet(X)-like genes
capable of covalent inactivation of tetracycline scaffolds threatens
the future clinical efficacy of this drug class in the same way
consecutive generations of aminoglycosides, amphenicols, and
beta-lactams have become vulnerable to enzymatic inactivation as
a dominant resistance mechanism?’.

All three types of tetracycline resistance have evolutionary
origins in the environment, but are now found widely distributed
in commensal and pathogenic bacteria®. Flavoenzymes, including
Tet(X)-like FMOs, are an abundant and diverse enzyme family
and display a proclivity for horizontal transfer and gene dupli-
cation, allowing them to spread between species and acquire
novel functionality?!. Thus, these genes are candidates for dis-
semination, potentially compromising new tetracycline anti-
biotics and motivating surveillance of the prevalence and
abundance of this gene family across microbial habitats. The soil
tetracycline-inactivating enzymes and Tet(X)-like FMOs have low
overall sequence identity (20.1% mean * 1.2% s.d. percent amino-
acid identity between Tet(X) and soil-derived tetracycline-inac-
tivating enzymes) making ARG prediction difficult and functional
validation of putative ARGs necessary. Structural and biochem-
ical characterization of the soil tetracycline-inactivating enzymes
have revealed novel structural features including an extra C-
terminal helix that plays a role in active site gating and
substrate selectivity and mechanistically distinct oxidation pat-
terns leading to resistance for soil tetracycline-inactivating
enzymes (oxidations at Clla and C1) and Tet(X) (oxidation at
Cll1a)!2. The soil tetracycline-inactivating enzymes detoxify
naturally occurring first-generation tetracyclines, such as chlor-
tetracycline and oxytetracycline, but fail to oxidize D-ring sub-
stituted analogs, including tigecycline!?. Tet(X)-like homologs
possess a constitutively open active site that accommodates D-
ring substituted substrates, such as tigecycline, eravacycline, and
omadacycline!21415 making Tet(X) homologs a clinical threat
for these last-generation tetracyclines. Single amino-acid muta-
tions in Tet(X) have been shown to provide gain-of-function
under tigecycline selection through more efficient oxidative
inactivation?2. Thus, monitoring broadly for Tet(X) homologs,
even single amino-acid point mutants, and understanding the
evolutionary connection with the soil tetracycline-inactivating
enzymes is critical for proactively managing this emerging
resistance mechanism through optimization of next-generation
tetracycline structures and the development of effective inhibitor
combinations that overcome resistance by inactivation23,

To this end, we sought to characterize the tetracycline resis-
tome across environmental and human-associated metagenomes.
We used functional metagenomic selections, wherein the het-
erologous expression bottleneck allows only cloned fragments
with a functional resistance gene to be sequenced and assembled?.
Annotation of all open-reading frames in the selected fragments,
using similarity to known resistance protein families (including
remote homologs via hidden Markov models), enable identifica-
tion of the gene likely to be responsible for the resistance
phenotype in recombinant E. coli?*, We previously employed
this sequence- and culture-independent approach to identify the
tetracycline-inactivating enzymes from 18 grassland and agri-
cultural soil metagenomes!!. Here, we expand that approach to
analyze 244 additional metagenomes to ask whether novel
tetracycline-resistance elements are found in other habitats, per-
haps with different or expanded substrate range and specificity.
We find genes encoding tetracycline-inactivating enzymes
are widespread in diverse microbial communities, but cluster
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Fig. 1 Diversity in tetracycline-inactivating enzyme sequence corresponds to microbial habitat of origin. a Sixty-nine tetracycline inactivators were
identified from tetracycline and tigecycline selections of diverse metagenomic libraries. Genes selected for further analysis are indicated by gray dots at
branch tips, and clinically implicated tet(X) variants are labeled. b Percent amino-acid identity heatmap indicates greater relative sequence diversity in the
soil-derived set compared with the gut-derived set, but low identity between these two sets.

by habitat of origin and resistance phenotypes also correlate
with microbial habitat. We show that tetracycline-inactivating
enzymes identified in the human gut metagenome confer
resistance to all tetracycline antibiotics tested. Furthermore,
we describe in detail Tet(X7), a tetracycline-resistance
enzyme recovered from a human gut metagenome that confers
resistance to tigecycline, omadacycline, and eravacycline. We
characterize the phenotypic resistance profile, solve a crystal
structure, and reveal the biochemical basis of Tet(X7) degradation
of tetracyclines. We identify Tet(X7) in a clinical isolate of
Pseudomonas aeruginosa from a cystic fibrosis patient, further
supporting the clinical arrival of tetracycline resistance by inac-
tivation. Lastly, we show that inhibition of Tet(X7) with anhy-
drotetracycline or analogues prevents tetracycline degradation
and rescues antibiotic efficacy. Our results emphasize the need for
surveillance of novel resistance determinants to antimicrobial
agents in development to counter emerging antibiotic resistance.

Results

Identification of tetracycline inactivation across habitats. We
sought to better understand the prevalence of tetracycline inac-
tivation by FAD-dependent oxidoreductases as a resistance
mechanism across habitats. Tetracycline resistance by inactiva-
tion is relatively uncommon as compared with efflux or riboso-
mal protection, so current resistance databases are biased toward
these latter two mechanisms?%. Functional metagenomics cir-
cumvents limitations imposed by identifying resistance via
sequence similarity to a database?. We conducted a retrospective
analysis of functional metagenomic libraries that had previously
been selected on tetracycline and tigecycline?32>-28 [GenBank
accession numbers: JX009202-JX009380, KJ691878-KJ696532,
KU605810-KU608292, KF626669-KF630360, KX125104-
KX128902, KU543693-KU549046]. These included libraries
constructed from 53 soil samples, 176 human gut microbiota, 2
animal gut microbiota, and 13 latrine samples, and encompassed
a total of 912 Gb of metagenomic DNA. By using a functional
metagenomic approach, we explicitly limit our search space to
microbial sequences that have an associated tetracycline or
tigecycline-resistance phenotype. We specifically focused on
putative tetracycline inactivators in these selections by searching
for open-reading frames annotated as encoding an FAD-
binding domain. In this manner, we identified 69 potential

tetracycline-inactivating enzymes in addition to the 10
tetracycline-inactivating genes from soil metagenomes that had
previously been described!! (Fig. 1a). We found that these genes
formed two distinct clades that were correlated with habitat of
origin. There was greater sequence diversity within the soil-
derived subset (mean * s.d. percent amino-acid identity of 66.5%
+9.4%) compared with the gut-derived subset (mean +s.d. per-
cent amino-acid identity of 91.4% +4.7%), but low identity
between the two habitats (mean + s.d. percent amino-acid identity
of 20.8% + 1.5%, Fig. 1b).

We selected eight genes from this set for further analysis and
subcloned them from their metagenomic source into a pZE21
expression vector and transformed into E. coli DH10B. These
genes were originally selected from fecal samples (six of eight)
and latrine samples (two of eight) from a peri-urban setting in
Peru?® (Supplementary Data 1). We additionally include nine
genes of environmental origin which were originally selected
from agricultural soils in Michigan (five of nine) and grassland
soils in Minnesota (four of nine)!! (Supplementary Data 1).
Lastly, we included one homolog identified in the human
pathogen L. longbeacheae (tet(56))'! and tet(X), which was
originally discovered in the commensal B. fragilis, but has since
been identified in numerous pathogens®?%-30. These genes were
selected to encompass the representative phylogenetic diversity in
the broader set and based on the availability of metagenomic
DNA for subcloning. We performed antimicrobial susceptibility
testing using broth microdilution for these recombinant con-
structs against 11 tetracycline compounds, including anhydrote-
tracycline. All computationally predicted tetracycline-inactivating
enzymes tested had a bona fide resistance function when
subcloned from their metagenomic source into E. coli. We found
that resistance phenotypes, like genotypes, clustered according to
habitat of origin (Fig. 2). Each of the eight human gut-derived
genes displayed pan-tetracycline resistance. While all gut-derived
tetracycline-inactivating enzymes conferred high-level resistance
to tigecycline, minocycline, eravacycline, and omadacycline, soil-
derived enzymes were all susceptible or intermediate to these
drugs. Thus, resistance to latest-generation tetracyclines mediates
phenotypic clustering between the soil-derived and gut-derived
genes and discriminates between habitats of origin. Our
functional identification of 69 diverse tetracycline inactivators
from soil, human gut, animal gut, and latrine metagenomes
indicate that tetracycline resistance by inactivation is widespread
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Fig. 2 Phenotypic profiles of heterologously expressed tetracycline-inactivating enzymes correlate with habitat of origin. Antimicrobial susceptibility
testing was performed by microbroth dilution on a subset of predicted tetracycline inactivators. We observed broad high-level resistance to tetracyclines
within this class. Resistance phenotypes clustered by microbial habitat of origin, with resistance to latest-generation tetracyclines (e.g., minocycline,
tigecycline, eravacycline, and omadacycline) discriminating between habitats. Each box represents the consensus MIC value determined for three
independent trials. Dendrogram represents hierarchical clustering of resistance phenotypes.

in diverse metagenomes!%1>. This includes, in the case of genes
identified from gut metagenomes, high-level resistance to latest-
generation tetracyclines.

Tet(X7) confers tetracycline resistance. Each of the eight gut-
derived tetracycline-inactivating enzymes encoded resistance to
every tetracycline currently approved for clinical use, including
tigecycline, eravacycline, and omadacycline. Tigecycline was
approved for human use in 2005, and is an antibiotic of last resort
for infections, including those caused by carbapenem-resistant
Enterobacteriaceae'”31. Eravacycline was approved in August
2018 for treatment of complex intra-abdominal infections, and
omadacycline was approved in October 2018 for treatment of
community acquired bacterial pneumonia and acute skin and
skin structure infections333. Reports of resistance to eravacycline
and omadacycline have been limited to date. Eravacycline resis-
tance in Klebsiella pneumoniae has been attributed to over-
expression of the OgxAB and MacAB efflux pumps®4, and
nonsusceptibility (MIC 4 pg/mL) has been observed in Escher-
ichia coli DH10B heterologously overexpressing Tet(X). The
recent reports of plasmid-encoded Tet(X3) and Tet(X4) in
Enterobacteriaceae and Acinetobacter strains isolated from animal
and human sources, encoding phenotypic resistance to eravacy-
cline and omadacycline in both whole-cell assays and murine
infection models, are of potential immediate clinical concern!41>,
Approval of these drugs motivate further study of this mode of
resistance. To better understand the mechanistic basis of resis-
tance to latest-generation tetracyclines by these types of emerging
resistance determinants, we selected a gut-derived gene, tet(X7),
for further analysis. We found that media conditioned by E. coli
expressing Tet(X7) supported the growth of susceptible E. coli,
indicating that the mechanism of resistance is consistent with
drug inactivation.

We characterized the in vitro degradation of tigecycline,
eravacycline, or omadacycline by recombinant N-Hiss-tagged Tet
(X7), indicated by a time- and enzyme-dependent decrease in the
~400-nm absorbance band in the optical absorbance spectrum

that is associated with disruption of the conserved B-diketone
chromophore found in all tetracyclines!'! (Supplementary Fig. 1a).
To understand substrate binding and catalytic efficiency for
latest-generation tetracycline inactivation by Tet(X7), we mea-
sured apparent Michaelis-Menten kinetic parameters by con-
tinuously monitoring the decrease in optical absorbance at 400
nm under steady-state conditions (Fig. 3b). For comparison, we
also determined Michaelis—-Menten kinetic parameters of Tet(X)-
mediated inactivation of tigecycline and eravacycline (Fig. 3a).
The apparent catalytic efficiency of Tet(X7) was five times greater
than that of Tet(X) for degradation of eravacycline (k../Kp
values of 0.07 +0.02 and 0.01 +0.002 uM~! min~1, respectively)
and eight times greater for degradation of tigecycline (kgq/Kp
values of 0.07+0.01 and 0.01 +0.001 uM~! min—!, respectively;
Fig. 3¢, d). This difference in apparent catalytic efficiencies is
largely mediated by increased substrate turnover by Tet(X7)
compared with Tet(X), as Ky, values are of similar magnitude
across all pairwise enzyme-substrate combinations. Indeed, the
apparent rate constants (k.,;) for Tet(X7)-mediated degradation
of tigecycline, eravacycline, and omadacycline are an order of
magnitude greater than those observed for Tet(X) (Fig. 3c). We
previously reported kinetic parameters for gut-derived Tet(X) and
Tet(X7) (referred to as Tet(X)_3 in ref. 23) compared with soil-
derived Tet(50) using first (tetracycline, chlortetracycline, and
demeclocycline) and second (oxytetracycline) generation tetra-
cycline antibiotics and observed that Tet(50) and Tet(X7)
displayed similar catalytic efficiencies for inactivating first and
second-generation tetracyclines that were ~fivefold greater than
Tet(X). However, in contrast to Tet(X) and Tet(X7), the soil-
derived Tet(50) was unable to inactivate tigecycline, a third-
generation tetracycline (Fig. 2)?3. Here, we demonstrate that Tet
(X7) encodes the improved catalytic efficiency of the soil-derived
enzyme Tet(50) and additionally has an expanded substrate scope
for inactivation of third-generation tetracyclines.

When enzymatic reactions using Tet(X) and Tet(X7) were
analyzed by liquid chromatography-mass spectrometry, we
observed the primary product of omadacycline, tigecycline, and
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Fig. 3 Enzymology of tetracycline inactivation by Tet(X7). Michaelis-Menten kinetics of tetracycline-inactivating enzyme-mediated degradation of last-
generation tetracyclines. a Michaelis-Menten plot of Tet(X) degradation of tigecycline and eravacycline. b Michaelis-Menten plot of Tet(X7) degradation
of last-generation tetracyclines. ¢ Apparent K, kcat, and catalytic efficiencies for the tetracycline-inactivating enzyme-mediated degradation of tigecycline,
eravacycline, and omadacycline. d Last generation tetracycline antibiotics tigecycline, eravacycline, and omadacycline. Error bars represent standard

deviation for three independent trials.

eravacycline degradation is consistent with monohydroxylation
(Supplementary Fig. 1b, c). For each latest-generation tetracycline
substrate, there was a time- and enzyme-dependent decrease in
the relative extracted ion counts of tetracycline substrate (m/z for
[M + H] T equal to 586, 557, 559 for tigecycline, eravacycline, and
omadacycline, respectively), and a corresponding increase in the
relative extracted ion counts of monooxygenated product (m/z for
[M + H] ™ equal to 602, 573, 575 for tigecycline, eravacycline, and
omadacycline, respectively; Supplementary Fig. 1b). Enzyme-
dependent antibiotic degradation was also confirmed by HPLC
with detection by optical absorbance (Supplementary Fig. 1c). Tet
(X) has previously been shown to monohydroxylate the Clla-
position of tetracyclines!3. We show that the monohydroxylated
product of Tet(X) and Tet(X7) reaction with tigecycline coelute
(Supplementary Fig. 2), indicating that the site of hydroxylation
by Tet(X7) is also Clla.

Tet(X7) structurally resembles Tet(X). We solved an X-ray
crystal structure of Tet(X7) at a resolution of 2.55 A (Table 1),
and observed a similar architecture to previously reported tetra-
cycline inactivators!®3> with an FAD-binding Rossmann-type
fold domain, a tetracycline-binding domain, and a C-terminal a-
helix that bridges the two domains (Fig. 4a—c). Structurally, the
enzyme resembles Tet(X) more so than the tetracycline-
inactivating enzymes Tet(50,51,55,56) owing to the presence of
a single C-terminal bridging helix, rather than the two observed
in the soil-derived enzymes. We examined the structural differ-
ences between Tet(X7) and Tet(X) that could explain the
enhanced phenotypic resistance of Tet(X7) against tigecycline
and minocycline, despite ~86% amino-acid identity. Structure

Table 1 Data collection and processing statistics for Tet

(X7).

Crystal 1 name

Data collection
Space group
Cell dimensions
a, b, c (A
a, b g
Resolution (A)
Rmeas
I/sl
Completeness (%)
Redundancy
Refinement
Resolution (A)
No. of reflections
Rwork/Rfree
No. of atoms
Protein
Ligand/ion
Water
B-factors
Protein
Ligand/ion
Water
R.m.s. deviations
Bond lengths (A)
Bond angles (°)

P 2:2:2,

57.130, 131.970, 136.970
90.00, 90.00, 90.00
19.77-2.55 (2.641-2.55)
0.09138 (0.8967)

17.31 (2.26)

99.50 (99.74)

6.9 (6.5)

19.77-2.55
34,427
0.2070/0.2436

5800
106
62

63.82
49.63
49.27

0.004
0.72
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Fig. 4 Conserved architecture of different tetracycline-inactivating
enzymes. Crystal structures of Tet(X7) (a), Tet(X) (b), and Tet(50) (c). All
three enzymes have a conserved FAD-binding Rossmann-fold (green), a
substrate-binding domain (pink) and a bridge helix (purple). Tet(50) has an
additional helix (cyan). The bound FAD is represented spherically. d The
Tet(X7) structure is aligned to tigecycline (TIG)-bound Tet(X) structure
(PDB ID: 4A6N). Nonbonded interactions of the bound FAD (stick) are
conserved between Tet(X7) (blue) and Tet(X). e The nonbonded
interactions of tigecycline (TIG) are also conserved between the two
proteins.

alignment of Tet(X7) and Tet(X) (PDB ID: 2XDO, chain A)
demonstrated a low overall root-mean-square deviation of 0.37 A.
The FAD in Tet(X7) retains an IN-conformation analogous to the
substrate-free Tet(X) structure3®, The FAD-binding residues
(Glu46, Gly57, Gly58, Pro318) and substrate-binding residues
(GIn192, Phe224, Pro318, Gly321, Met375) are conserved
between the two proteins (Fig. 4d, e). Furthermore, multiple
sequence alignment revealed that these residues are conserved
between all Tet(X)-like FMOs.

Mapping of divergent residues on a structural alignment of Tet
(X7) and Tet(X) structures revealed that these residues are
peripheral and are far removed from the FAD- and substrate-
binding regions (Supplementary Fig. 3). Therefore, it is unlikely
that the altered residues directly play a role in substrate-binding
or catalysis. Instead, it is plausible that these differences allow for
altered conformational dynamics and may allosterically affect
enzyme activity. This is consistent with prior studies using
directed evolution that identified several mutations in Tet(X)

outside of the active site that enhance Tet(X) enzyme activity
against tigecycline?2. Many differences map to the outer surface
of the bridge-helix. The changes exhibited a pattern where, in Tet
(X7), the substituted amino acids were either smaller (Lys351Glu,
Mle359Ala, Glu366Ala, and Lys377Ser) or were less hydrophilic
(Glu366Ala, Thr3691le, GIln370Ile; Supplementary Fig. 4). We
suspect that these differences may affect the dynamics of the
hydrophobic cavity resulting in faster enzyme turnover. A further
difference that may play a role in substrate tolerance is a ten-
amino acid C-terminal truncation of Tet(X7) compared with Tet
(X) and Tet(X3) (seven amino acid difference from Tet(X4);
Supplementary Fig. 4). We have previously described the role of
C-terminal helices in governing substrate specificity in
tetracycline-inactivating FMOs!2, and speculate that the substitu-
tions in the C-terminal helix of Tet(X7) may similarly mediate the
more efficient inactivation of next-generation tetracyclines by Tet
(X7) compared with Tet(X) (Fig. 3c).

Tet(X7) is functional in a clinical P. aeruginosa isolate. While
functional metagenomics is a useful method for identifying
resistance genes in a sequence- and culture-unbiased manner, it is
poorly equipped to associate specific resistance determinants with
their native hosts. Thus, we sought to identify homologs of our set
of functionally validated resistance genes in sequenced clinical
isolates. We identified Pa-3, a Pseudomonas aeruginosa strain
isolated from a 45-year-old male cystic fibrosis patient’s tracheal
aspirate in a tertiary care hospital ICU in Pakistan in December
2016. This strain was predicted to encode an FAD-dependent
oxidoreductase homolog by BLAST?7, which we identified as
having 100% nucleotide identity to Tet(X7). We conducted
antimicrobial susceptibility testing on this strain using disk dif-
fusion for a panel of clinical antibiotics. Pa-3 was resistant to all
antibiotics tested with the exception of piperacillin/tazobactam, a
B-lactam/p-lactamase inhibitor combination, and colistin
(Table 2). P. aeruginosa is a serious clinical threat®$, and acqui-
sition of resistance to latest-generation tetracyclines further
exacerbates this hazard.

In addition to antimicrobial susceptibility testing by disk
diffusion, we performed broth microdilution for a subset of
tetracycline antibiotics for which disks are not yet commercially
available, against Pa-3 (the strain encoding Tet(X7)), Pa-8
(another clinical isolate from the same collection from Pakistan
which did not encode Tet(X7)), and the P. aeruginosa type strain
ATCC 27853 (also lacking Tet(X7)). Each P. aeruginosa isolate
displayed nonsusceptibility to tigecycline, eravacycline, and
omadacycline, even in the absence of a putative tetracycline
inactivator (Table 3). This is likely due to drug efflux, as low-level
OprM mediated resistance to tigecycline in P. aeruginosa PAO1
has been previously reported3®40. Although tigecycline, eravacy-
cline, and omadacycline breakpoints do not yet exist for P.
aeruginosa, Pa-3 was four- to eightfold more non-susceptible to
these drugs than Pa-8 and ATCC 27853. Our results with P.
aeruginosa expand the repertoire of urgent-threat MDR clinical
pathogens with demonstrated nonsusceptibility to either eravacy-
cline or omadacycline via enzymatic inactivation!®!>. We
anticipate clinical deployment of these antibiotics will lead to
selection for and expansion of this mode of resistance in both
hospital and community settings.

Media conditioned by Pa-3 supported the growth of susceptible
E. coli, while media conditioned by 27853 or Pa-8 could not,
confirming that the mechanism of resistance in Pa-3, but not Pa-8
or 27853, involves antibiotic inactivation. Clinical use of latest-
generation tetracyclines may select for dissemination of this
strain. Pseudomonas spp. have highly plastic genomes and
undergo horizontal gene transfer at rates greater than observed
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Table 2 Zone of clearance (mm) and phenotypic resistance determination for clinical Pseudomonas aeruginosa isolates.

Pa-3 Pa-8 ATCC 27853
Antibiotic Kirby-Bauer (mm) Interpretation Kirby-Bauer (mm) Interpretation Kirby-Bauer (mm)
Delafloxacin 6 Resistant 6 Resistant 23-29
Ceftazidime 6 Resistant 6 Resistant 22-29
Cefepime 6 Resistant 6 Resistant 25-31
Meropenem 6 Resistant 6 Resistant 27-33
Imipenem 6 Resistant 25 Sensitive 20-28
Piperacillin/tazobactam 24 Sensitive 19 Intermediate 25-33
Ceftolozane/tazobactam 6 Resistant 29 Sensitive 25-31
Ceftazidime/avibactam 6 Resistant 26 Sensitive 25-31
Ciprofloxacin 6 Resistant 6 Resistant 25-33
Levofloxacin 6 Resistant 6 Resistant 19-26
Gentamicin 6 Resistant 6 Resistant 17-23
Amikacin 6 Resistant 17 Sensitive 18-26
Trimethoprim/sulfamethoxazole 6 NA 6 NA —
Fosfomicin 12 Resistant 15 Intermediate —
Colistin 13 Sensitive 15 Sensitive 1n-17
Aztreonam 17 Intermediate 16 Intermediate 23-29
Doxycycline 6 NA 6 NA —
Minocycline 6 NA 6 NA —
Tigecycline 6 NA 6 NA 9-13
Nitrofurantoin 6 NA 6 NA —
Carbapenem inactivation assay 14 Positive 27 Positive -

NA indicates that no interpretive criteria have been established. ATCC 27853 values are disk diffusion QC ranges provided by the CLSI®3.

Pseudomonas aeruginosa Pa-3

Table 3 Anhydrodemeclocycline at subinhibitory concentrations can partially rescue tetracycline, tigecycline, eravacycline, and
omadacycline efficacy against Pseudomonas aeruginosa Pa-3, E. coli DH10B heterologously expressing Tet(X7), Pseudomonas
aeruginosa ATCC 27853, and E. coli DH10B with an empty pZE21 vector.

Escherichia coli DH10p + tet

Pseudomonas aeruginosa Escherichia coli DH106 + pZE21

(X7) ATCC 27853
Antibiotic MIC- O pug/ MIC- 8 ug/ MIC- O pug/ MIC- 8 ug/ MIC- O pug/ MIC- 8 ug/ MIC- O pug/ MIC- 8 ug/
mL aDem mL aDem mL aDem mL aDem mL aDem mL aDem mL aDem mL aDem
Tetracycline 128 32 256 128 32 32 8 4
Tigecycline 64 64 32 2 8 8 1
Eravacycline 64 32 8 8 16 16 1 1
Omadacycline 256 256 64 8 128 128 1 1

In total, 8 ug/ml anhydrodemeclocycline is equivalent to 18 uM anhydrodemeclocycline.

for other general>12, so even chromosomally encoded genes are

possible threats for transfer beyond this strain. Lastly, we
observed that Tet(X7) was syntenic with putative rolling circle
transposases (Pfam:PF04986), suggesting that they may be poised
for horizontal transfer®41.

Anhydrotetracycline analogues rescue tetracycline efficacy. We
have previously shown that anhydrotetracycline is an inhibitor of
tetracycline-inactivating enzymes in vitro and that this inhibition
is sufficient to rescue tetracycline efficacy against E. coli strains
heterologously expressing tetracycline-inactivating enzyme!2.23,
We reasoned that this strategy might likewise prevent degrada-
tion of latest-generation tetracyclines by Tet(X7). To this end, we
evaluated in vitro inhibitory activity of anhydrotetracycline and
anhydrodemeclocycline against the Tet(X7)-mediated degrada-
tion of tigecycline, eravacycline, and omadacycline. Apparent
half-maximal inhibitory concentrations (ICsps) showed that
anhydrotetracycline potently inhibited Tet(X7) degradation of
tigecycline, eravacycline, and omadacycline (ICsos of 1.06 +0.108

uM, 6.89 +0.655 uM, and 2.37 +0.510 uM, respectively). More-
over, anhydrodemeclocycline also potently inhibited the Tet(X7)
degradation of these latest-generation substrates, with ICsqs of
0.26 +0.04 uM, 2.75+0.26 uM, and 0.31 £0.04 uM, respectively
(Fig. 5a-d). We reason, based on the structural similarity to
previously published cocrystal structures of Tet(50) (PDB ID:
5TUF) with anhydrotetracycline, that the mechanism of inhibi-
tion likely occurs via mixed competitive and noncompetitive
inhibition!2.

In order to extend our in vitro studies, we sought to determine
whether anhydrotetracycline or anhydrodemeclocycline could
restore the activity of latest-generation tetracyclines against Pa-3,
the clinical P. aeuruginosa isolate that encodes Tet(X7).
Anhydrotetracycline at 32 pg/mL caused a two- to fourfold
increase in sensitivity of Pa-3 to tigecycline, eravacycline, or
omadacycline (Table 3). In the same way, 8 ug/mL anhydrode-
meclocycline was sufficient to cause a fourfold increase
in sensitivity to tetracycline, and a twofold increase in sensitivity
to tigecycline, eravacycline, or omadacycline (Table 3). Any-
drodemeclocycline exhibits an MIC of 16 pg/mL against both
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Fig. 5 Anhydrotetracycline and analogues inhibit enzymatic inactivation of latest-generation tetracyclines by Tet(X7). a In vitro, anhydrotetracycline,
anhydrochlortetracycline, and anhydrodemeclocycline inhibit Tet(X) modification of tigecycline. Likewise, anhydrotetracycline and anhydrodemeclocycline
inhibit in vitro enzymatic modification of tigecycline (b), eravacycline (¢), and omadacycline (d) by Tet(X7). Error bars represent standard deviation for

three independent trials.

E. coli+ Tet(X7) and P. aeruginosa Pa-3 (Table 3). While
anhydrodemeclocycline does exhibit antibiotic activity, we test
for inhibition at concentrations below the minimum inhibitory
concentration. We believe that the antibiotic activity of
anhydrodemeclocycline is due to targeting of the cell membrane
rather than inhibition of the 30S ribosomal subunit, based on
prior investigations of anhydrotetracycline antibiotic activity*2.
Our data indicate that the activity exhibited by anhydrodeme-
clocycline in our assay is due to inhibition of Tet(X7) rather than
additive antibiotic activity. Thus, this adjuvant strategy has
promise for restoring the efficacy of tetracycline antibiotics,
including latest-generation tetracyclines, against bacteria that
resist tetracycline through inactivation.

Discussion
Since their discovery from extracts of Streptomyces aureofaciens
in 1948, the tetracyclines have become one of the most widely
used classes of antibiotics in agriculture, aquaculture, and the
clinic due to their broad antimicrobial spectrum, oral availability,
and low cost®#3, Extensive use over the past seven decades has
selected for the expansion of tetracycline resistance in environ-
mental microorganisms*4, human and animal commensals*>, and
among bacterial pathogens?®. Tetracycline use is particularly
prevalent in agriculture, with tetracyclines comprising 66% of
total therapeutic antibiotic use in livestock®’. Widespread
anthropogenic use has resulted in detectable ng/uL to pg/L
quantities of tetracyclines in livestock manure and wastewater$,
with tetracycline concentration directly correlating with changes
in microbial community composition and increase in antibiotic
resistance®”. As a result of widespread anthropogenic use, tetra-
cycline resistance is now widespread.

The rise in tetracycline resistance has been partially countered
by the development of fully synthetic (eravacycline) and

semisynthetic (tigecycline) latest-generation tetracyclines®. The
first-generation natural product antibiotics, including chlorte-
tracycline (1948), oxytetracycline (1951), and tetracycline (1953),
were followed by the semisynthetic second-generation tetra-
cyclines, including doxycycline (1967) and minocycline (1971),
and latest-generation tetracyclines, such as tigecycline (2005),
eravacycline (2018) and omadacycline (2018)°°. Meeting clinical
needs and overcoming established resistance mechanisms, such as
efflux and ribosome protection, has motivated each new wave of
tetracycline development. As a result, the tetracyclines are
still widely used in agriculture and medicine!, and remain
viable therapies for a range of indications*3->2. The emergence of
Tet(X)29, Tet(X3)14, Tet(X4)!415 and now Tet(X7) in clinical
pathogens now establishes covalent inactivation of tetracycline
antibiotics as a bona fide clinical resistance mechanism. It is
unclear if modification of the tetracycline scaffold will be suffi-
cient to keep pace with the emergence of genes encoding tetra-
cycline inactivation on the global scale.

Until recently, Tet(X) was the only known enzyme capable of
providing both tetracycline and tigecycline resistance, first iden-
tified in nonpathogenic bacteria®3. In 2013, tet(X) was discovered
to be present and functional in human pathogens. Eleven isolates
from the Enterobacteriaceae, Comamonadaceae, and Pseudo-
monadaceae families from clinical urine specimens in a hospital
in Sierra Leone were found to encode tet(X)?°. This resistance
determinant has now been reported in four out of the six
ESKAPE pathogens (Enterococcus faecium, Staphylococcus aur-
eus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudo-
monas aeruginosa, and Enterobacter species), which are the
leading causes of hospital-acquired infections around the
world?%3%, The discovery of a gene encoding tetracycline inacti-
vation in nosocomial pathogens foreshadowed the increasing
clinical resistance to latest-generation tetracycline antibiotics,
including the discovery of plasmid-encoded fet(X3) and tet(X4) in
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MDR Enterobacteriaceae and Acinetobacter spp'»1°, along with
chromosomal tet(X7) in Pseudomonas aeruginosa (this work). It
is now clear that future dependence on new tetracycline anti-
biotics including tigecycline, eravacycline, and omadacycline to
treat infections caused by MDR Gram-negative pathogens may be
compromised by widespread tetracycline-inactivating enzymes.
Expanded global use of last-generation tetracyclines in clinical
and agricultural settings will increase selective pressure for
tetracycline-inactivating genes and promote dissemination.

Prospecting for environmental and clinical fet(X) homologous
genes is a promising method to proactively assess the landscape of
tetracycline resistance via chemical inactivation. Our work has
now revealed that tetracycline inactivation occurs widely across
environmental, human commensal, and pathogenic microbes.
The tet(X) gene originally discovered in human commensal
Bacteroides fragilis has been acquired by human pathogenic
Gram-negative bacteria?®. The related tetracycline-inactivating
enzymes are widespread in soil environments and confer resis-
tance to natural and early-generation semisynthetic tetra-
cyclines!!. The clustering of tetracycline-inactivating enzymes
with microbial habitat of origin and resistance phenotype that we
show here parallels pharmaceutical development and clinical use
of tetracycline antibiotics. Since FAD-dependent oxidoreductases
are ubiquitous, and there is low sequence similarity between the
tetracycline-inactivating enzymes and tet(X) family of genes,
functional selection is critical to properly survey the resistance
landscape. Expanding the pool of functionally similar resistance
determinants is the first step in deconvoluting the evolutionary
link between soil tetracycline-inactivating enzymes and Tet(X)
homologs. Further structural and biochemical characterization of
tetracycline-inactivating enzyme sub-classes is critical for
understanding the molecular basis for antibiotic inactivation and
finding functional connections in sequence evolution that will
feed predictive models. For now, Tet(X) homologs appear to be a
more likely clinical threat than the soil tetracycline-inactivating
enzymes, but ignorance to the full reservoir of tetracycline-
inactivating genes blinds clinicians and drug developers to the
most urgent needs in therapeutic advances. The observance of
human-associated genes which confer resistance to next-
generation tetracyclines likely reflects the promiscuous nature
of the FMO family, which is highly adaptable to a wide range of
substrates. Specific selection for tetracycline substrates in human
versus environmental habitats most likely arose from natural
production of these types of tetracycline scaffolds in their
respective microbial communities, since at least the human-
associated enzymes clearly existed before the latest-generation
drugs were clinically deployed. Directed evolution can be useful
to fill some of the gaps in these known unknowns, as has been
demonstrated for other clinically important resistance determi-
nants (e.g., beta-lactamases)®%. An ideal goal is to predict phe-
notypic resistance by sequence alone and employ preemptive
strategies for managing resistance early in development instead of
waiting for an increase in clinical resistance events>.

Better understanding the molecular recognition of tetracycline
substrate recognition by tetracycline-inactivating enzymes can
help design the next generation of structurally modified tetra-
cyclines that can stealthily evade inactivation or maintain efficacy
after a catalyzed oxidation event. More structural information
dictating enzyme function and substrate recognition, such as the
2.55 A resolution structure of Tet(X7) reported here, is needed to
guide the rational design of next-generation tetracyclines capable
of evading enzymatic inactivation. Recent advancements in the
total chemical synthesis of tetracyclines, such as eravacycline®,
can play a critical role in providing synthetic access to rationally
designed compounds. Structure-based methods can also play a
key role in designed inhibitors for use in combination therapies

with tetracycline antibiotics?3. We provide evidence that anhy-
drotetracycline and analogs can inhibit broad-spectrum tetra-
cycline-inactivating enzymes, including Tet(X) and Tet(X7)
present in clinical pathogens, to rescue tetracycline activity in
whole cells. Combination therapy appears to be the gold standard
for managing resistance by antibiotic inactivation as supported by
the steady development of B-lactam/p-lactamase inhibitor com-
binations>’. It is crucial to invest in the development of combi-
nation therapies before the isolated use of last-generation
tetracyclines as stand-alone agents becomes functionally obsolete.
This is of particular import given a recent report that tet(X3)
compromises tigecycline efficacy in a mouse model of Acineto-
bacter baumanii thigh infection!®. Our data suggest that further
exploration of the anhydrotetracycline scaffold as a source of
novel inhibitors to rescue tetracycline activity in the face of
widespread tetracycline resistance by inactivation is warranted?3.

While the environmental resistome has been shown to be
extensive, unambiguous links between the environmental and
clinical resistomes have remained elusive. Here, we explicitly
demonstrate overlap between microbial habitats by identifying a
common family of resistance genes encoding tetracycline-
inactivating enzymes present in environmental, commensal, and
pathogenic bacterial hosts. The results presented herein motivate
continued surveillance of tetracycline resistance by inactivation in
environmental and clinical settings to better understand the ori-
gins, evolution, and dissemination of resistance. This work
underscores the value in proactive screening of antimicrobial
agents in the pipeline for resistance determinants present in
diverse microbial communities such that strategies to minimize
their eventual clinical impact can be explored early in the
development pipeline.

Methods

Identification of candidate tetracycline inactivators in sequenced functional
selections. In order to identify additional tetracycline inactivators, we queried
previously sequenced functional selections of human gut, animal gut, latrine, and
soil metagenomesz’ms’28 [GenBank accession numbers: JX009202-JX009380,
KJ691878-KJ696532, KU605810-KU608292, KF626669-KF630360, KX125104-
KX128902, KU543693-KU549046]. While the functional metagenomic protocol is
described in detail in the papers accompanying these depositions, we briefly
describe the method below:

Functional metagenomic library creation: Functional metagenomic libraries
were constructed as previously described?>8. Approximately 5 pg of purified
extracted total metagenomic DNA was used as a starting material for metagenomic
library construction. To create small-insert metagenomic libraries, DNA was
sheared to a target size of 3000 bp using the Covaris E210 sonicator following the
manufacturer’s recommended settings. Sheared DNA was concentrated by
QIAquick PCR Purification Kit (Qiagen) and eluted in 30 pl nuclease-free H,O.
Then the purified DNA was size-selected on an agarose gel to a range of
1000-6000-bp DNA fragment through a premade 0.75% Pippin gel cassette. Size-
selected DNA was then end-repaired using the End-It DNA End Repair kit
(Epicenter). End-repaired DNA was then purified using the QIAquick PCR
purification kit (Qiagen), and quantified using the Qubit fluorometer BR assay kit
(Life Technologies) and ligated into the pZE21-MCS-1 vector at the HinclI site.
The pZE21 vector was linearized at the HINCII site using inverse PCR with PEX
DNA polymerase (Life Technologies). End-repaired metagenomic DNA and
linearized vector were ligated together using the Fast-Link Ligation Kit (Epicenter)
at a 5:1 ratio of insert:vector. After heat inactivation, ligation reactions were
dialyzed for 30 min using a 0.025-pum cellulose membrane (Millipore catalog
number VSWP09025), and the full reaction volume used for transformation by
electroporation into 25 pl E. coli MegaX (Invitrogen) according to the
manufacturer’s recommended protocols. Cells were recovered in 1 ml recovery
medium (Invitrogen) at 37 °C for 1 h. Recovered cells were inoculated into 50 ml of
LB containing 50 ug/ml kanamycin, and grown overnight. The overnight culture
was frozen with 15% glycerol and stored at —80 °C for subsequent screening.

Antibiotic selection of functional metagenomic libraries: Each metagenomic
library was selected for resistance at a concentration of 8 pg/ml tetracycline or 2 ug/
ml tigecycline plus 50 pg/ml kanamycin for plasmid library maintenance on
Meuller Hinton agar. After plating (using sterile glass beads), antibiotic selections
were incubated at 37 °C for 18 h to allow the growth of clones containing an
antibiotic resistance-conferring DNA insert. After overnight growth, all colonies
from a single antibiotic plate (library by antibiotic selection) were collected by
adding 750 ul of 15% MH-glycerol to the plate and scraping with an L-shaped cell
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scraper to gently remove colonies from the agar. The bacterial cells were then
stored at —80 °C before PCR amplification of antibiotic-resistant metagenomic
fragments and Illumina library preparation.

Functional metagenomic library sequencing: Cells were lysed by freezing, and
the resulting supernatant was used as a template for amplification of resistance-
conferring DNA fragments by PCR with Taq DNA polymerase (New England
BioLabs). The amplified metagenomic inserts were then cleaned using the Qiagen
QIAquick PCR purification kit, and quantified using the Qubit fluorometer HS
assay kit (Life Technologies).

For amplified metagenomic inserts from each antibiotic selection, elution buffer
was added to the PCR template for a final volume of 200 yl, and sonicated in a half-
skirted 96-well plate on a Covaris E210 sonicator with the following setting: duty
cycle, 10%; intensity, 5; cycles per burst, 200; sonication time, 600 s. Following
sonication, sheared DNA was purified and concentrated using the MinElute PCR
Purification kit (Qiagen), and eluted in 20 pl of pre-warmed nuclease-free H,O. In
the first step of library preparation, purified sheared DNA was end-repaired. Next,
to each end-repaired sample, 5 ul of 1 uM pre-annealed, barcoded sequencing
adapters were added. After the addition of barcoded adapters, samples were
incubated at 16 °C for 40 min, and then for 10 min at 65 °C. The pooled, adaptor-
ligated, sheared DNA was then size-selected to a target range of 300-400 bp on a
2% agarose gel in 0.5X TBE, stained with GelGreen dye (Biotium) and extracted
using a MinElute Gel Extraction Kit (Qiagen). The purified DNA was amplified
and quantified using the Qubit fluorometer HS assay kit (Life Technologies), and
10 nM of each sample was pooled for sequencing. Subsequently, samples were
submitted for paired-end 101-bp sequencing using the Illumina NextSeq platform.

Assembly and annotation of functionally selected contigs: Illumina paired-end
sequence reads were binned by barcode (exact match required), such that
independent selections were assembled and annotated in parallel. Assembly of the
resistance-conferring DNA fragments from each selection was achieved using
PARFuMS? (parallel annotation and reassembly of functional metagenomic
selections), a tool developed specifically for the high-throughput assembly and
annotation of functional metagenomic selections.

Open-reading frames (ORFs) were predicted in assembled contigs using
MetaGeneMark® and annotated by searching amino-acid sequences against Pfam,
TIGRfam, and an ARG specific profile hidden Markov model (pHMM) database,
Resfams?* (http://www.dantaslab.org/resfams), with HMMER3!0. MetaGeneMark
was run using default gene-finding parameters while hmmscan (HMMER3) was
run with the option --cut_ga as implemented in the script annotate_functional _
selections.py.

The majority of functionally identified tetracycline resistance genes are efflux
pumps or ribosomal protection proteins. To identify resistance determinants which
might function by monooxygenation of the tetracycline scaffold, annotations were
queried for putative tetracycline-inactivating function based on string matches to
one of the following keywords in Pfam and TIGRfam annotations: “FAD

» o« » o«

dependent oxidoreductase”, “oxidoreductase”, “FAD binding domain”.

Construction of maximum likelihood phylogenies. A multiple sequence align-
ment of predicted tetracycline-inactivating enzymes was created with MAFFT
using the L-INS-i method®. A maximum likelihood phylogeny was then con-
structed using RAXML with GAMMA model of rate heterogeneity and JTT
empirical base frequencies with 100 bootstraps®®. Trees were visualized and
decorated with metadata using iTol®!. Multiple sequence alignments were visua-
lized with MView®2,

Subcloning predicted tetracycline inactivators from metagenomic source.
Specific predicted tetracycline inactivators were selected for subcloning for
downstream phenotypic analysis if they met each of the following criteria: (1) the
open-reading frame contained a start codon; (2) the open-reading frame contained
a stop codon; and (3) the open-reading frame was greater than 1000 base pairs, but
less than 1500 base pairs. tet(47-56) and tet(X) had previously been subcloned!!.
Additional predicted tetracycline inactivators were amplified from their initial
metagenomic source using Phusion Hi-Fidelity Polymerase (ThermoFisher) and
primers as specified in Supplementary Table 1. Amplicons were ligated into pZE21
at the Kpnl/HindIII sites using Fast-Link DNA Ligase (Lucigen) and transformed
into E. coli MegaX DH10B cells (Invitrogen) via electroporation. The orientation
and sequence of all inserts was confirmed by Sanger sequencing prior to pheno-
typic analyses.

Antimicrobial susceptibility testing by microbroth dilution. Antibiotic sus-
ceptibility testing was performed in E. coli MegaX cells (Invitrogen) bearing the
PZE21 expression vector with the tetracycline-inactivating gene of interest as
previously described!2. Minimum inhibitory concentrations (MICs) were deter-
mined according to Clinical and Laboratory Standards Institute (CLSI) proce-
dures® using Mueller-Hinton broth with 50 ug/mL kanamycin and a range of
tetracycline antibiotic concentrations profiled via absorbance measurements at 600
nm (ODggo) at 45-min intervals using the Synergy H1 microplate reader (Biotek
Instruments, Inc) for 48 h at 37 °C and scored by eye following 20 h of growth
at 37 °C.

Pseudomonas aeruginosa isolation. Pseudomonas aeruginosa strain Pa-3 was
isolated from tracheal secretions of a 45-year-old male patient admitted to inten-
sive care unit at a tertiary care hospital in Pakistan in December 2016. A 100 pl
suspension of the sample was plated initially on Blood Agar (Oxoid) and Mac-
Conkey Agar for 18-24 h at 37 °C followed by sub-streaking of morphologically
distinct colonies on Pseudomonas cetrimide agar (Oxoid) incubated for 18-24 h at
37 °C. The isolate was identified using VITEK matrix-assisted laser desorption
ionization-time of flight mass spectrometry (MALDI-TOF MS) with library ver-
sion v2.3.3 (bioMérieux, Durham, NC). Following confirmation, the isolate was
grown overnight in 1 mL TSB at 37 °C with shaking and stocked at —80 °C in 15%
glycerol.

Pseudomonas aeruginosa genomic DNA isolation. A suspension of ~10 colonies
from a blood agar plate was used for genomic DNA isolation with the QIAamp
BiOstic Bacteremia DNA Isolation Kit (Qiagen) following the manufacturer’s
protocols. Genomic DNA was quantified using a Qubit fluorometer dsDNA BR
Assay (Invitrogen) and stored at —20 °C.

Pseudomonas aeruginosa isolate sequencing library preparation. Genomic
DNA was diluted to a concentration of 0.5 ng/uL prior to sequencing library
preparation. Libraries were prepared using a Nextera DNA Library Prep Kit
(Mlumina) following the modifications described in Baym et al.%%. Libraries were
purified using the Agencourt AMPure XP system (Beckman Coulter), and quan-
tified using the Quant-iT PicoGreen dsDNA assay (Invitrogen). Samples were
submitted for 2 x 150 bp paired-end sequencing on an Illumina NextSeq High-
Output platform at the Center for Genome Sciences and Systems Biology at
Washington University in St. Louis with a target sequencing depth of 1 million
reads per sample.

Assembly and annotation of Psuedomonas aeruginosa genome. Genomes were
assembled as previously described®®. Prior to all downstream analysis, Illumina
paired-end reads were binned by index sequence. Adapter and index sequences
were trimmed using Trimmomatic v0.36%° using the following parameters: java
-Xms2048m -Xmx2048m -jar trimmomatic-0.33.jar PE -phred33 ILLUMINACLIP:
NexteraPE-PE.fa:2:30:10:1:true. Contaminating human reads were removed using
DeconSeq® and unpaired reads were discarded. Reads were assembled using
SPAdes®” with the following parameters: spades.py -k 21,33,55,77 ~careful. Contigs
less than 500 bp were excluded from further analysis. Assembly quality was
assessed using QUAST®S. Genomes were annotated using Prokka® with default
parameters.

Antimicrobial susceptibility testing for Pseudomonas aeruginosa. Susceptibility
testing was performed using the Kirby-Bauer disk diffusion method on
Mueller-Hinton agar (Hardy Diagnostics) in accordance with CLSI standards®3.
Pseudomonas aeruginosa ATCC 27853 was used as a quality control.

Cloning, expression and purification of tetracycline-inactivating enzymes. All
genes encoding tetracycline-inactivating enzymes were cloned into the pET28b(+)
vector (Novagen) at BamHI and Ndel restriction sites. Constructs were trans-
formed into BL21-Star (DE3) competent cells (Life Technologies). Cells harboring
the plasmid were grown at 37 °C in LB medium containing a final concentration of
0.03 mg/mL kanamycin. Once cells reached an ODgqq of 0.6, cells were cooled to
15°C, and induced with 1 mM IPTG overnight. After this period, cells were har-
vested by centrifugation at 4000 rpm for 10 min at 4 °C. Cell pellets were suspended
in 10 mL of 50 mM Tris (pH 8.0), 100 mM NaCl, 10 mM imidazole (pH 8.0), 1 mM
PMSF, and 5 mM BME per 1 liter of LB medium and stored at —80 °C.

Cells were lysed by mechanical disruption using an Emulsiflex C5. The cell
extract was obtained by centrifugation at 13,000 rpm for 30 min at 4 °C, and was
applied onto nickel rapid run agarose beads (Goldbio) equilibrated with wash
buffer (50 mM Tris (pH 8.0), 150 mM NaCl, 20 mM imidazole (pH 8.0), and 5 mM
BME). The wash buffer was used to wash the nickel column three times with five
column volumes. After washing, protein was eluted with five column volumes of
elution buffer (wash buffer with 300 mM imidazole). The protein sample was
further purified by gel chromatography using a HiLoad 16/600 Superdex 200 pg
column (GE Healthcare) equilibrated with 10 mM Tris (pH 8.0), 150 mM NaCl, 5
mM dithioerythritol (DTT). The fractions containing the protein of interest were
pooled and concentrated using a 30 K MWCO Amicon centrifugal filter
(Millipore).

Crystallization, data collection, and structure refinement. Tet(X7) was con-
centrated to 20 mg/mlL, and crystallized by hanging drop vapor diffusion at 18 °C
in 0.2 M ammonium sulfate and 20% (w/v) PEG 4000. Crystals were transferred to
20% ammonium sulfate, 20% (w/v) PEG 4000, and 20% glycerol for 15-30 s and
flash-cooled in the liquid nitrogen. Diffraction data were collected at 100 K on
beamline 4.2.2 (Advanced Light Source, Lawrence Berkeley National Laboratory in
Berkeley, California). All data processing and structure analysis were performed
using SBGrid”’. Diffraction data was reduced and scaled using XDS’. Tet(X7)
structure was solved by molecular replacement using Phaser’? with the substrate-

10 COMMUNICATIONS BIOLOGY | (2020)3:241| https://doi.org/10.1038/s42003-020-0966-5 | www.nature.com/commsbio


http://www.dantaslab.org/resfams
www.nature.com/commsbio

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0966-5

ARTICLE

free Tet(X) structure (PDB ID: 2XDO; percentage identity: ~86%) as a starting
model. Structure refinement was performed in Phenix’3 and Coot’%. The final
model was validated using the Molprobity server’®.

In vitro tetracycline-inactivation assays. In vitro reactions were performed as
previously described!2. Reactions were prepared in 100 mM TAPS buffer with 28.0
uM substrate, 0.24 uM enzyme, and an NADPH regenerating system consisting of
the following components (final concentrations): glucose-6-phosphate (40 mM),
NADPT (4 mM), MgCl, (1 mM), and glucose-6-phosphate dehydrogenase (4 U/
ml). The regeneration system was incubated at 37 °C for 30 min to generate
NADPH before use in reactions. Reactions were sampled at various time-points
over a 2-h period, and 150-pL samples were transferred from the reaction vessel
and quenched in four volumes of an acidic quencher consisting of equal parts of
acetonitrile and 0.25 M HCL

Products generated from the Tet(X7) enzymatic inactivation of the last-
generation tetracyclines were separated by reverse-phase HPLC using a
Phenomenex Luna C18 column (5 um, 110 A, 2x50 mm) and 0.1% trifluoroacetic
acid in water (A) and acetonitrile (B) as mobile phase with optical absorbance
detection at 260 nm. Injections of 10 pL sample volume were eluted using a linear
gradient from 25% B to 75% B over 14 min at a flow rate of 1 mL/min. These
samples were concurrently analyzed LCMS (reverse-phase HPLC) using an Agilent
6130 single- quadrupole instrument with G1313 autosampler, G1315 diode array
detector, and 1200 series solvent module and separated using a Phenomenex
Gemini C18 column, 50 x 2 mm (5 pm) with guard column cassette and a linear
gradient of 0% acetonitrile 4+ 0.1% formic acid to 95% acetonitrile 4 0.1% formic
acid over 20 min at a flow rate of 0.5 ml/min before analysis by electrospray
ionization (ESI+).

Kinetic characterization of tetracycline inactivation. Reactions were prepared in
100 mM TAPS buffer at pH 8.5 with 0-40 uM substrate, 504 uM NADPH, 5.04
mM MgCl, and 0.4 uM enzyme. UV-visible spectroscopy measurements were
taken in duplicate at 400-nm wavelength light with a Cary 60 UV/Vis system
(Agilent) for 4 min at room temperature. Initial reaction velocities were determined
by linear regression over the linear range of the reaction using the Agilent Cary
WinUV Software, plotted against the concentration of the substrate, and fitted to
the Michaelis—Menten equation using Graphpad Prism 6.

In vitro characterization of anhydrotetracycline inhibition. IC;, values were
determined for Tet(X7) by measuring the initial velocity of tetracycline degradation
in the presence of varying concentrations of anhydrotetracycline (Adipogen Cor-
poration, San Diego, CA) or anhydrodemeclocycline (prepared as described in
ref. 23). The concentrations of tetracycline and NADPH were kept constant at 25
uM and 504 pM, respectively. Assays were prepared by combining all components
except for enzyme and mixing manually via pipette. After the addition of enzyme,
absorbance at 400 nm was measured for 5 min. All measurements were taken in
triplicate. The final concentrations for assay components were 100 mM TAPS
buffer (pH 8.5), 25.3 uM substrate, 504 uM NADPH, 5.04 mM MgCl,, 0.4 pM
enzyme, and varying concentrations of inhibitor. Initial velocities were determined
by linear regression over the linear range of the reaction using the Agilent Cary
WinUV Software, and ICs, values were determined by plotting the log of anhy-
drotetracycline concentration against initial velocities v, in GraphPad Prism 6.

Statistics and reproducibility. Biochemical assays were performed in triplicate at
a minimum. Statistical analysis for in vitro enzyme kinetics and inhibition assays
were done using GraphPad Prism 6. All error bars shown depict standard error for
three independent trials.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Psuedomonas aeruginosa Pa-3 assembly and tetracycline resistance genes have been
deposited to NCBI under BioProject ID PRJNA615643. Source data underlying main text
figures can be found in Supplementary Data 2.
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