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Abstract

Sickle cell disease (SCD) is an inherited hemolytic anemia whose pathophysiology is driven

by polymerization of the hemoglobin S (Hb S), leading to hemolysis and vaso-occlusive

events. Inflammation is a fundamental component in these processes and a continuous

inflammatory stimulus can lead to tissue damages. Thus, pro-resolving pathways emerge

in order to restore the homeostasis. For example there is the annexin A1 (ANXA1), an

endogenous anti-inflammatory protein involved in reducing neutrophil-endothelial interac-

tions, accelerating neutrophil apoptosis and stimulating macrophage efferocytosis. We

investigated the expression of ANXA1 in plasma of SCD patients and its relation with ane-

mic, hemolytic and inflammatory parameters of the disease. Three SCD genotypes were

considered: the homozygous inheritance for Hb S (Hb SS) and the association between Hb

S and the hemoglobin variants D-Punjab (Hb SD) and C (Hb SC). ANXA1 and proinflamma-

tory cytokines were quantified by ELISA in plasma of SCD patients and control individuals

without hemoglobinopathies. Hematological and biochemical parameters were analyzed

by flow cytometry and spectrophotometer. The plasma levels of ANXA1 were about three-

fold lesser in SCD patients compared to the control group, and within the SCD genotypes

the most elevated levels were found in Hb SS individuals (approximately three-fold higher).

Proinflammatory cytokines were higher in SCD groups than in the control individuals. Ane-

mic and hemolytic markers were higher in Hb SS and Hb SD genotypes compared to Hb

SC patients. White blood cells and platelets count were higher in Hb SS genotype and were

positively correlated to ANXA1 levels. We found that ANXA1 is down-regulated and differ-

entially expressed within the SCD genotypes. Its expression seems to depend on the

inflammatory, hemolytic and vaso-occlusive characteristics of the diseased. These data

may lead to new biological targets for therapeutic intervention in SCD.
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Introduction

Sickle cell disease (SCD) is a hemolytic anemia caused by the presence of hemoglobin S (Hb S)
in homozygous, named sickle cell anemia (SCA), or associated with thalassemias and other
hemoglobin variants [1,2]. Phenotypic expression of the SCD is variable and depends on the
associated genotype and other factors that alter the hemoglobin concentration or the blood
flow. In general, the homozygous inheritance is the most severe form of the disease [3,4]. The
beta-globin gene cluster haplotypes associated with Hb S (βS-haplotypes) are potential modula-
tors of the phenotypic heterogeneity in SCD, mainly due their relation with fetal hemoglobin
(Hb F) levels. There are five typical βS-haplotypes: Benin, Bantu, Senegal, Cameroon, and
Saudi-Arabian/Indian, of which Bantu usually confers the lowest Hb F levels, causing more
severe clinical manifestations [5–7].

The mutation for Hb S occurs in the beta globin gene (HBB:c.20A>T; rs334) and it is
responsible for the hemoglobin polymerization under conditions of hypoxia, acidosis or dehy-
dration, altering the erythrocytesmorphology for a sickling state [1,2]. The association between
Hb S and the mutations for hemoglobins C (HBB:c.19G>A; rs33930165) and D-Punjab [(Hb
SD); (HBB: c.364G>C)] is also common, and can contribute to the wide phenotypic variety of
the disease. As Hb S concentration is a determining factor for the SCD clinical severity, double
heterozygous genotypes usually, but not always, are less clinically severe than SCA [3,4]. The
Hb SC inheritance is considered a mild genotype [4], while Hb SD results in mild to moderate
symptoms, although severe conditions have been reported [8].

The polymerization of Hb S is the primary event in the SCD pathophysiology, resulting in
physicochemical changes in erythrocytes and leading to hemolysis and vaso-occlusion [2]. The
hemolysis occurs with an early destruction of erythrocytes containing Hb S by releasing hemo-
globin and heme iron free in the plasma. Oxidative stress, nitric oxide (NO) depletion, endo-
thelial dysfunction, cell damage, and inflammation are all consequences of this process. Vaso-
occlusion is mediated by ischemic-reperfusioncycles, causing tissue damage resulted from oxi-
dative stress, activation of endothelial cells, leucocytes and platelets, increase of adhesion mole-
cules expression, and the release of inflammatory cytokines [9–11].

Inflammation is a key component in SCD pathophysiology [10]. The inflammation
response begins when tissue-resident cells of the innate immune system detect the damaging
agents and trigger nearby neutrophils. These cells migrate to the inflamated tissue, recruit
inflammatorymonocytes and potentiate the proinflammatory environment [12,13]. In SCD,
the chronic inflammation is characterized by increased leukocytes count and activation of
granulocytes,monocytes, and platelets [9,10,14]. Proinflammatorymediators derived from leu-
kocytes, platelets and endothelial cells, such as tumor necrosis factor alpha (TNF-α) and the
interleukins (IL), IL-6, IL-1β and IL-8, are usually higher in SCD [15–17]. The increased pro-
duction and release of proinflammatory cytokines can favor the vaso-occlusive process due to
endothelial activation, erythrocytes and leukocytes adhesion to vascular endothelial and endo-
thelial cells apoptosis [15,18].

In order to prevent the progression of inflammation, the inflammatory response must be
resolved, promoting the return to homeostasis and inhibiting further tissue damage. The reso-
lution process of the inflammation includes the limitation of neutrophil tissue infiltration, the
counter-regulation of cytokines and chemokines, the induction of apoptosis in spent neutro-
phils and their efferocytosis by macrophages [19]. In this context, annexin A1 (ANXA1) stands
out as a potent endogenous anti-inflammatorymediator. ANXA1, also known as lipocortin-1,
is a glucocorticoid-regulatedprotein that is able to reduce neutrophil-endothelial interactions,
accelerate neutrophil apoptosis and stimulate macrophage efferocytosis.ANXA1 is expressed
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mainly in neutrophils, accounting for 2% to 4% of the total intracellular proteins, and its exter-
nalization allows an anti-inflammatory action [19–21].

The main mechanism of ANXA1 action is by the inhibition of phospholipase A2 (PLA2), an
enzyme involved in the adhesive properties of neutrophils to endothelial cells, preventing the
neutrophil transmigration through the endothelium [20,22]. This effectmay also be beneficial in
ischemia-reperfusionsituations [23–25]. Facio et al. (2010) demonstrated that ANXA1 has an
important role in renal defense against ischemia-reperfusion injury, aborting neutrophil extrava-
sation after reperfusion [24]. La et al. (2001) and Qin et al. (2014) showed that ANXA1 reduces
the tissue damage in the myocardium caused by ischemia-reperfusionevents [23,25]. In some
chronic inflammatory conditions, as Crohn’s disease or sepsis, ANXA1 levels are usually reduced,
supporting the progression and exacerbation of the inflammatory response [26,27]. In SCD,
there are no studies about the ANXA1 and its role in the anti-inflammatory response.

SCD is a hemolytic condition, also considered a chronic inflammatory disease, and the neu-
trophil-endothelium interactions are frequently involved in the vaso-occlusive crisis. Thus,
ANXA1may have an important participation in the SCD pathophysiology. In this study, we
evaluate the plasma levels of ANXA1 in SCD patients of three different hemoglobin genotypes,
considering a phenotypic graduation from the most to the least severe, according to literature
reports: Hb SS, Hb SD and Hb SC, respectively. The results are compared to a control group
without hemoglobinopathies (Hb AA). Besides the ANXA1 quantification, we measured
plasma levels of proinflammatory cytokines, as well as hematological and biochemicalmarkers
as predictors of anemia and hemolysis.

Results

Characterization of the study group

Fifty samples from SCD patients were genotyped and we found 24 (48.0%) corresponding to
Hb SS, eight (16.0%) to Hb SD and 18 (36.0%) to Hb SC genotypes. All 20 individuals from the
control group were confirmedwith Hb AA profile (Table 1). We investigated the βS haplotypes

Table 1. Characterization of the study groups.

Characteristics Control Group Hb SS Hb SD Hb SC

Sample size 20 24 8 18

Age [years; median (min-max)] 26.0 (21.0–49.0) 21.0 (12.0–51.0) 20.0 (13.0–43.0) 17.0 (11.0–60.0)

Gender [n(%)]

Female 6 (30.0) 17 (70.8) 3 (37.5) 7 (38.9)

Male 14 (70.0) 7 (29.2) 5 (62.5) 11 (61.1)

Hb Profile (%; mean ± SD)

Hb A 86.3 ± 1.0 NA NA NA

Hb A2 3.0 ± 0.3 3.4 ± 1.2 2.8 ± 0.4 4.2 ± 0.4

Hb F 0.2 ± 0.3 7.5 ± 5.6 6.3 ± 3.4 1.6 ± 1.4

Hb S NA 86.0 ± 5.6 43.8 ± 2.8 47.9 ± 0.9

Hb D NA NA 42.7 ± 1.7 NA

Hb C NA NA NA 42.3 ± 2.1

Haplotypes [n (%)]

Bantu/Bantu NA 14 (58.3) NA NA

Bantu/Non-Bantu NA 7 (29.2) 6 (75.0) 16 (88.9)

Non-Bantu/Non-Bantu NA 3 (12.5) 2 (25.0) 2 (11.1)

Hb: Hemoglobin; SD: standard deviation; NA: not applicable.

doi:10.1371/journal.pone.0165833.t001
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and classified them as Bantu and Non-Bantu groups. Non-Bantu group included the other less
frequent haplotypes and the atypical combinations. In Hb SS genotype, we found Bantu/Benin
(four), Bantu/Atypical (three), Benin/Benin(two) and Benin/Atypical (one) individuals. The
atypical haplotypes found in this study were the atypical 1 (- - - - - -) and 3 (- - + - + -), accord-
ing to classification of Silva et al. (2013) [28]; and one not named haplotype (- + - + - -). In Hb
SD and Hb SC, the only non-Bantu haplotype found was Benin.We did not find any differ-
ences in the Hb F levels between the two subgroups of haplotypes (Bantu and Non-Bantu) (Stu-
dent t-test; p> 0.05).

SCD Hemolysis is more severe in Hb SS and Hb SD genotypes

To evaluate the anemic level in our SCD groups, we analyzed hematological parameters within
the genotypes (Table 2). Red blood cells (RBC), total hemoglobin and hematocrit were lower in
Hb SS and Hb SD individuals compared to Hb SC genotype (p< 0.001). Neutrophil count did
not differ between the genotypes, but the total number of white blood cell (WBC) was higher
in Hb SS (p< 0.01). Similarly, the platelets count was higher in the homozygous genotype
(p< 0.001).

To evaluate the hemolytic profile on patients, we measured the reticulocytespercentage and
the circulating values of lactate dehydrogenase (LDH), aspartate aminotransferase (AST) and
unconjugated bilirubin (UCB). In all cases, the markers were higher in Hb SS and Hb SD geno-
types compared to patients with Hb SC (Fig 1).

Plasma levels of ANXA1 is decreased in SCD, but higher in Hb SS

genotype

The plasma levels of ANXA1were about three-fold lower in SCD patients than in the control
group (p = 0.04) (Fig 2). Into SCD group, ANXA1 expression was different between the geno-
types (p< 0.01). We found higher plasma levels of ANXA1 in Hb SS than in Hb SD and Hb
SC genotypes (p< 0.05), but no difference betweenHb SD and Hb SC. Comparing the profile
for ANXA1with the control group and each SCD genotype, we observed statistical differences
for Hb SD (p< 0.05) and Hb SC (p< 0.05), but not for Hb SS (Fig 3).

Correlation analyses were performed to investigate the relation of ANXA1with the hemo-
lytic anemia in SCD. The results were not significant betweenANXA1 and the hemolytic
parameters, but we observed a positive and significant correlation with theWBC (r = 0.31;
p = 0.03) and platelets (r = 0.42; p = 0.01) count (Fig 4).

Table 2. Hematological profile of the SCD genotypes.

Parameters Hb SS Hb SD Hb SC P value

RBC (M/μL) 2.7 ± 0.1 a 2.5 ± 0.2 a 4.3 ± 0.2 b < 0.001

Total Hb (g/dL) 8.2 ± 0.2 a 8.2 ± 0.5 a 11.7 ± 0.4 b < 0.001

Hematocrit (%) 23.5 ± 0.6 a 22.8 ± 1.6 a 34.1 ± 1.1 b < 0.001

WBC (K/μL) 11.2 ± 0.6 a 9.3 ± 0.9 a,b 8.1 ± 0.6 b < 0.01

Neutrophil (K/μL) 5.8 ± 0.5 a 4.3 ± 0.6 a 4.4 ± 0.3 a 0.09

Platelets (K/μL) 534.6 ± 30.3 a 340.0 ± 28.6 b 267.1 ± 29.9 b < 0.001

RBC: red blood cells. Hb: hemoglobin. WBC: white blood cells. M/μL: million per microliter. g/dL: grams per deciliter. K/μL: thousand per microliter.

Statistical analysis: one-way ANOVA followed by Tukey’s post hoc. Different letters indicate statistical differences.

doi:10.1371/journal.pone.0165833.t002
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Fig 1. Hemolytic status in the SCD genotypes. (A) Reticulocytes. (B) LDH. (C) AST. (D) UCB. LDH:

lactate dehydrogenase. AST: aspartate aminotransferase. UCB: unconjugated bilirubin. U/L: unit per liter.

mm/dL: millimeter per deciliter. Reference values: Reticulocytes (1.0–2.6%); LDH (< 480 U/L); AST (< 31 U/

L); UCB (< 0.7 mm/dL). Statistical analysis: Kruskal-Wallis followed by Dunn’s test for A and B; one-way

ANOVA followed by Tukey’s test for C and D. *p < 0.05. ***p < 0.001.

doi:10.1371/journal.pone.0165833.g001

Fig 2. Plasma levels of ANXA1 in control and SCD groups. Data expressed in mean ± standard error of

the mean. Statistical analysis: Student’s t-test. *p<0.05.

doi:10.1371/journal.pone.0165833.g002
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Proinflammatory state is increased in SCD, especially in Hb SS

genotype

Plasma levels of IL-1β, IL-8, and TNF-α were evaluated in SCD and control groups in order to
estimate the inflammatory profile of the samples. All proinflammatory cytokines were
increased in SCD patients (Fig 5). Among the SCD genotypes, in general, the highest plasma
levels of the cytokines were obtained in the Hb SS genotype (Fig 6). IL-1β plasma levels were
different betweenHb SS and Hb SD genotypes (p< 0.05). Compared to the control group, the
levels were higher in Hb SS and Hb SC (p< 0.001). Regarding IL-8, we observedhigher levels
in Hb SS compared to double heterozygous genotypes Hb SD and Hb SC (p< 0.05).

Fig 3. Plasma levels of ANXA1 in control group and SCD genotypes. Data expressed in

mean ± standard error of the mean. Statistical analysis: one-way ANOVA. *p<0.05 for Tukey-Krumer post

hoc. #p<0.05 for Dunnett’s post hoc.

doi:10.1371/journal.pone.0165833.g003

Fig 4. Correlation between plasma levels of ANXA1 and the count of WBC and platelets in SCD

patients. (A) ANXA1 versus WBC. (B) ANXA1 versus Platelets. WBC: white blood cells. Statistical analysis:

Pearson’s correlation. Data expressed in logarithm. Moderate correlation between ANXA1 and WBC:

r = 0.31; p = 0.03. Moderate correlation between ANXA1 and platelets: r = 0.42; p = 0.01.

doi:10.1371/journal.pone.0165833.g004
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Homozygous genotype also presented higher levels compared to the control group (p< 0.05).
Plasma levels of TNF-α did not exhibit any difference between the SCD genotypes, but the lev-
els in Hb SS and Hb SD were higher than in the control (p< 0.01).

Discussion

SCD is considered a chronic inflammatory disease due to persistent activation of leukocytes,
platelets, and endothelial cells, resulting from hemolysis and vaso-occlusionmediated by ische-
mia-reperfusion cycles. Most clinical manifestations of the SCD are related to an exacerbation
of the inflammatory response and the involvement of cytokines in increasing the hemolytic
and vaso-occlusive severity has been evidenced [10,16].

ANXA1 is down-expressed in plasma of SCD patients. ANXA1 is a potent endogenous
anti-inflammatory protein expressed in neutrophils and represents a potential therapeutic tool
to control inflammatory diseases [29]. ANXA1 regulates neutrophil recruitment to the inflam-
matory site, induces neutrophil apoptosis, induces monocytes recruitment and promotes effer-
ocytosis.Due to the biological action of ANXA1, low levels of this protein may explain the
propagation of the inflammatory response in some chronic inflammatory conditions [30].

Fig 5. Plasma levels of the proinflammatory cytokines in the control and SCD groups. (A) IL-1β. (B) IL-8. (C) TNF-α. Data expressed in

mean ± standard error of the mean. Statistical analysis: Student t-test. *p < 0.05. **p < 0.01. ***p < 0.001.

doi:10.1371/journal.pone.0165833.g005
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This seems to be the first study to evaluate ANXA1 in SCD. Our results corroborate the
Sena et al. (2013) and Tsai et al. (2013) findings for Crohn’s disease and sepsis, respectively
[26,27]. The authors demonstrated reduced gene and protein expression of ANXA1 in both sit-
uations and they suggested a down regulation of ANXA1 as a responsible factor in supporting
the inflammatory response.

When subjected to a proinflammatory profile, we observedhigher plasma levels of IL-1β,
IL-8 and TNF-α in SCD patients compared to control individuals. IL-1β and TNF-α are cyto-
kines that participate in the initial inflammatory response. They are able to promote the pro-
duction and release of other important mediators, such as IL-8, a neutrophils-attractive
chemokine. Together, these and other cytokines act in triggering the inflammatory cascade
[31–35]. Our finding demonstrates the inflammatory character of the SCD and suggests some
spreading and persistent features of the inflammatory response under low levels of ANXA1.

As expected, among the genotypes, the inflammation was more intense in Hb SS, followed
by Hb SD group, except for TNF-α, which did not differ between the SCD groups. For Hb SC,
the process was milder, similar to control individuals.Many studies demonstrate that IL-1β
production leads to an increase of TNF-α and vice versa. However, in some situations this may

Fig 6. Plasma levels of the proinflammatory cytokines in the control group and SCD genotypes. (A) IL-1β. (B) IL-8. (C) TNF-α. Data

expressed in mean ± standard error of the mean. Statistical analysis: one-way ANOVA. *p<0.05 for Tukey-Krumer post hoc. #Dunnett’s post hoc

(#p<0.05. ##p < 0.01. ###p < 0.001).

doi:10.1371/journal.pone.0165833.g006
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not occur [33]. In SCD, a systemic and complex disease, different triggers could favor the
beginning of the inflammatory response, explaining the differences between cytokines expres-
sion found among the genotypes.

Following these results, the analysis of anemia markers also showed higher severity for Hb
SS followed by Hb SD genotype. RBC count, total hemoglobin and hematocrit were lower in
these genotypes compared to Hb SC group. Likewise, we investigated the hemolytic profile of
the SCD patients by the evaluation of four hemolytic markers as previously validated by Nour-
aie et al (2013): Reticulocytespercentage, LDH, AST and UCB [36]. All parameters were
increased in Hb SS and Hb SD patients, suggestingmore severe hemolytic anemia for these
genotypes when compared with Hb SC.

The greater severity of the inflammation in Hb SS and Hb SD genotypes is most likely a con-
sequence of the Hb S polymerization and chronic hemolysis. As Hb S concentration is a deter-
minant factor for the SCD clinical severity, double heterozygous genotypes usually, but not
always, are less clinically severe than Hb SS [3,37]. However, the similarity found betweenHb
SS and Hb SD groups may be a result from the Hb D properties to increase the polymerization
rate of the Hb S. The mutation responsible for Hb D (HBB:c.364G>C) occurs in an interaction
site betweenHb S molecules and possibly the amino acid change (Glu!Gln) encourages this
interaction, promoting the polymerization process and the erythrocyte sickling [38,39].

Despite the inflammatory severity in Hb SS genotype, this group presented the highest levels
of ANXA1 among the SCD genotypes. ANXA1 is abundant in neutrophils, which may exter-
nalize large amounts of this protein (50% to 70%), especially in response to cytokines released
during the inflammatory propagation and neutrophil transmigration [20,22,40]. Homozygous
patients for Hb S usually exhibit more anemic, hemolytic, vaso-occlusive and clinical severity
than the double heterozygous genotypes [3] and this may represent a potential stimulus for
outsourcing and releasing of ANXA1.Moreover, one of the main mechanisms that trigger the
ANXA1 externalization is the contact neutrophil-endothelium [20,22], which is a common
interaction in the vaso-occlusive processes in SCD due to the cells increased adhesive proper-
ties, platelets and endothelium.

Hemolysis, associated to inflammation and large amount of leukocytes and platelets in cir-
culation, could explain the higher plasma levels of ANXA1 found in Hb SS, compared to other
genotypes, representing a great stimulus for ANXA1 externalization. According to our data,
Hb SD genotype seems to present intermediate characteristics, while Hb SC individuals show a
milder phenotype.

Vaso-occlusive episodes are favored by increased adhesive properties of erythrocytes, leuko-
cytes, platelets and endothelial cells in SCD. Besides, a greater number of these circulating fac-
tors can aggravate the process [10]. The vaso-occlusion is directly related to inflammatory
pathway and involves multiple cell types. Adhesion of platelets or erythrocytes can activate
endothelial cells, producing increased expression of adhesion molecules and thus promoting
the recruitment of neutrophils. Activate neutrophils roll and adhere to the endothelium, initiat-
ing the vaso-occlusive events [14]. We observed that Hb SS individuals presented elevated
WBC and platelets count when compared to the other SCD genotypes. In addition, the plasma
levels of ANXA1were correlated toWBC and platelets number, suggesting a link between
these blood elements and the release of ANXA1.

We conducted this research on a meticulous selection of study groups based on inclusion
and exclusion criteria previously listed by [41]. Furthermore, we considered the possible inter-
ference of the βS haplotypes and consequently the Hb F levels in the clinical course of the dis-
ease. Our results are consistent and show that ANXA1 protein is down-regulated and
differentially expressed between the genotypes in SCD. ANXA1 expression in SCD seems to be
dependent on hemolysis severity, inflammatory condition and number of WBC and platelets.
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Also, ANXA1 is responsible to coordinate the resolution of the inflammation. Despite
decreased plasma levels of the ANXA1 in SCD disease, its externalization and releasing can be
stimulated by the hemolytic, inflammatory and vaso-occlusive processes. This may represent a
compensatory attempt to ease the inflammatory damage in SCD homozygous genotype.

In summary, the results presented indicate that ANXA1 expression is reduced in plasma of
SCD patients, but its levels are elevated in homozygous genotype, compared to double hetero-
zygous. These findings suggest that hemolysis and inflammation in Hb SS individuals could be
a potential stimuli for ANXA1 externalization and releasing from neutrophils. Our study
enlightens the anti-inflammatory role of ANXA1 a promising tool for the development of new
therapeutic strategies to treat inflammation in SCD.

Materials and Methods

Subjects

The study consisted of 50 SCD patients from the Institute of Hematology Arthur de Siqueira
Cavalcanti in Rio de Janeiro, RJ, Brazil. All patients were selected according to inclusion crite-
ria, namely: absence of anti-inflammatory prescription for three weeks prior to sample collec-
tion, absence of hydroxyurea administration for up to six months preceding the collection date
and absence of blood transfusions carried out in<60 days, suggested by Hb A< 10.0% [41].
Only individuals over 10 years old were included in the study, since at this age the hemoglobin
profile is usually stable. The control group was composed by twenty volunteers, adults of both
genders and with normal hemoglobins, that had not used any anti-inflammatory drugs for the
past three weeks. The study has approval by the Research Ethics Committee from Sao Paulo
State University (UNESP) under the Certificate of Presentation for Ethics Consideration
(CAAE) number 08813112.7.0000.5466. All subjects gave their written consent, which were
drawn up in accordance with the ethical guideline regulations for research involving human
subjects.

Samples and genotyping for SCD

Peripheral blood samples (5 mL) were collected into tubes containing 5.0% ethylenediamine-
tetraacetic acid (EDTA) as anticoagulant. The hemoglobinmigration pattern was evaluated
by electrophoresis on cellulose acetate at pH 8.6 [42] and agar-agar gel electrophoresis at pH
6.2 [43]. The red cell morphologywas analyzed in light microscope with 40x objective lens.
The quantification of the hemoglobin fractions was performed by high performance liquid
chromatography (HPLC) by VARIANTTM automated equipment (Bio-Rad Laboratories,
CA, USA).

In order to confirm SCD genotype by molecular biology, DNA was extracted from leukocytes
with phenol-chloroformmethod [44] and then subjected to polymerase chain reaction followed
by restriction fragment analysis (PCR-RFLP). Primers used for amplification of the correspond-
ing region to Hb S and Hb Cmutations were 5’-GGCAGAGCCATCTATTGCTTA-3’ and 5’-
ACCTTAGGGTTGCCCATAAC-3’. For Hb D-Punjab, the primers were 5’-TGCCTCTTTGC
ACCATTCTA-3’ and 5’-GA CTCCCACATTCCCTTTT-3’. The amplified segments were
treated with specific restrictions enzymes for identification of Hb S, Hb C and Hb D-Punjab
mutations:DdeI (5’-C#TNAG-3’), BseRI (5’-GAGGAG(N)10/8#-3’) and EcoRI (5’-G#AATT
C-3’), repectively. Fragments obtained were visualized in agarose gel 2.5%.

After genotyping, individuals were separated into three SCD study groups: Hb SS, Hb SD
and Hb SC; and the control group: Hb AA.
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Screening of βS-haplotypes

DNA samples from SCD patients were submitted to molecular analysis for identification of the
βS haplotypes. For this, six polymorphic sites were investigated, namely: 5’γG-XmnI, γG-Hin-
dIII, γA-HindIII, ψβ -HincII, 3’ψβ-HincII e 5’β-Hinf I. The technique applied was PCR-RFLP
as previously described by Sutton et al. (1989) [45]. The haplotypes were identified by the com-
bination of presence (+) and absence (-) of the respective restriction sites. In this study, one
specific haplotype was considered: Bantu, which is defined by the presence of the second
restriction site and absence of the other five sites (- + - - - -). Besides being the most frequent
βS-haplotype in the studied population, Bantu usually confers the lowest levels of Hb F and,
consequently, the most severe clinical condition in SCD. Note that Hb SS genotype has two βS

clusters, while the other genotypes have only one.

Hematological and hemolytic parameters in SCD patients

Total hemoglobin, hematocrit and the count of RBC,WBC, neutrophils and platelets were
measured by differentiation in flow cytometry and spectrophotometer (Cell-DynRuby). These
parameters were used to characterize the study groups and to analyze the intensity of anemia.

Hemolytic profile was evaluated by four markers of hemolysis: reticulocytespercentage,
LDH, AST and UCB. These analysis were measured by 2,4- dichlorophenyl diazoniomethod
(Beckman coulter AV680) and performed for a comparison of the hemolytic status between
the SCD genotypes.

ANXA1 and cytokines measurement

The plasma samples were isolated from the total peripheral blood by centrifugation in 500g,
for 10 minutes, at 4°C. They were stored at -20°C. The plasma levels of ANXA1were evaluated
by enzyme-linked immunosorbent assay (ELISA). For IL-1β, IL-8 and TNF-α we usedmulti-
plex instrument LUMINEX xMAPMAGPIX (Millipore Corporation, Billerica,MA, USA).
Technical procedures were performed according to manufacturer’s instructions.

Statistical analysis

Data were compared between the control group and SCD patients by Student’s t-test orMann-
Whitney test, depending on the nature of the data (parametric or non-parametric distribution).
Comparisons between the SCD genotypes were performed by one-way ANOVA or Kruskal-
Wallis test, followed by Tukey or Dunn post hoc, respectively. To compare the SCD genotypes
against the control group, we applied one-way ANOVA followed by Dunnett’s test. The correla-
tion analyses were performed by Pearson test. In all cases, non-parametric data were trans-
formed in logarithm to prioritize the parametric tests. The adopted confidence interval was
95%, with a significance level of p< 0.05.

Acknowledgments

The authors would like to thank Cássio Roriz Fogarin (School of Electrical and Computer
Engineering,University of Campinas, Sao Paulo, Brazil), for image editing, and Gabriel Gan-
dolphi for the English text review.

Author Contributions

Conceptualization:LST SMO CRBD.

Formal analysis: LST.

Annexin A1 Expression in Sickle Cell Disease

PLOS ONE | DOI:10.1371/journal.pone.0165833 November 1, 2016 11 / 14



Funding acquisition: LST SMO CRBD.

Investigation: LST JVO KKOM EBJ RGO.

Methodology:LST SMO CRBD.

Project administration: SMO CRBD.

Supervision:SMO CRBD.

Visualization: LST JVO DGHS SMO CRBD.

Writing – original draft: LST JVO DGHSCRBD.

Writing – review& editing: LST JVO DGHS SMO CLCL CRBD.

References
1. Kato GJ, Hebbel RP, Steinberg MH, Gladwin MT. Vasculopathy in sickle cell disease: Biology, patho-

physiology, genetics, translational medicine, and newresearch directions. Am J Hematol. 2009; 84(9):

618–625. doi: 10.1002/ajh.21475 PMID: 19610078

2. Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet. 2010; 376(9757): 2018–31. doi: 10.

1016/S0140-6736(10)61029-X PMID: 21131035

3. Steinberg MH. Genetic etiologies for phenotypic diversity in sickle cell anemia. ScientificWorldJournal.

2009; 9: 46–67. doi: 10.1100/tsw.2009.10 PMID: 19151898

4. Serjeant GR. The natural history of sickle cell disease. Cold Spring Harb Perspect Med. 2013; 3(10):

a011783. doi: 10.1101/cshperspect.a011783 PMID: 23813607

5. Nagel RL. The origin of the hemoglobin S gene: clinical, genetic and anthropological consequences.

Einstein Quart J Biol Med. 1984; 2(2): 53–62.

6. Powars DR. βS gene cluster haplotypes in sickle cell anemia: clinical and hematologic features. Hema-

tol Oncol Clin North Am. 1991; 5(3): 475–493. PMID: 1713910

7. Powars D, Hiti A. Sickle cell anemia. Beta s gene cluster haplotypes as genetic markers for severe dis-

ease expression. Am J Dis Child. 1993; 147(11): 1197–1202. PMID: 8237915

8. Patel S, Purohit P, Mashon RS, Dehury S, Meher S, Sahoo S, et al. The effect of hydroxyurea on com-

pound heterozygotes for sickle cell-Hemoglobin D-Punjab: A single centre experience in eastern India.

Pediatr Blood Cancer. 2014; 61(8): 1341–1346. doi: 10.1002/pbc.25004 PMID: 24616059

9. Hebbel RP. Ischemia-reperfusion injury in sickle cell anemia: relationship to acute chest syndrome,

endothelial dysfunction, arterial vasculopathy, and inflammatory pain. Hematol Oncol Clin North Am.

2014; 28(2): 181–198. doi: 10.1016/j.hoc.2013.11.005 PMID: 24589261

10. Hoppe CC. Inflammatory mediators of endothelial injury in sickle cell anemia. Hematol Oncol Clin

North Am. 2014; 28(2): 265–286. doi: 10.1016/j.hoc.2013.11.006 PMID: 24589266

11. Rifkind JM, Mohant JG, Nagababu E. The pathophysiology of extracellular hemoglobin associated

with enhanced oxidative reactions. Front Physiol. 2015; 14(5): 500–507.

12. Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of

innate and adaptive immunity. Nat Rev Immunol. 2011; 11(8): 519–531. doi: 10.1038/nri3024 PMID:

21785456
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